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Abstract. This article is devoted to the interplay between produc-
tively Menger and productively Hurewicz subspaces of the Cantor space.
In particular, we show that in the Laver model for the consistency of the
Borel’s conjecture these two notions coincide and characterize Hurewicz
spaces. On the other hand, it is consistent with CH that there are
productively Hurewicz subspaces of the Cantor space which are not pro-
ductively Menger.

1. Introduction

This work may be thought of as a continuation of our earlier paper [9],
so we keep our introduction here short and refer the reader to that of [9].
Except for Theorem 1.1 and its proof at the end of Section 2, we consider
only zero-dimensional metrizable separable spaces, i.e., subspaces of the
Cantor space 2ω up to a homeomorphism.

A topological space X has the Menger property (or, alternatively, is a
Menger space) if for every sequence ⟨Un : n ∈ ω⟩ of open covers of X there
exists a sequence ⟨Vn : n ∈ ω⟩ such that each Vn is a finite subfamily of
Un and the collection {∪Vn : n ∈ ω} is a cover of X. We get an equivalent
property if we demand that each x ∈ X is covered by ∪Vn for infinitely
many n ∈ ω (for this it suffices to split ⟨Un : n ∈ ω⟩ into infinitely many
mutually disjoint subsequences and apply the Menger property to each of
them). If in the definition above we additionally require that {∪Vn : n ∈ ω}
is a γ-cover ofX (this means that the set {n ∈ ω : x ̸∈ ∪Vn} is finite for each
x ∈ X), then we obtain the definition of the Hurewicz property introduced
in [3]. However, we shall actually use the following characterizations of these
properties established in [3] (see also [4, Theorems 4.3 and 4.4]): X ⊂ 2ω is
Menger (resp. Hurewicz) if and only if for every continuous f : X → ωω, the
range f [X] is non-dominating (resp. bounded) with respect to the eventual
dominance relation ≤∗.
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One of the basic questions about a topological property is whether it is
preserved by finite products, which led to the following definitions intro-
duced in [7]: A topological space X is productively Hurewicz (resp. produc-
tively Menger), if X×Y is Hurewicz (resp. Menger) for all Hurewicz (resp.
Menger) spaces Y . Since singletons are Hurewicz, productively Hurewicz
(resp. productively Menger) spaces are Hurewicz (resp. Menger). If b < g,
there are productively Menger spaces which are not even Hurewicz, see the
discussion at the beginning of [11, p. 10]. However, if b = d, then produc-
tively Menger spaces are productively Hurewicz by [11, Theorem 4.8].

In this paper we show that the statement “b = d and classes of produc-
tively Hurewicz and productively Menger spaces coincide” is independent
from ZFC. More precisely, in one direction we use the key lemma of [5] in
the style of [6] and prove the following

Theorem 1.1. In the Laver model for the consistency of the Borel’s conjec-
ture, Hurewicz spaces are productively Menger (and hence also productively
Hurewicz) in the realm of subspaces of 2ω.

Consequently, the product X × Y of a Hurewicz space X and a Menger
space Y is Menger if it is Lindelöf.

The theorem above is an improvement of [13, Theorem 1.1], as follows
from [11, Theorem 4.8].

The next result, whose proof relies on ideas from [11], shows that the
conclusion of Theorem 1.1 is not a consequence of CH, so also not of b = d,
the latter being the assumption in [11, Theorem 4.8].

Theorem 1.2. The existence of a productively Hurewicz space which is not
productively Menger is consistent with CH.

We do not know whether the conclusion of Theorem 1.2 is actually a
consequence of CH. The space we construct in the proof of Theorem 1.2
answers [11, Problems 7.6,7.8] in the negative.

We refer the reader to [1] for the definitions of cardinal characteristics
we use, [2] for topological notions we use but not define, and to [9] for more
motivation behind the research done in this paper.

2. Productively Hurewicz spaces in the Laver model

This section is mainly devoted to the proof of Theorem 1.1.

Definition 2.1. X ⊂ 2ω is said to satisfy property (†), if for every function
M assigning to each countable subset Q ofX a Menger subsetM(Q)∩Q = ∅
of 2ω, there exists a family Q ⊂ [X]ω of size |Q| = ω1 such that X ⊂⋃

Q∈Q(2
ω \M(Q)). 2

Let us note that under CH any X ⊂ 2ω satisfies (†).
The following lemma is the key part of the proof of Theorem 1.1. Its

proof is reminiscent of that of [6, Theorem 3.2]. We will use the notation
from [5] with only differences being that smaller conditions in a forcing poset
are stronger, i.e., carry more information about the generic filter, and the
ground model is (nowadays standardly) denoted by V . We shall work in
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V [Gω2 ], where V satisfies GCH, Gω2 is Pω2-generic and Pω2 is the iteration
of length ω2 with countable supports of the Laver forcing, see [5] for details.
For α ≤ ω2 we shall denote Gω2 ∩ Pα by Gα, For a Laver tree T ⊂ ω<ω we
denote by T ⟨0⟩ its root. If s ∈ T , s ≥ T ⟨0⟩, then we denote by ST (s) the
family of all immediate successors of s in T .

As usually, ∀∗ means “for all but finitely many”.
A subset C of ω2 is called an ω1-club if it is unbounded and for every

α ∈ ω2 of cofinality ω1, if C ∩ α is cofinal in α then α ∈ C.

Lemma 2.2. In the Laver model every X ⊂ 2ω with the Hurewicz property
satisfies (†).

Proof. First let us work in V [Gω2 ]. Let M be such as in the definition of
(†). By a standard closing-off argument there exists an ω1-club C ⊂ ω2 such
that for every α ∈ C the following conditions are satisfied:

• X ∩ V [Gα] ∈ V [Gα]
1;

• For every Q ∈ [X]ω ∩V [Gα] and every continuous map ϕ : M(Q) →
ωω coded in V [Gα], there exists h ∈ ωω ∩V [Gα] such that h ̸≤∗ ϕ(y)
for any y ∈ M(Q); and

• For every E ∈ [2ω]ω ∩ V [Gα] disjoint from X there exists a Gδ set
O ⊃ E coded in V [Gα] such that O ∩X = ∅.

The existence of a Gδ-set required in the last item above is a well-known
consequence of the Hurewicz property, see, e.g., [4, Theorem 5.7].

Let us fix α ∈ C. We claim that X ⊂
⋃

Q∈Q(2
ω \ M(Q)), where Q =

[X]ω ∩ V [Gα], which would complete our proof. By [5, Lemma 11], there
is no loss of generality in assuming that α = 0: We still have GCH in
V [Gα], and the quotient forcing P[α,ω2) is again the iteration of length ω2

with countable supports of the Laver forcing, defined in V [Gα]. With this
convention we have V [Gα] = V , and hence the three items considered above
hold for V instead of V [Gα].

Now we start working in V . Let Ẋ and Ṁ be Pω2-names for X and M ,
respectively. Suppose that, contrary to our claim, there exists p ∈ Gω2 and
a Pω2-name ẋ such that p forces Ẋ to be Hurewicz and ẋ ∈ Ẋ \

⋃
Q∈Q(2

ω \
Ṁ(Q)). Applying [5, Lemma 14] to the sequence ⟨ȧi : i ∈ ω⟩ such that
ȧi = ẋ for all i ∈ ω, we get a condition p′ ≤ p such that p′(0) ≤0 p(0), and
a finite set Us of reals for every s ∈ p′(0) with p′(0)⟨0⟩ ≤ s, such that for
each s as above the following property is satisfied:

(1)p′,s ∀n ∈ ω ∀∗t ∈ Sp′(0)(s)
(
p′(0)tˆp

′ ↾ [1, ω2) ⊩ ∃u ∈ Us (ẋ ↾ n = u ↾ n)
)
.

Repeating the argument from the proof of [13, Lemma 2.3], namely the
part before equation (5) there, we could, passing to a stronger condition, if
necessary, assume that Us ⊂ X for all s ∈ p′(0) such that p′(0)⟨0⟩ ≤ s. For
this the third assumption on ordinals α ∈ C is crucial.

1Note that for a set A ∈ V [Gω2 ], the inclusion A ⊂ V [Gα] does not imply A ∈ V [Gα].
For example, if A ⊂ ω, then A ⊂ V because ω ⊂ V . Thus, in V [Gω2 ] there are ω2-many
subsets of ω, each of them is a subset of V , but only ω1-many of them are elements of
V .
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Claim 2.3. If s ∈ p′(0), p′(0)⟨0⟩ ≤ s, u ∈ Us, and n0 ∈ ω are such that
there is no r ≤ p′(0)s ˆp

′ ↾ [1, ω2) forcing ẋ ↾ n0 = u ↾ n0, then (1)p′,s is still
satisfied when Us is replaced with Us \ {u}.

Proof. Suppose that (1)p′,s with Us \ {u} instead of Us fails for for some
n ∈ ω. There is no loss of generality in assuming that n ≥ n0. This means
that the set

T =
{
t ∈ Sp′(0)(s) : p′(0)tˆp

′ ↾ [1, ω2) ̸⊩ ∃v ∈ Us \ {u} (ẋ ↾ n = v ↾ n)
}

is infinite. For each t ∈ T find rt ≤ p′(0)tˆp
′ ↾ [1, ω2) such that

rt ⊩ ∀v ∈ Us \ {u} (ẋ ↾ n ̸= v ↾ n).

Let t1 ∈ T be such that

p′(0)t1 ˆp
′ ↾ [1, ω2) ⊩ ∃v ∈ Us (ẋ ↾ n = v ↾ n)

)
.

From the two formulas displayed above it follows that rt1 ⊩ ẋ ↾ n = u ↾ n,
and hence also rt1 ⊩ ẋ ↾ n0 = u ↾ n0 because n ≥ n0, which is impossible
by our assumption. □

For a subset K of 2ω we denote by On(K) the set {z ∈ 2ω : z ↾ n = y ↾ n
for some y ∈ K}.

Claim 2.4. For every s ∈ p′(0), p′(0)⟨0⟩ ≤ s, and every t ∈ Sp′(0)(s) there
exists U ′

t ⊂ Ut such that

• (1)p′,t is still satisfied when Ut is replaced with U ′
t; and

• for every n ∈ ω and all but finitely many t ∈ Sp′(0)(s) we have
U ′
t ⊂ On(Us).

Proof. Fix n ∈ ω. Then by (1)p′,s there exists A ∈ [Sp′(0)(s)]
<ω such that

(1) p′(0)tˆp
′ ↾ [1, ω2) ⊩ ∃u ∈ Us(u ↾ n = ẋ ↾ n)

for every t ∈ Sp′(0)(s) \ A. Note that (1) implies that if t ∈ Sp′(0)(s) \ A,
w ̸∈ On(Us), and r ≤ p′(0)tˆp

′ ↾ [1, ω2), then r forces w ↾ n ̸= ẋ ↾ n.
Applying Claim 2.3 we conclude that (1)p′,t is satisfied for t ∈ Sp′(0)(s) \ A
if we replace Ut with Ut ∩On(Us).

Applying the same argument recursively for every n ∈ ω we can get an
increasing sequence ⟨An : n ∈ ω⟩ of finite subsets of Sp′(0)(s) with

⋃
n∈ω An =

Sp′(0)(s) such that (1)p′,t is satisfied for t ∈ Sp′(0)(s)\An if we replace Ut with
Ut ∩On(Us). It remains to set U ′

t = Ut for all t ∈ A0 and U ′
t = Ut ∩On(Us)

for all t ∈ An+1 \ An and note that these U ′
t are as required. □

Claim 2.5. Let K ⊂ 2ω be compact, and for every i ∈ ω let ⟨U i
m : m ∈ ω⟩

be a sequence of finite subsets of 2ω such that

∀i ∈ ω ∀n ∈ ω ∀∗m ∈ ω (U i
m ⊂ On(K)).

Then for every i ∈ ω there exists mi ∈ ω such that K ∪
⋃

i∈ω
⋃

m≥mi
U i
m is

compact.

Proof. It suffices to choose mi such that U i
m ⊂ Oi(K) for all m ≥ mi, the

standard details are left to the reader. □



PRODUCTIVELY MENGER VERSUS PRODUCTIVELY HUREWICZ 5

After three auxiliary claims above, we are in a position to proceed with
the proof of Lemma 2.2. Combining Claims 2.4 and 2.5, we can get a Laver
condition T ≤0 p

′(0) and U ′
t ⊂ Ut for every splitting node t ∈ T such that

(i) letting p′′ = T ˆp′ ↾ [1, ω2), we have p′′ ∈ Gω2 and (1)p′′,t is satisfied
for all splitting nodes t ∈ T = p′′(0);

(ii) For every s ≥ T ⟨0⟩, n ∈ ω, and all but finitely many t ∈ ST (s) we
have U ′

t ⊂ On(U
′
s); and

(iii) Km :=
⋃{

U ′
t : t ∈ T, T ⟨0⟩ ≤ t, |t| ≤ m

}
is a compact subset of 2ω for

all m ∈ ω. (Note that Km = ∅ for m < m0 := |T ⟨0⟩| = |p′(0)⟨0⟩|.)
Set Q∗ =

⋃
m∈ω Km ∈ [X]ω and consider the map ϕ : 2ω \Q∗ → ωω defined

as follows:
ϕ(z)(m) = min{n ∈ ω : z ̸∈ On(Km)}.

Since Km is closed and z ̸∈ Km, ϕ is well-defined. The second item describ-
ing properties of ordinals in C yields h ∈ ωω ∩ V such that h ̸≤∗ ϕ(y) for
any y ∈ Ṁ(Q∗). It follows that

p′′ ⊩ ẋ ∈ Ẋ \
⋃
Q∈Q

(2ω \ Ṁ(Q)) = Ẋ ∩
⋂
Q∈Q

Ṁ(Q) ⊂ Ẋ ∩ Ṁ(Q∗),

and hence

(2) p′′ ⊩ h ̸≤∗ ϕ(ẋ).

On the other hand, recursively removing finitely many immediate successors
of every splitting node s of T = p′′(0), using (i) and (ii), we can get a Laver
tree T ′ ≤0 T such that

(3) Ttˆp
′ ↾ [1, ω2) ⊩ ∃u ∈ U ′

s (ẋ ↾ h(m) = u ↾ h(m))

for all m ≥ m0, s ∈ T ′ ∩ ωm, and t ∈ ST ′(s). Equation (3) gives T ′
t ˆp

′ ↾
[1, ω2) ⊩ ẋ ∈ Oh(m)(Km) for all m, s, t as above, and therefore

T ′ˆp′ ↾ [1, ω2) ⊩ ∀m ≥ m0 (ẋ ∈ Oh(m)(Km)),

or, equivalently,

T ′ˆp′ ↾ [1, ω2) ⊩ ∀m ≥ m0 (ϕ(ẋ) > h(m)),

which together with T ′ˆp′ ↾ [1, ω2) ≤ p′′ contradicts (2) and thus finishes
our proof. □

The next lemma demonstrates the relation between (†) and products
with Menger spaces.

Lemma 2.6. Suppose that b > ω1. Let Y ⊂ 2ω be a Menger space and
X ⊂ 2ω a Hurewicz space satisfying (†). Then X × Y is Menger.

Proof. Fix a sequence ⟨Un : n ∈ ω⟩ of countable covers of X × Y by clopen
subsets of 2ω × Y . For every Q ∈ [X]ω using that Q × Y is Menger, we
can find a sequence ⟨VQ

n : n ∈ ω⟩ such that VQ
n ∈ [Un]

<ω for all n ∈ ω and
Q×Y ⊂ WQ :=

⋂
m∈ω

⋃
n≥m ∪VQ

n . Then (2ω×Y )\WQ is Menger being an
Fσ-subset of the Menger space 2ω × Y , and it is disjoint from Q × Y , and
hence its projection M(Q) onto the first coordinate is a Menger subspace
of 2ω disjoint from Q.
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Since X satisfies (†), there exists Q ⊂ [X]ω of size |Q| = ω1 such that
X ⊂

⋃
Q∈Q(2

ω \ M(Q)). Since |Q| < b, there exists a sequence ⟨Vn :

n ∈ ω⟩ such that Vn ∈ [Un]
<ω for all n ∈ ω, and for every Q ∈ Q there

exists m(Q) ∈ ω such that VQ
n ⊂ Vn for all n ≥ m(Q). We claim that

X × Y ⊂
⋃

n∈ω ∪Vn. Indeed, given ⟨x, y⟩ ∈ X × Y , find Q ∈ Q such that
x ̸∈ M(Q). This implies ⟨x, y⟩ ∈ WQ, and hence there exists n ≥ m(Q)
with ⟨x, y⟩ ∈ ∪VQ

n , consequently ⟨x, y⟩ ∈ ∪Vn because VQ
n ⊂ Vn, which

completes our proof. □

Finally, we can prove the characterization of Hurewicz subspaces of 2ω

which holds in the Laver model and implies Theorem 1.1.

Proposition 2.7. In the Laver model, for a subspace X of 2ω the following
conditions are equivalent:

(1) X is Hurewicz;
(2) X satisfies (†);
(3) X is productively Menger; and
(4) X is productively Hurewicz.

Proof. The implication (1) → (2) is established in Lemma 2.2. The implica-
tion (2) → (3) is proved in Lemma 2.6 and thus requires only b > ω1. And
finally, (3) → (4) follows from [11, Theorem 4.8(2)] because b = d holds in
the Laver model, while (4) → (1) is obvious. □

Finally, by nearly the same argument as at the end of [9] we can prove
that Theorem 1.1 follows from Proposition 2.7. Again, we present its proof
for the sake of completeness. A family F ⊂ [ω]ω is called a semifilter if for
every F ∈ F and X ⊂ ω, if |F \ X| < ω then X ∈ F . Each semifilter is
considered with the topology inherited from the Cantor space 2ω which we
identify with P(ω) via characteristic functions.

The proof of the second part of Theorem 1.1 uses characterizations of the
Hurewicz and Menger properties obtained in [12]. Let u = ⟨Un : n ∈ ω⟩ be
a sequence of subsets of a set X. For every x ∈ X let Is(x, u,X) = {n ∈ ω :
x ∈ Un}. If every Is(x, u,X) is infinite (the collection of all such sequences
u will be denoted by Λs(X)), then we shall denote by Us(u,X) the smallest
semifilter on ω containing all Is(x, u,X). By [12, Theorem 3], a Lindelöf
topological space X is Hurewicz (Menger) if and only if for every u ∈ Λs(X)
consisting of open sets, the semifilter Us(u,X) is Hurewicz (Menger). The
proof given there also works if we consider only those ⟨Un : n ∈ ω⟩ ∈ Λs(X)
such that all Un’s belong to a given base of X.

Proof of Theorem 1.1. Suppose that X is Hurewicz, Y is Menger, X × Y
is Lindelöf, and fix w = ⟨Un × Vn : n ∈ ω⟩ ∈ Λs(X × Y ) consisting of open
sets. Set u = ⟨Un : n ∈ ω⟩, v = ⟨Vn : n ∈ ω⟩, and note that u ∈ Λs(X) and
v ∈ Λs(Y ). It is easy to see that

Us(w,X × Y ) = {A ∩B : A ∈ Us(u,X), B ∈ Us(v, Y )},

and hence Us(w,X×Y ) is a continuous image of Us(u,X)×Us(v, Y ). By [12,
Theorem 3] Us(u,X) and Us(v, Y ) are Hurewicz and Menger, respectively,
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considered as subspaces of 2ω, and hence their product is a Menger space by
Proposition 2.7. Thus Us(w,X×Y ) is Menger, being a continuous image of
a Menger space. It now suffices to use [12, Theorem 3] again, in the other
direction. 2

3. Productively Hurewicz spaces in models of CH

In this section we prove Theorem 1.2.
Suppose that CH holds in the ground model V and fix Y = {yα : α <

ω1} ⊂ [ω]ω such that

• yβ ⊂∗ yα for all β > α;
• yα+1 ⊂ yα for all α;
• yα \ yα+1 is infinite for all α; and
• For every y ∈ [ω]ω there exists α with yα ̸≤∗ y, where each element
of [ω]ω is identified with its increasing enumerating function.

Thus Y is an unbounded tower in the terminology of [8].
In what follows, we shall work in V [G], where G is Fn(ω1, 2)-generic over

V . Here Fn(ω1, 2) is the standard poset adding ω1 many Cohen reals over
V .

It is well-known that Y = {yα : α < ω1} is Menger in V [G], see, e.g.,
[10, Theorem 11]. Moreover, Y is also unbounded in V [G] since Cohen
reals preserve the unboundedness of ground model unbounded sets. Fix an
enumeration [ω]ω = {zα : α ∈ ω1} and for every α pick xα ∈ [yα]

ω such that
xα ⊃ yα+1, |yα \ xα| = |xα \ yα+1| = ω, and zα ≤∗ (yα \ xα).

Since xβ ⊂ yβ ⊂∗ yα+1 ⊂ xα for any α < β, we conclude that {xα : α <
ω1} is an unbounded tower as well, and hence X := {xα : α < ω1} ∪ [ω]<ω

is productively Hurewicz2 by [7, Theorem 6.5(1)]. Now, Theorem 1.2 is a
direct consequence of the following

Observation 3.1. X×Y is not Menger, and therefore X is not productively
Menger.

Proof. Let ⊕ be the coordinate-wise addition modulo 2 in 2ω, i.e., the stan-
dard operation turning 2ω into a topological group. We shall show that
X ⊕ Y is not a Menger subspace of 2ω. Since no dominating subset of [ω]ω

is Menger (see, e.g., [4, Theorem 4.4]) and zα ≤∗ yα\xα = yα⊕xα, it remains
to check that X ⊕ Y ⊂ [ω]ω. This is done through a routine consideration
of xα ⊕ yβ for all possible α, β below.

1. α < β. In this case xα \ yα+1 ⊂∗ xα \ yβ ⊂ xα ⊕ yβ, and xα \ yα+1 is
infinite by the choice of xα.

2. α = β. Then yα \ xα = xα ⊕ yα is infinite by the choice of xα.
3. α > β. In this case xα ⊂ yα ⊂∗ yβ and yα \xα is infinite. Thus, yβ \xα

is infinite as well, and the latter difference is included into xα ⊕ yβ. □
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