
Fractional Calculus and Applied Analysis (2024) 27:725–756
https://doi.org/10.1007/s13540-024-00246-8

ORIG INAL PAPER

On the concentration-compactness principle for anisotropic
variable exponent Sobolev spaces and its applications

Nabil Chems Eddine1 ·Maria Alessandra Ragusa2,3 ·
Dušan D. Repovš4,5,6

Received: 13 March 2023 / Revised: 13 January 2024 / Accepted: 15 January 2024 /
Published online: 22 February 2024
© The Author(s) 2024

Abstract
We obtain critical embeddings and the concentration-compactness principle for the
anisotropic variable exponent Sobolev spaces. As an application of these results,we
confirm the existence of and find infinitely many nontrivial solutions for a class
of nonlinear critical anisotropic elliptic equations involving variable exponents and
two real parameters. With the groundwork laid in this work, there is potential for
future extensions, particularly in extending the concentration-compactness principle
to anisotropic fractional order Sobolev spaces with variable exponents in bounded
domains. This extension could find applications in solving the generalized fractional
Brezis–Nirenberg problem.
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1 Introduction

In recent years, increasing attention has been paid to the study of differential and par-
tial differential equations involving the variable exponent in general, and anisotropic
equations with different orders of derivation in different directions in particular. The
main interest in studying such problems has been stimulated by their various applica-
tions in physical and related sciences. Indeed, there are many applications concerning
nonlinear elasticity problems, contact mechanics, electrorheological fluids, robotics,
space technology, image processing, flow in porous media, etc. (for more details see
Antontsev et al. [5], Antontsev and Rodrigues [6], Bear [7], Boureanu et al. [9], Chen
et al. [17], Diening [20], Rădulescu and Repovš [43], Ru̇žička [44], Simmonds [47],
Stanway et al. [48], Zhikov [49], and the references therein).

To the best of our knowledge, anisotropic equations with different orders of deriva-
tion in different directions, involving critical variable exponents have never been
studied before. In the subcritical case, we refer the reader to the papers Boureanu
and Udrea [11], Boureanu and Rădulescu [10], Fan [24], Ji [34], Mihăilescu et al. [37,
38], and Ourraoui and Ragusa [40].

One of the main points in the study of these equations is the generalization of
the well-known Anisotropic Sobolev Immersion Theorem: If Ω is a subset of RN

and −→p : Ω → R
N is the vector function −→p (x) = (p1(x), . . . , pN (x)) such that

1 < p−
i := inf

x∈Ω
pi (x) ≤ p+

i := sup
x∈Ω

pi (x) < N , for all i ∈ {1, . . . , N }, then there

is a continuous embedding (resp. a compact embedding W 1,−→p (x)(Ω) ↪→ Lh(x)(Ω)),

if the exponent h : Ω → [1,+∞) satisfies h(x) ≤ P∗(x) for continuous embedding
(resp. h(x) < P∗(x), for compact embedding), where P∗(x) is the critical Sobolev
exponent.

We mention the most important results on this topics. When Ω ⊂ R
N (N ≥ 3)

is a bounded domain with smooth boundary, Mihăilescu et al. [37] proved that for
all continuous function h satisfying 1 < h(x) < P∗(x) := max{p−

max, p∗
m}, where

p−
max := max1≤i≤N {p−

i }, p∗
m := N/(

∑N
i=1

1
p−

i
− 1),

∑N
i=1

1
p−

i
> 1, W 1,−→p (x)

0 (Ω)

is compactly embeddable in Lh(x)(Ω). Subsequently, Ji [34] showed also that for

all continuous function h satisfying 1 < h(x) < P∗(x) := N p−
m

N−p−
m
, where p−

m :=
min1≤i≤N {p−

i }, the space W 1,−→p (x)(Ω) is compactly embeddable in Lh(x)(Ω).

Note that the cited results, in which critical exponent max{p−
max, p∗

m} or N p−
m

N−p−
m

is constant exponent, are optimal in the environment of constant exponent Lebesgue
spaces. In the present work, we shall be interested in extending these results, by giving
sufficient conditions for pi , i = 1, 2, . . . , N so that W 1,−→p (x)(Ω) is embeddable in
L P∗(x)(Ω), where Ω ⊂ R

N (N ≥ 2) is a bounded domain with smooth boundary
and P∗(x) = N pm (x)

N−pm (x)
is optimal in the environment of variable exponent Lebesgue

spaces. We conclude this paragraph with the following open problem.
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Question 1 What are sufficient conditions for pi , i = 1, 2, . . . , N and Ω ⊂ R
N ,

so that W 1,−→p (x)(Ω) or W 1,−→p (x)
0 (Ω) is embeddable in L P∗(x)(Ω), where P∗(x) :=

N p̄(x)
N− p̄(x)

and p̄(x) := N
∑N

i=1
1

pi (x)

.

On the other hand, when pi (x) = p(x) or p is constant for all i ∈ {1, 2, . . . , N },
the class of elliptic equations involving critical growth has received great attention fol-
lowing the seminal work of Brezis andNirenberg [12] in 1983 for Laplacian equations.
Since then, there have been extensions of [12] in many directions, see e.g., Servadei
and Valdinoci [45, 46].

The principal challenge in solving elliptic problems characterized by critical growth
lies in the absence of compactness when embedding Sobolev spaces into Lebesgue
spaces within the framework of variational methods. To overcome this obstacle, Lions
[36] introduced the concentration-compactness principle (CCP) in 1985 to estab-
lish the precompactness of minimizing sequences or Palais-Smale (PS) sequences.
For bounded domains, a variable exponent adaptation of Lions’ concentration-
compactness principle was independently derived by Bonder and Silva [8], as well
as by Fu [29]. Since then, numerous researchers have applied these findings to tackle
critical elliptic problems involving variable exponents, see e.g., Alves and Ferreira
[3], Alves and Barreiro [1], Chems Eddine and Ragusa [14, 16], Fu and Zhang [30],
Ho and Sim [32], Hurtado et al. [33], and the references therein.

For the fractional p(x)-Laplacian on bounded domains, the CCPwas established in
the linear case p = 2 by Palatucci and Pisante [41] and for constant p byMosconi and
Squassina [39]. The CCP for the fractional Sobolev spaces with variable exponents
was extended by Ho and Kim [31]. Using the concentration-compactness principle,
they provide sufficient conditions for the existence of a nontrivial solution to the gener-
alized fractional Brezis–Nirenberg problem. Notably, El Hamidi and Rakotoson [23]
extended the concentration-compactness principle to anisotropic Sobolev spaces with
constant exponents when all pi are constant functions. This extension paved the way
for demonstrating the attainment of a critical best Sobolev constant. Subsequently, var-
ious authors have effectively addressed critical problems involving the −→p -Laplacian
operator, as exemplified by the works of Alves and El Hamidi [2] and Figueiredo et
al. [26, 27].

Recently, Chaker et al. [13] extended the concentration-compactness principle for
the anisotropic fractional −→p -Laplacian of mixed order to unbounded domains. Com-
bining ideas from the anisotropic case as presented in this paper, from the nonlocal case
as inHo andKim [31], and from the anisotropic nonlocal operator in [13],we anticipate
that this combined approach will allow us to extend the concentration-compactness
principle to anisotropic fractional order Sobolev spaces with variable exponents in
bounded domains in the future. Such an extension holds the potential for applications
in solving the anisotropic generalized fractional Brezis–Nirenberg problem.

As mentioned previously, there were no prior results available for nonlinear
anisotropic elliptic equations with variable critical growth until this article. How-
ever, it is worth noting that a subsequent paper by Chems Eddine et al. [15], published
after this article, utilized the results obtained in this work. They applied these findings
to a specific class of critical anisotropic elliptic equations of Schrödinger–Kirchhoff-

123



728 N. C. Eddine et al.

type. Although the crucial Sobolev immersion theorem holds for anisotropic Sobolev
with variable exponents, we do not know if there are results for the critical Sobolev
type embedding for the anisotropic variable exponent Sobolev spaces defined on a
bounded domain, see e.g., Ji [34], Fan [24], Mihăilescu et al. [37, 38], and Rădulescu
and Repovš [43]. Because of this, our first aim is to obtain a critical embedding from
anisotropic variable exponent Sobolev spaces into variable exponent Lebesgue spaces.
We give sufficient conditions on the variable exponents, such as the log-Hölder type
continuity condition on the minimum function of the exponents, to obtain such critical
embedding (see Theorem 3). Using this critical embedding, we establish the extension
of the Lions concentration-compactness principle for anisotropic variable exponent
Sobolev spaces, inspired by Bonder and Silva [8], Fu [29], Ho and Kim [31], and
Lions [36], which are our second aim (Theorem 6). As an application of these results,
we establish the existence and multiplicity of nontrivial solutions for the following
class of nonhomogeneous anisotropic eigenvalue critical problems

⎧
⎪⎪⎨

⎪⎪⎩

−
N∑

i=1

∂xi ai (x, ∂xi u) + λ|u|r(x)−2u = |u|h(x)−2u + β f (x, u) in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ R
N (N ≥ 2) is a bounded domain with a Lipschitz boundary ∂Ω , λ and

β are real parameters such that β is positive, functions r , h and pi , i = 1, 2, . . . , N
are continuous on Ω and satisfy some conditions to be specified below, and f :
Ω × R → R is a Carathéodory function with the potential F(x,ξ) = ∫ ξ

0 f (x, t)dt,
that satisfies some conditions which will be specified later. The differential operator

N∑

i=1

∂xi ai (x, ∂xi u) was originally introduced by Boureanu and Rădulescu [10]. This

operator is a more general type of Laplacian operator. The functions ai (x,ξ) represent
the continuous derivatives with respect to ξ of the mapping Ai : Ω ×R → R, denoted
as Ai = Ai (x,ξ), that is, ai (x,ξ) = ∂

∂ξ Ai (x,ξ).
In this paper, we shall assume that the following hypotheses hold for all 1 ≤ i ≤ N :

(A1) There exist cai > 0 such that |ai (x,ξ)| ≤ cai

(
gi (x) + |ξ|pi (x)−1

)
, for a.e. x ∈

Ω and all ξ ∈ R,where the nonnegative functions gi belong to L p′
i (x)(Ω), with

1
pi (x)

+ 1
p′

i (x)
= 1.

(A2) There exist positive constants ki such that

ki |ξ|pi (x) ≤ ai (x,ξ)ξ ≤ pi (x) Ai (x,ξ), for a.e. x ∈ Ω and all ξ ∈ R.

(A3) The functions ai satisfy
(
ai (x,ξ) − ai (x,η)

)
(ξ − η) > 0, for a.e. x ∈

Ω and all ξ,η ∈ R, ξ 
= η.

The main feature of this paper is establishing the existence and multiplicity of non-
trivial solutions to problem (1.1) under the critical growth condition {x ∈ Ω : h(x) =
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p∗
m(x)} 
= ∅, where p∗

m(x) := N pm (x)
N−pm (x)

with pm(x) = min
1≤i≤N

{pi (x)} (see Theorem
1 for existence and Theorem 2 for multiplicity). The main results of this paper are as
follows (conditions (f i ) and (H) will be defined in Section 4).

Theorem 1 Suppose that assumptions (A1)–(A3), (f1)–(f3), and (H) hold. Then for
all λ ∈ R and β > 0, problem (1.1) has at least one nontrivial weak solution.

The second theorem concerns the case ai (x,ξ) := |ξ|pi (x)−2ξ, for all i ∈
{1, . . . , N }.
Theorem 2 Suppose that assumptions (A1)–(A3), (f1)–(f4), and (H) hold. Then for
all λ ∈ R and β > 0, problem (1.1) has infinitely many weak solutions.

We give some examples, interesting from the mathematical point of view and with
a wide range of applications in physics and other fields, that fall within the general
class of equations which we shall study in this paper, with adequate assumptions on
functions ai .

Example 1 Let ai (x,ξ) := |ξ|pi (x)−2ξ. Then Ai (x,ξ) = 1
pi (x)

|ξ|pi (x) and ai satisfy
the assumptions (A1), (A2) and (A3) for all i ∈ {1, . . . , N }. Hence equation (1.1)
becomes

{
−Δ−→p (x)(u) + λ|u|r(x)−2u = |u|h(x)−2u + β f (x, u) in Ω,

u = 0 on ∂Ω.
(1.2)

The operator Δ−→p (x)(u) := ∑N
i=1 ∂xi

(∣
∣∂xi u

∣
∣pi (x)−2

∂xi u
)
is the so-called the −→p (x)-

Laplacian operator, when pi (x) = p(x) for all i = 1, 2, . . . , N . The operatorΔ−→p (x)u

is the p(x)-Laplacian operator, i.e., Δp(x)u = div(|∇u|p(x)−2∇u), which coincides
with the standard p-Laplacianwhen p(x) = p, andwith theLaplacianwhen p(x) = 2.

Example 2 Let ai (x,ξ) := (1+|ξ|2) pi (x)−2
2 ξ. Then Ai (x,ξ) = 1

pi (x)

(
(1+|ξ|2) pi (x)

2 −
1
)
and ai satisfy the assumptions (A1), (A2) and (A3) for all i ∈ {1, . . . , N }. Hence

equation (1.1) becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
N∑

i=1

∂xi

(
(
1 + |∂xi u|2)(pi (x)−2)/2

∂xi u

)

+ λ|u|r(x)−2u

= |u|h(x)−2u + β f (x, u) in Ω,

u = 0 on ∂Ω.

(1.3)

The operator
∑N

i=1 ∂xi

(
(
1+|∂xi u|2)(pi (x)−2)/2

∂xi u

)

is the so-called anisotropic vari-

able mean curvature operator.

The paper is structured as follows: In Section 2 we give some preliminary prop-
erties of the variable exponent spaces. In Section 3 we establish an extension of the
Lions concentration-compactness principle for anisotropic variable exponent Sobolev

123



730 N. C. Eddine et al.

spaces. In Section 4 we study a class of nonlinear anisotropic elliptic equations with
critical growth and establish the existence and multiplicity of solutions. In Section 5
we prove the main results (Theorems 1 and 2).

2 Functional framework

In this section,we establish the notation and compile essential foundational results con-
cerning variable exponent function spaces. These results will be recurrently employed
in subsequent sections of the paper.

Throughout this paper, we assume that Ω is a bounded Lipschitz domain in R
N

(N ≥ 2). We introduce the set C+(Ω), defined as

C+(Ω) = {p : p ∈ C(Ω), p(x) > 1 for a.e. x ∈ Ω}.

We denote by C log
+ (Ω) the set of functions p ∈ C+(Ω) that satisfy the log-Holder

continuity condition

sup

{

|p(x) − p(y)| log 1

|x − y| : x, y ∈ Ω, 0 < |x − y| <
1

2

}

< ∞.

For any p ∈ C+(Ω), we define p+ = supx∈Ω p(x) and p− = infx∈Ω p(x). We also
introduce the variable exponent Lebesgue space as

L p(x)(Ω) = {u : u is a measurable real-valued function and ρp(u) < ∞},

where the functional ρp : L p(x)(Ω) → R is defined as ρp(u) := ∫
Ω

|u(x)|p(x)dx .
We endow the space L p(x)(Ω) with the Luxemburg norm

‖u‖L p(x)(Ω) := inf

{

τ > 0 : ρp

( |u(x)|
τ

)

≤ 1

}

.

This norm results in (L p(x)(Ω), ‖u‖L p(x)(Ω)) being a separable and reflexive Banach
space (see, e.g., Kováčik and Rákosník [35, Theorem 2.5, Corollary 2.7]). Let us now
revisit some fundamental properties associated with Lebesgue spaces.

Proposition 1 (Kováčik and Rákosník [35, Theorem 2.8]) Consider variable expo-
nents q and h belonging to the class C+(Ω) and satisfying the condition q ≤ h within
the domain Ω . Under these conditions, the embedding Lh(x)(Ω) ↪→ Lq(x)(Ω) is
continuous.

Furthermore, the following Hölder-type inequality holds for all u ∈ L p(x)(Ω) and
v ∈ L p′(x)(Ω)

∣
∣
∣

∫

Ω

u(x)v(x)dx
∣
∣
∣ ≤

( 1

p− + 1

(p′)−
)
‖u‖L p(x)(Ω)

∥
∥v
∥
∥

L p′(x)(Ω)

≤ 2
∥
∥u
∥
∥

L p(x)(Ω)

∥
∥v
∥
∥

L p′(x)(Ω)
,

(2.1)
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where L p′(x)(Ω) is the conjugate space (or the topological dual space) of L p(x)(Ω),
obtained by conjugating the exponent pointwise, that is, 1

p(x)
+ 1

p′(x)
= 1 (see, e.g.,

Kováčik and Rákosník [35, Theorem 2.1, Corollary 2.7]). Moreover, if u ∈ L p(x)(Ω)

and p < ∞, then we have the following properties (see for example Fan and Zhao
[25, Theorem 1.3, Theorem 1.4]):

‖u‖L p(x)(Ω) < 1 (= 1; > 1) if and only if ρp(u) < 1 (= 1; > 1), (2.2)

if ‖u‖L p(x)(Ω) > 1 then ‖u‖p−
L p(x)(Ω)

≤ ρp(u) ≤ ‖u‖p+
L p(x)(Ω)

, (2.3)

if ‖u‖L p(x)(Ω) < 1 then ‖u‖p+
L p(x)(Ω)

≤ ρp(u) ≤ ‖u‖p−
L p(x)(Ω)

. (2.4)

As a result, we get

‖u‖p−
L p(x)(Ω)

− 1 ≤ ρp(u) ≤ ‖u‖p+
L p(x)(Ω)

+ 1, for all u ∈ L p(x)(Ω). (2.5)

This leads to an important result that norm convergence and modular convergence are
equivalent.

‖u‖L p(x)(Ω) → 0 (→ ∞) if and only if ρp(u) → 0 (→ ∞). (2.6)

Remark 1 The above properties of the modular and norm hold for all L p(x)
μ (Ω) :=

{u : u is μ − measurable real-valued function and
∫

Ω

|u(x)|p(x)dμ < ∞}, where

Ω ⊂ R
N (N ≥ 2) is a bounded open subset, μ is a measure on Ω , and p ∈ C+(Ω)

(for more details see, e.g., Diening et al. [21, Chapter 3]).

Now, let us turn our attention to the (isotropic) Sobolev space with a variable
exponent. This space, denoted as W 1,p(x)(Ω), consists of functions u belonging to
L p(x)(Ω) whose partial derivatives ∂xi u, for i ∈ {1, . . . , N }, are also in L p(x)(Ω) in
the weak sense. The norm for this space is given by

‖u‖1,p(x) := ‖u‖W 1,p(x)(Ω) := ‖u‖L p(x)(Ω) + ‖∇u‖L p(x)(Ω) for all u ∈ W 1,p(x)(Ω),

where ∇u represents the gradient of u. The Sobolev space with zero boundary values,
denoted as W 1,p(x)

0 (Ω), is defined as the closure of the set of smooth functions with
compact support, C∞

0 (Ω), within W 1,p(x)(Ω). Its norm is given by

‖u‖p(x) = ‖∇u‖L p(x)(Ω) for all u ∈ W 1,p(x)
0 (Ω).

It is worth noting that both W 1,p(x)(Ω) and W 1,p(x)
0 (Ω) are separable and reflexive

Banach spaces, as established in Kováčik and Rákosník [35, Theorem 3.1]. Addition-
ally, we introduce the concept of the critical Sobolev exponent, denoted as p∗(x),
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732 N. C. Eddine et al.

which is defined as follows

p∗(x) =
{

N p(x)
N−p(x)

if p(x) < N

+∞ if p(x) ≥ N .

Now, let us highlight the crucial embeddings of the space W 1,p(x)(Ω).

Proposition 2 (Diening et al. [21, Theorem 8.4.2.], Edmunds and Rakosnik [22,
Theorem 1.1]) Consider p ∈ C log

+ (Ω) satisfying p+ < N, and h ∈ C(Ω) with
1 ≤ h(x) ≤ p∗(x) for all x ∈ Ω . Under these conditions, we have a continu-
ous embedding W 1,p(x)(Ω) ↪→ Lh(x)(Ω). Furthermore, if we additionally assume
1 ≤ h(x) < p∗(x) for all x ∈ Ω , then this embedding is also compact.

For a comprehensive exploration of the properties of Lebesgue-Sobolev spaceswith
variable exponents, we recommend that the reader consult the works of Cruz-Uribe
and Fiorenza [18], Diening et al. [21] and Kováčik and Rákosník [35].

Now, we expand our discussion to include the anisotropic Sobolev space denoted
as W 1,−→p (x)(Ω), where −→p : Ω → R

N is a vector function defined as −→p (x) =
(p1(x), . . . , pN (x)) , with each component pi ∈ C+(Ω) satisfying 1 < p−

i ≤
p+

i < N < ∞ for all i ∈ {1, . . . , N }. Additionally, we define pm(x) =
min{p1(x), . . . , pN (x)}, pM (x) = max{p1(x), . . . , pN (x)}, p+

m = supx∈Ω pm(x),

and p+
M = supx∈Ω pM (x). The anisotropic variable exponent Sobolev space

W 1,−→p (x)(Ω) consists of functions u ∈ L pM (x)(Ω) such that ∂xi u ∈ L pi (x)(Ω) for
all i ∈ {1, . . . , N }. This space can also be defined as

W 1,−→p (x)(Ω) = {u ∈ L1
loc(Ω) : u ∈ L pi (x)(Ω) and ∂xi u ∈ L pi (x)(Ω)

for all 1 ≤ i ≤ N },

and it is equipped with the norm

‖u‖W 1,−→p (x)(Ω)
:= ‖u‖L pM (x)(Ω) +

N∑

i=1

∥
∥∂xi u

∥
∥

L pi (x)(Ω)
for all u ∈ W 1,−→p (x)(Ω).

The space
(
W 1,−→p (x)(Ω), ‖ · ‖W 1,−→p (x)(Ω)

)
forms a reflexive Banach space, as proven

by Fan [24, Theorems 2.1 and 2.2].
The anisotropic variable exponent Sobolev space with zero boundary values

W 1,−→p (x)
0 (Ω) is defined as the closure of C∞

0 (Ω), with the norm ‖u‖−→p (x) :=
∑N

i=1

∥
∥∂xi u

∥
∥

L pi (x)(Ω)
. Furthermore, the space W 1,−→p (x)

0 (Ω) allows for the appropriate
treatment of the existence of weak solutions for problem (1.1) and can be considered
a natural generalization of the variable exponent Sobolev space W 1,p(x)

0 (Ω). On the

other hand, the space W 1,−→p (x)
0 (Ω) can also be regarded as a natural generalization

of the classical anisotropic Sobolev space W 1,−→p
0 (Ω), where −→p is the constant vector

(p1, . . . , pN ).
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In the sequel, we shall present a revised version of the critical Sobolev embedding
theorem tailored to anisotropic variable exponent Sobolev spaces.

Theorem 3 Let pi ∈ C+(Ω) for all i ∈ {1, . . . , N }, with pm ∈ C log
+ (Ω) such

that p+
m ≤ N. Suppose that h ∈ C(Ω) satisfies the condition 1 ≤ h(x) ≤

p∗
m(x) for all x ∈ Ω. Then, there exists a continuous embedding W 1,−→p (x)(Ω) ↪→

Lh(x)(Ω). If in addition, we assume that 1 ≤ h(x) < p∗
m(x) for all x ∈ Ω , then this

embedding is also compact.

Proof Let u ∈ W 1,−→p (x)(Ω). According to Proposition 1, we can conclude that u ∈
W 1,pm (x)(Ω). Since h(x) ≤ p∗

m(x) for all x ∈ Ω , Proposition 2 guarantees the
existence of a positive constant c > 0 such that

‖u‖Lh(x)(Ω) ≤ c
(
‖u‖L pm (x)(Ω) +

N∑

i=1

‖∂xi u‖L pm (x)(Ω)

)
. (2.7)

Since pm ≤ pi ≤ pM holds for all i ∈ {1, . . . , N }, we can again apply Proposition 1
to find positive constants ci such that

‖u‖L pm (x)(Ω) ≤ c0‖u‖L pM (x)(Ω) and ‖∂xi u‖L pm (x)(Ω) ≤ ci‖∂xi u‖L pi (x)(Ω), (2.8)

for all i ∈ {1, . . . , N }. By combining (2.7) with (2.8), we obtain ‖u‖Lh(x)(Ω) ≤
c‖u‖W 1,−→p (x)(Ω)

. Since Proposition 2 establishes that the embedding

W 1,pm (x)(Ω) ↪→ Lh(x)(Ω),

is compact if 1 ≤ h(x) < p∗
m(x) for all x ∈ Ω , we can conclude that the embedding

W 1,−→p (x)(Ω) ↪→ Lh(x)(Ω) is both continuous and compact, thus completing the proof
of Theorem 3. ��
Remark 2 (1) The conclusions of Theorem 3 remain valid in a more general context.
Specifically, one can extend theorem’s applicability by replacing the “critical expo-
nent” p∗

m(x) with the function p̂∗
m,M (x) = {p∗

m(x), pM (x)}.
(2) It is worth noting that when p1(x) = p2(x) = · · · = pN (x) = p(x) and

p(x) < N holds for all x ∈ Ω , the “critical exponent” p∗
m(x) in Theorem 3 coincides

with the “critical exponent” p∗(x) for W 1,p(x)(Ω), as can be seen in Proposition 2.
(3) Ji [34] conducted a study of anisotropic equations in the subcritical case, using

the “critical exponent” (P−−)∗, where P−− = inf{p−
1 , p−

2 , . . . , p−
N }. Our Theorem 3

improves upon the results obtained in Ji [34] by replacing the critical exponent
(
P−−

)∗

with p∗
m(x).

Definition 1 Let E : X → R be a C1 function defined on a real Banach space X . A
sequence {un} is termed a Palais-Smale sequence (abbreviated as (PS)-sequence) on
X if it satisfies the following conditions:

1. E(un) is bounded.
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734 N. C. Eddine et al.

2. E ′(un) → 0 in the dual space X ′.
If, in addition to the above conditions, E(un) converges to a finite value c ∈ R as

n tends to infinity, then the (PS)-sequence is referred to as a (P S)c-sequence.
Furthermore, if every (P S)c-sequence for the function E possesses a subsequence

that converges strongly in X , then we say that E satisfies the Palais-Smale condition
at level c (or E is (P S)c, for brevity).

We shall conclude this section by presenting two classical theorems: the Mountain
Pass Theorem and its Rabinowitz Z2-symmetric version. These theorems will play a
crucial role in proving our main results in Section 4. The theorems are summarized
below.

Theorem 4 (Ambrosetti and Rabinowitz [4, Theorem 2.1]) Consider a real infinite-
dimensional Banach space X and let E : X → R be a C1 function satisfying the
(P S)c condition with E(0X ) = 0. Assume the following conditions :

(I1) There exist positive constants R and ρ such that E(u) ≥ R for all u ∈ X with
‖u‖X = ρ.

(I2) There exists an element ũ ∈ X such that ‖ũ‖X > ρ and E(ũ) < 0.

Then. E has a critical value c ≥ R, which can be characterized as

c := inf
φ∈Γ

max
t∈[0,1] E(φ(t)),

where

Γ = {
φ ∈ C

(
[0, 1] , X

) : φ(0) = 0X , E(φ(1)) < 0
}
.

This theorem provides conditions under which a function E has a critical value c,
and it characterizes c as the infimum of a certain set of functions φ in X .

Theorem 5 (Rabinowitz [42, Theorem 9.12]) Let X be a real infinite-dimensional
Banach space and let E : X → R be even and of class C1, satisfying (P S)c and
E(0X ) = 0. Suppose that assumption (I1) holds in addition to condition (I ′

2): For all
finite-dimensional subspaces X1 ⊂ X, the set S1 := {u ∈ X1 : E(u) ≥ 0} is bounded
in X. Then E has has an unbounded sequence of critical values.

This theorem provides conditions under which a function E has an unbounded
sequence of critical values, where critical values are defined with respect to the (P S)c

condition.
Notations. In our discussions, we shall use the following notations: Strong (resp.

weak, weak-*) convergence is denoted by→ (resp.,⇀,
∗
⇀), constants: Ci , C ′

i , c j , and
c′′

i represent positive constants, which may vary from one line of the text to another
and can be determined under specific conditions. X∗ denotes the dual space of X , δx j

represents the Dirac mass at the point x j . For any ρ > 0 and x ∈ Ω , B(x, ρ) denotes
the open ball of radius ρ centered at x , the characteristic function of a set B is denoted
by χB .
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3 An extension of the Lions concentration-compactness principle

In this section, we shall establish the extension of the concentration-compactness
principle to the anisotropic variable exponent Sobolev spaces, which is one of the
main results in this paper.

In what follows, we shall denote byM(Ω) the class of nonnegative Borel measures

of finite total mass, and a sequence μn
∗
⇀μ in M(Ω) if and only if

∫

Ω

φ(x)dμn →
∫

Ω

φ(x)dμ for every test function φ ∈ C∞(Ω) ∩ C(Ω). Note that by Theorem 3, we

have

Sh := inf
u∈W 1,−→p (x)

0 (Ω)\{0}

‖u‖−→p (x)

‖u‖Lh(x)(Ω)

> 0. (3.1)

We now state the main result of this section, that is, a concentration-compactness
principle for the anisotropic variable exponent Sobolev spaces.

Theorem 6 Consider continuous functions pi and h on Ω such that 1 < infx∈Ω pi (x)

≤ supx∈Ω pi (x) < N for all i ∈ {1, 2, . . . , N } and 1 ≤ h(x) ≤ p∗
m(x) in Ω , where

pm ∈ C log
+ (Ω). Let {un}n∈N be a weakly convergent sequence in W 1,−→p (x)

0 (Ω) with

weak limit u, and such that |∂xi un|pi (x) ∗
⇀μi in M(Ω) and |un|h(x) ∗

⇀ν in M(Ω).
Also, suppose that the set A = {x ∈ Ω : h(x) = p∗

m(x)} is nonempty. Then there exist
{x j } j∈J ⊂ A of distinct points and {μ j } j∈J , {ν j } j∈J ⊂ (0,∞), where J is countable
index set, such that

ν = |u|h(x) +
∑

j∈J

ν jδx j , (3.2)

μ ≥
N∑

i=1

|∂xi u|pi (x) +
∑

j∈J

μ jδx j , (3.3)

N 1−p+
M Shν

1
p∗
m (x j )

j ≤ max
{(

μ j

)1/p+
M
,
(
μ j

)1/p−
m
}
. ∀ j ∈ J . (3.4)

where δx j is the Dirac mass at x j and μ =
n∑

i=1

μi .

Before we give the proof of Theorem 6, we recall some auxiliary results obtained
by Bonder and Silva [8].

Lemma 1 (Bonder and Silva [8, Lemma 3.1]) Let ν, {νn}n∈N ∈ M(Ω) be such

that νn
∗
⇀ν in M(Ω). Then for all q ∈ C+(Ω), we have ‖ψ‖

Lq(x)
νn (Ω)

→
‖ψ‖

Lq(x)
ν (Ω)

as n → ∞, for all ψ ∈ C∞(Ω).
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736 N. C. Eddine et al.

Lemma 2 (Bonder and Silva [8, Lemma 3.2]) Let μ, ν ∈ M(Ω) be such that there is
some positive constant c, such that

‖ψ‖
Lh(x)

ν (Ω)
≤ c‖ψ‖

L p(x)
μ (Ω)

,

for some p, h ∈ C+(Ω) satisfying infx∈Ω(h(x) − p(x)) > 0. Then there is an at
most countable set {x j } j∈J of distinct points in Ω and {ν j } j∈J ⊂ (0,∞), such that

ν =
∑

j∈J

ν jδx j .

The following lemma is an extension of theBrezis–LiebLemma toLebesgue spaces
with variable exponents.

Lemma 3 (Bonder and Silva [29, Lemma 2.1])Consider a bounded sequence {un}n∈N
in Lh(x)(Ω) and let u(x) be such that un(x) converges to u(x) in Lh(x)(Ω) for a.e.
x ∈ Ω . Then the following holds:

lim
n→∞

(∫

Ω

|un|h(x)dx −
∫

Ω

|u − un|h(x)dx

)

=
∫

Ω

|u|h(x)dx .

Proof of Theorem 6 We start by establishing relation (3.2). To this end, we put vn =
un − u. Then we have up to a subsequence, that

vn⇀0 in W 1,−→p (x)
0 (Ω), and vn(x) → 0, for a.e. x ∈ Ω. (3.5)

So, by the Brezis–Lieb Lemma 3, we can see that limn→∞
∫
Ω

∣
∣
∣|un|h(x) − |vn|h(x) −

|u|h(x)
∣
∣
∣dx = 0. Thus, from the last equality and relation (3.5), we can deduce that

limn→∞
( ∫

Ω
ψ |un|h(x) − ∫

Ω
ψ |vn|h(x)dx

)
= ∫

Ω
ψ |u|h(x)dx, for all ψ ∈ C(Ω),

that is,

|vn|h(x) ∗
⇀ν − |u|h(x) = ν̃ inM(Ω). (3.6)

Obviously,
{ n∑

i=1

|∂xi un|pi (x)
}
is bounded in L1(Ω). So up to a subsequence, we have

as n → +∞
n∑

i=1

|∂xi un|pi (x) ∗
⇀μ̃ inM(Ω) for some μ̃ =

n∑

i=1

μ̃i ∈ M(Ω). (3.7)

Clearly, ψv ∈ W 1,−→p (x)
0 (Ω) for all ψ ∈ C∞(Ω) and v ∈ W 1,−→p (x)

0 (Ω). Then by
applying relation (3.1), for all ψ ∈ C∞(Ω), we obtain
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Sh‖ψvn‖Lh(x)(Ω) ≤
N∑

i=1

‖∂xi (ψvn)‖L pi (x)(Ω)

≤
N∑

i=1

(‖ψ∂xi vn‖L pi (x)(Ω) + ‖vn∂xi ψ‖L pi (x)(Ω)

)

≤
N∑

i=1

(‖ψ∂xi vn‖L pi (x)(Ω) + ‖∂xi ψ‖L∞(Ω)‖vn‖L pi (x)(Ω)

)
.

Since vn⇀0 in W 1,−→p (x)
0 (Ω) (according to relation (3.5)), we can infer that vn → 0

in L pi (x)(Ω), for all i ∈ {1, 2, . . . , N }, in view of Theorem 3. By Lemma 1, we get

Sh‖ψ‖
Lh(x)

ν̃
(Ω)

≤
N∑

i=1

‖ψ‖
L

pi (x)

μ̃i
(Ω)

≤ N max
1≤i≤N

‖ψ‖
L

pi (x)

μ̃i
(Ω)

,

for all ψ ∈ C∞(Ω). Hence by applying Lemma 2, we obtain ν̃ =
∑

j∈I

ν jδx j , for

some at most countable set J , a family of {x j } j∈J ⊂ Ω and a family of nonnegative
numbers{ν j } j∈J . That is, we have thus obtained relation (3.2).

Let us now prove that the points x j actually belong to the critical set A. Assume
to the contrary, that there exist some x j ∈ in Ω\A. Let ρ be a positive number such
that B(x j , 2ρ) ⊂ R

N \A, noting the closedness of A. We put ΩB j = B(x j , δ) ∩ Ω ,
and get ΩB j ⊂ Ω\A and hence, h(x) < p∗

m(x) − ε, for some ε > 0 in ΩB j . Since
1 < h(x) < p∗

m(x) − ε for each x ∈ ΩB j ∩ Ω , we can get h̄ ∈ C+(Ω) such that
h̄|ΩB j

= h and h̄(x) < p∗
m(x) − ε for all x ∈ Ω . Therefore by Theorem 3, we find

un → u in Lh̄(x)(Ω). Equivalently,
∫

ΩB j

|un − u|h̄(x)dx → 0. Thus, by applying

the Brezis–Lieb Lemma 3, we find
∫

ΩB j

|un|h(x)dx →
∫

ΩB j

|u|h(x)dx . Hence, from

this and the fact that ν(ΩB j ) ≤ lim inf
n→∞

∫

ΩB j

|un|h(x)dx (see Fonseca and Leoni [28,

Proposition 1.203]), we get ν(ΩB j ) ≤
∫

ΩB j

|u|h(x)dx . It follows from relation (3.2)

that ν(ΩB j ) ≥ ∫
ΩB j

|u|h(x)dx +ν j >
∫
ΩB j

|u|h(x)dx,which is a contradiction, hence

{x j } j∈J ⊂ A.
Next, to obtain relation (3.3), consider ψ ∈ C∞

c (RN ) such that χB(0, 12 ) ≤ ψ ≤
χB(0,1). Suppose that J 
= ∅ and fix j ∈ J . Consider εi > 0 to be arbitrary for

all i ∈ {1, 2, . . . , N }. Set ψ j (x) := ψ
( x1 − x j,1

ε1
, . . . ,

xN − x j,N

εN

)
. By again using
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738 N. C. Eddine et al.

relation (3.1) to ψ j un , we have

Sh‖ψ j un‖Lh(x)(Ω) ≤
N∑

i=1

(‖ψ j∂xi un‖L pi (x)(Ω) + ‖un∂xi ψ j‖L pi (x)(Ω)

)

≤
N∑

i=1

(

‖ψ j∂xi un‖L pi (x)(Ω) + ‖u∂xi ψ j‖L pi (x)(Ω)

+ ‖∂xi ψ j‖L∞(Ω)‖un − u‖L pi (x)(Ω)

)

.

Then by using (3.5) and Theorem 3 and taking n → ∞ in the last estimate, we obtain

Sh‖ψ j‖Lh(x)
ν (Ω)

≤
N∑

i=1

‖ψ j‖L
pi (x)
μi (Ω)

+
N∑

i=1

‖u∂xi ψ j‖L pi (x)(Ω). (3.8)

On the one hand, by using relations (2.3), (2.4) and Remark 1, we have

‖ψ j‖Lh(x)
ν (Ω)

≥ min

{( ∫

B(x j , max
1≤i≤N

εi )
|ψ j |h(x)dν

) 1
h+

j,ε ,
( ∫

B(x j , max
1≤i≤N

εi )
|ψ j |h(x)dν

) 1
h−

j,ε

}

,

where

h+
j,ε := sup

B
(

x j , max
1≤i≤N

εi
) h(x) and h−

j,ε := inf
B
(

x j , max
1≤i≤N

εi
) h(x).

Since
∫

B
(

x j , max
1≤i≤N

εi
) |ψ j |h(x)dν ≥

∫

B

(
x j ,

max
1≤i≤N

εi

2

) |ψ j |h(x)dν ≥ ν({x j }) = ν j ,

it follows that ‖ψ j‖Lh(x)
ν (Ω)

≥ min
{
ν

1
h+

j,ε
j , ν

1
h−

j,ε
j

}
. When letting max

1≤i≤N
εi → 0+ in the

above inequality and using the fact x j ∈ A and the continuity of h, we get

‖ψ j‖Lh(x)
ν (Ω)

≥ ν

1
p∗
m (x j )

j . (3.9)

On the other hand, by relations (2.3), (2.4) and using Jensen’s inequality on the convex
function q : R+ → R

+, q(t) = t ¯pm,M , ˜pm,M > 1, we see that
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‖ψ j‖ ¯pm,M−→p (x)

N ¯pm,M −1 = N

⎛

⎝

∑N
i=1 ‖ψ j‖L

pi (x)
μi (Ω)

N

⎞

⎠

¯pm,M

≤
N∑

i=1

‖ψ j‖p+
M

L
pi (x)
μi (Ω)

≤
N∑

i=1

‖ψ j‖p+
i

L
pi (x)
μi (Ω)

≤
N∑

i=1

∫

Ω

|ψ j |pi (x)dμi ,

(3.10)

where ¯pm,M = p+
M if ‖ψ j‖−→p (x) < 1 and ¯pm,M = p−

m if ‖ψ j‖−→p (x) ≥ 1. Since

ψ
pi (x)
j ≤ ψ j , we have

lim
max
1≤i≤N

εi → 0

N∑

i=1

∫

Ω

|ψ j |pi (x)dμi ≤ lim
max
1≤i≤N

εi → 0

∫

B(x j , max
1≤i≤N

εi )
ψε, j dμ,

where μ = ∑N
i=1 μi ≤ lim max

1≤i≤N
εi → 0 μ(B(x j , max

1≤i≤N
εi )) = μ j . From this and

relation (3.10), we get

N∑

i=1

‖ψ j‖L
pi (x)
μi (Ω)

≤ max
{

N p+
M −1

(
μ j

)1/p+
M
, N p−

m −1
(
μ j

)1/p−
m
}
. (3.11)

Next, we shall prove that
N∑

i=1

‖u∂xi ψ j‖L pi (x)(Ω) → 0, as max
1≤i≤N

εi → 0+. Indeed,

applying the Hölder inequality, we obtain

∫

Ω

|u∂xi ψ j |pi (x) dx =
∫

Ω

|u|pi (x)|∂xi ψ j |pi (x) dx

≤ ‖|u|pi (x)‖
L

N
N−pi (x) (B(x j ,εi ))

‖|∂xi ψ j |pi (x)‖
L

N
pi (x) (B(x j ,εi ))

.

Moreover, by relation (2.5) and using

∂xi ψ j = 1

εi
∂xi ψ

(
x1 − x j,1

ε1
, . . . ,

xN − x j,N

εN

)

,

we obtain the following

∥
∥|∂xi ψ j |pi (x)

∥
∥p−

i

L
N

pi (x) (B(x j ,εi ))

≤ 1 +
∫

B(x j ,εi )

|∂xi ψ j |N

≤ 1 +
∫

B(x j ,εi )

|∂xi ψ j |N 1

εN
i

dx

≤ 1 +
∫

B(0,1)
|∂xi ψ(y)|N dy,
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so we can conclude from the last two estimates that
∫

Ω

|u∂xi ψ j |pi (x) dx → 0 as max
1≤i≤N

εi → 0+ → 0,

hence, from relation (2.6), we get

N∑

i=1

‖u∂xi ψ j‖L pi (x)(Ω) → 0 as max
1≤i≤N

εi → 0+. (3.12)

Letting max
1≤i≤N

εi → 0+ in (3.8) and taking into consideration (3.9), (3.11) and (3.12),

we get

N 1−p+
M Shν

1
p∗
m (x j )

j ≤ max
{(

μ j

)1/p+
M
,
(
μ j

)1/p−
m
}
.

This shows that {x j } j∈J are all atomic points of μ. Finally, to obtain relation
(3.3), we notice that for each ψ ∈ C(Ω) with ψ ≥ 0, the functional u �→
∫

Ω

ψ(x)

( N∑

i=1

|∂xi u|pi (x)

)

dx is convex and differentiable on W 1,−→p (x)
0 (Ω). Therefore

it is weakly lower semicontinuous and we obtain

∫

Ω

ψ(x)

( N∑

i=1

|∂xi u|pi (x)

)

dx ≤ lim inf
n→∞

∫

Ω

ψ(x)

( N∑

i=1

|∂xi un|pi (x)

)

dx

=
∫

Ω

ψdμ.

Hence μ ≥
N∑

i=1

|∂xi u|pi (x). Extracting μ to its atoms, we get relation (3.3) and the

proof of Theorem 6 is complete. ��

4 A class of nonlinear anisotropic elliptic equations with critical
growth

In this section, we shall establish the existence and multiplicity of nontrivial solutions
for problem (1.1). Throughout this paper, we assume that f satisfies the following
conditions:

(f 1) There exist a positive function � ∈ C(Ω) and a positive constant C f such that
| f (x,ξ)| ≤ C f (1 + |ξ|�(x)−1), for all (x,ξ) ∈ Ω × R, where p+

M < �(x) <

h(x) ≤ p∗
m(x) for all x ∈ Ω .

(f 2) There exist R > 0 and θλ ≥ r+ (resp. θλ ≤ r− ) if λ ≥ 0 (resp. λ < 0 ), such
that for all ξ with |ξ| ≥ R and x ∈ Ω , we have 0 < θλ f (x,ξ) ≤ ξ f (x,ξ).
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(f 3) f (x,ξ) = ◦(|ξ|p+
M ) as ξ → 0 and uniformly for all x ∈ Ω .

(f 4) f is odd in ξ, that is, f (x,−ξ) = − f (x,ξ), for all (x,ξ) ∈ Ω × R.
(H) p+

M < r(x) < h(x) ≤ p∗
m(x) and A = {x ∈ Ω : h(x) = p∗

m(x)} 
= ∅.
Throughout this article, for simplicity, we denote the anisotropic variable exponent

space W 1,−→p (x)
0 (Ω) by X .

Definition 2 We say that u ∈ X is a weak solution of problem (1.1) if

∫

Ω

N∑

i=1

ai (x, ∂xi u)∂xi v dx + λ

∫

Ω

|u|r(x)−2uv dx =
∫

Ω

|u|h(x)−2uv dx

+ β

∫

Ω

f (x, u)v dx,

(4.1)

for all v ∈ X .

The energy functional associated with problem (1.1) is defined by Eλ,β : X → R,
where

Eλ,β(u) =
∫

Ω

N∑

i=1

Ai (x, ∂xi u) dx +
∫

Ω

λ

r(x)
|u|r(x) dx −

∫

Ω

1

h(x)
|u|h(x) dx

− β

∫

Ω

F(x, u) dx .

(4.2)

By a standard calculation, one can see that Eλ,β ∈ C1(X ,R) and theFréchet derivative
is

〈E ′
λ,β(u), v〉 =

∫

Ω

N∑

i=1

ai (x, ∂xi u)∂xi v dx + λ

∫

Ω

|u|r(x)−2uv dx

−
∫

Ω

|u|h(x)−2uv dx − β

∫

Ω

f (x, u)v dx

(4.3)

for all u, v ∈ X . Hence, the weak solutions of (1.1) coincide with the critical points
of Eλ,β.

To prove Theorem 1, we shall apply the Mountain Pass Theorem 4. We shall begin
with the following lemmas.

Lemma 4 If assumptions (A2) and (f 1)–(f 2) are satisfied, and {un}n∈N is a (PS)-
sequence for the functional Eλ,β, then for all λ ∈ R, the sequence {un} n ∈ N is
bounded.

Proof Let {un}n∈N ⊂ X be a (PS)-sequence. This implies that

Eλ,β(un) = Cλ,β + on(1) and 〈E ′
λ,β(un), v〉 = on(1) for all v ∈ X . (4.4)
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742 N. C. Eddine et al.

Now, by using (f 2), we get for a sufficiently large n

Cλ,β + on(1) ≥ Eλ,β(un) − 1

θλ
〈E ′

λ,β(un), un〉

≥
∫

Ω

N∑

i=1

Ai (x, ∂xi un) dx − 1

θλ

∫

Ω

N∑

i=1

ai (x, ∂xi un)∂xi un dx

+ λ
(1

r̃
− 1

θλ

) ∫

Ω

|un|r(x) dx +
∫

Ω

( 1

θλ
− 1

h−
)
|un|h(x) dx

+ β

∫

Ω

(

F(x, un) − f (x, un)
un

θλ

)

dx

≥
N∑

i=1

∫

Ω

[
Ai (x, ∂xi un) − 1

θλ
ai (x, ∂xi un)∂xi un

]
dx .

where r̃ :≡ r+ if λ > 0 and r̃ :≡ r− if λ ≤ 0. By using assumption (A2), for
all x ∈ Ω and i ∈ {1, . . . , N } we obtain ai (x, ∂xi un)∂xi un ≤ pi (x)Ai (x, ∂xi un) ≤
p+

M Ai (x, ∂xi un), which implies − 1
θλ

ai (x, ∂xi un)∂xi un ≥ − p+
M

θλ
Ai (x, ∂xi un).

Therefore,

Cλ,β + on(1) ≥
(
1 − p+

M

θλ

) N∑

i=1

∫

Ω

Ai (x, ∂xi un)dx . (4.5)

By using again assumption (A2), we have for all x ∈ Ω and all i ∈ {1, . . . , N }, that
Ai (x, ∂xi un) ≥ 1

pi (x)
|∂xi un|pi (x) ≥ 1

p+
M

|∂xi un|pi (x). Then we get

Cλ,β + on(1) ≥
( 1

p+
M

− 1

θλ

) N∑

i=1

∫

Ω

|∂xi un|pi (x)dx . (4.6)

For any n ∈ N, we denote by Bn1 and Bn2 the indices sets

Bn1 = {i ∈ {1, 2, . . . , N } : |∂xi un|pi (x) ≤ 1},

and

Bn2 = {i ∈ {1, 2, . . . , N } : |∂xi un|pi (x) > 1}.

Applying relations (2.3), (2.4) and inequality (4.6), we find
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Cλ,β + on(1) ≥
( 1

p+
M

− 1

θλ

)( ∑

i∈Bn1

∥
∥∂xi un

∥
∥p+

M

L pi (x)(Ω)
+

∑

i∈Bn2

∥
∥∂xi un

∥
∥p−

m

L pi (x)(Ω)

)

=
( 1

p+
M

− 1

θλ

)[ N∑

i=1

∥
∥∂xi un

∥
∥p−

m

L pi (x)(Ω)

−
∑

i∈Bn1

(∥
∥∂xi un

∥
∥p−

m

L pi (x)(Ω)
− ∥
∥∂xi un

∥
∥p+

M

L pi (x)(Ω)

)]

≤
( 1

p+
M

− 1

θλ

)( N∑

i=1

∥
∥∂xi un

∥
∥p−

m

L pi (x)(Ω)
− N

)
.

By relation (3.10), we get

Cλ,β + on(1) ≥
( 1

p+
M

− 1

θλ

)(
∥
∥∂xi un

∥
∥p−

m−→p (x)

N p−
m −1

− N

)

.

Hence, {un}n∈N is bounded in X . This completes the proof Lemma 4. ��

Lemma 5 Let {un}n∈N ⊂ X be a (PS)-sequence with energy level Cλ,β. If

Cλ,β <
( 1

θλ
− 1

h−
A

)
min

{

inf
j∈J

(

( min
1≤i≤N

ki )

1
p+

M N 1−p+
M Sh

) p∗
m (x j )p+

M
p∗
m (x j )−p+

M ,

inf
j∈J

(

( min
1≤i≤N

ki )
1

p−
m N 1−p+

M Sh

) p∗
m (x j )p−

m

p∗
m (x j )−p−

m

}

,

where Sh is defined in relation (3.1), h−
A := inf x∈A h(x) and the sets A and J are

given in Theorem 6, then there exists a strongly convergent subsequence in X.

Proof We can divide the proof into two claims.
Claim 1. un → u strongly in Lh(x)(Ω) as n → ∞.
By applying Lemma 4, we know that {un}n∈N is bounded in X . We can pass to a

subsequence, still labeled {un}n∈N, which converges weakly in X . Consequently, there
exist positive bounded measures μi , ν ∈ Ω such that

N∑

i=1

|∂xi un|pi (x)⇀μ =
N∑

i=1

μi and |un|h(x)⇀ν. (4.7)
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Hence, according to Theorem 6, if J = ∅, then un → u in Lh(x)(Ω). Let us show that
if

Cλ,β <
( 1

θλ
− 1

h−
A

)
min

{

inf
j∈J

(

( min
1≤i≤N

ki )

1
p+

M N 1−p+
M Sh

) p∗
m (x j )p+

M
p∗
m (x j )−p+

M ,

inf
j∈J

(

( min
1≤i≤N

ki )
1

p−
m N 1−p+

M Sh

) p∗
m (x j )p−

m

p∗
m (x j )−p−

m

}

,

and {un}n∈N is a (PS)-sequencewith energy levelCλ,β, then J = ∅. In fact, we assume
that J 
= ∅, and let x j ∈ A be a singular point of the measures μi and ν.

We consider ψ ∈ C∞
0 (RN ), such that 0 ≤ ψ(x) ≤ 1, ψ(0) = 1, suppψ ⊂ B(0, 1)

and ‖∇ψ‖∞ ≤ 2. For any j ∈ J and ε > 0, we define the functionψ j,ε := ψ
(

x−x j
ε

)
,

for all x ∈ R
N . Notice that ψ j,ε ∈ C∞

0 (RN , [0, 1]), ‖∇ψ j,ε‖∞ ≤ 2
ε
and

ψ j,ε(x) =
{
1, x ∈ B(x j , ε),

0, x ∈ R
N \ B(x j , 2ε).

Due to the boundedness of {un}n∈N in X , the sequence {ψ j,εun}n∈N is also bounded
in X . Therefore, we have 〈E ′

λ,β(un)(ψ j,εun)〉 = on(1), In other words,

N∑

i=1

∫

Ω

ψ j,εai (x, ∂xi un)∂xi un dx + λ

∫

Ω

|u|r(x)ψ j,ε dx

= −
N∑

i=1

∫

Ω

unai (x, ∂xi un)∂xi ψ j,ε dx +
∫

Ω

|un|h(x)ψ j,ε dx

+β

∫

Ω

f (x, un)ψ j,εun dx + on(1). (4.8)

Now, we proceed to prove the following

lim
ε→0

[

lim sup
n→∞

∣
∣
∣

N∑

i=1

∫

Ω

unai (x, ∂xi un)∂xi ψ j,ε dx
∣
∣
∣

]

= 0. (4.9)

It is worth noting that, thanks to the hypotheses (A1), we only need to establish

lim
ε→0

[

lim sup
n→∞

∣
∣
∣

N∑

i=1

∫

Ω

cai gi (x)un∂xi ψ j,ε dx
∣
∣
∣

]

= 0, (4.10)
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and

lim
ε→0

[

lim sup
n→∞

∣
∣
∣

N∑

i=1

∫

Ω

cai un
∣
∣∂xi un

∣
∣pi (x)−1

∂xiψ j,ε dx
∣
∣
∣

]

= 0. (4.11)

First, we apply the Hölder inequality and the boundedness of {un}n∈N in X , to obtain

∣
∣
∣

∫

Ω

un
∣
∣∂xi un

∣
∣pi (x)−2

∂xi un∂xiψ j,ε dx
∣
∣
∣ ≤

∫

Ω

∣
∣
∣∂xi un

∣
∣
∣

pi (x)−1∣∣
∣un∂xiψ j,ε

∣
∣
∣ dx

≤ 2
∥
∥
∥|∂xi un|pi (x)−1

∥
∥
∥

L
pi (x)

pi (x)−1 (Ω)

∥
∥∂xiψ j,εun

∥
∥

L pi (x)(Ω)

≤ C max
{( ∫

Ω

|un|pi (x)|∂xiψ j,ε|pi (x)
) 1

p−
i ,

( ∫

Ω

|un|pi (x)|∂xiψ j,ε|pi (x)
) 1

p+
i

}
.

Now, by applying Lebesgue’s Dominated Convergence Theorem, we have

∣
∣
∣

∫

Ω

un
∣
∣∂xi un

∣
∣pi (x)−2

∂xi un∂xiψ j,ε dx
∣
∣
∣

≤ C max
{( ∫

Ω

|u|pi (x)|∂xiψ j,ε|pi (x)
) 1

p−
i ,

( ∫

Ω

|u|pi (x)|∂xiψ j,ε|pi (x)
) 1

p+
i

}
.

Furthermore, by the Hölder inequality

∫

Ω

|u|pi (x)|∂xiψ j,ε|pi (x) dx

≤ C
∥
∥
∥|u|pi (x)

∥
∥
∥

L
N

N−pi (x) (B(x j ,2ε))

∥
∥
∥|∂xiψ j,ε|pi (x)

∥
∥
∥

L
N

pi (x) (B(x j ,2ε))
.

From
∫

B(x j ,2ε)
|∂xiψ j,ε|N dx =

∫

B(0,2)
|∂xiψ j,ε|N dx, we derive

∥
∥
∥|∂xiψ j,ε|pi (x)

∥
∥
∥

L
N

pi (x) (B(x j ,2ε))
≤ max

{( ∫

B(x j ,2ε)
|∂xiψ j,ε|Ndx

)
1(

N
pi (x)

)+

×
( ∫

B(x j ,2ε)
|∂xiψ j,ε|Ndx

)
1(

N
pi (x)

)− }

≤ C,

for some positive constant C , which is independent of ε. Therefore,

lim sup
n→∞

∣
∣
∣

∫

Ω

un
∣
∣∂xi un

∣
∣pi (x)−2

∂xi un∂xiψε dx
∣
∣
∣

≤ C max

{∥
∥
∥|u|pi (x)

∥
∥
∥

1
p−
i

L
N

N−pi (x) (B(x j ,2ε))
,

∥
∥
∥|u|pi (x)

∥
∥
∥

1
p+
i

L
N

N−pi (x) (B(x j ,2ε))

}

.
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However,

∥
∥
∥|u|pi (x)

∥
∥
∥

L
N

N−pi (x) (B(x j ,2ε))

≤ max

{( ∫

B(x j ,2ε)
|u|p∗

i (x)dx
)

1(
N

N−pi (x)

)+
,
( ∫

B(x j ,2ε)
|u|p∗

i (x)dx
)

1(
N

N−pi (x)

)− }

,

so it follows that

lim
ε→0

lim sup
n→∞

∣
∣
∣

∫

Ω

un
∣
∣∂xi un

∣
∣pi (x)−1

∂xiψ j,ε dx
∣
∣
∣ = 0.

Similarly, we can check (4.10). Hence, we have completed the proof of (4.9).
On the other hand, by using assumption (f 1), Theorem 3, and Lebesgue’s Domi-

nated Convergence Theorem, we see that

lim
n→∞

∫

Ω

f (x, un)unψ j,ε dx =
∫

Ω

f (x, u)uψ j,ε dx

and lim
n→∞

∫

Ω

|un|r(x)ψ j,ε dx =
∫

Ω

|u|r(x)ψ j,ε dx .

(4.12)

Thus, when ε → 0, we get

lim
ε→0

∫

Ω

f (x, u)uψε dx = 0 and lim
ε→0

∫

Ω

|u|r(x)ψ j,ε dx = 0. (4.13)

On the other hand,

lim
ε→0

∫

Ω

ψ j,εdμi = μiψ(0) and lim
ε→0

∫

∂Ω

ψ j,εdν = νψ(0).

Since ψ j,ε has compact support, by taking the limit n → ∞ and ε → 0 in (4.8), from
relations (4.9), (4.12) and (4.13), we get

lim
ε→0

[

lim sup
n→+∞

( N∑

i=1

∫

Ω

ψ j,εai (x, ∂xi un)∂xi un dx
)
]

= ν j .

By assumption (A2), we have

lim
ε→0

[

lim sup
n→+∞

( N∑

i=1

∫

Ω

kiψ j,ε|∂xi un|pi (x) dx
)
]

≤ ν j , (4.14)

hence

min
i∈{1,...,N } kiμ j ≤ ν j for all j ∈ J . (4.15)
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Therefore, by invoking relation (3.4), we can deduce that

ν j ≥ min

{(

( min
1≤i≤N

ki )

1
p+

M N 1−p+
M Sh

) p∗
m (x j )p+

M
p∗
m (x j )−p+

M ,

(

( min
1≤i≤N

ki )
1

p−
m N 1−p+

M Sh

) p∗
m (x j )p−

m

p∗
m (x j )−p−

m

}

for all j ∈ J .

Consequently,

∫

Ω

|un|h(x)dx →
∫

Ω

dν

≥
∫

Ω

|u|h(x)dx + min

{(

( min
1≤i≤N

ki )

1
p+

M N 1−p+
M Sh

) p∗
m (x j )p+

M
p∗
m (x j )−p+

M ,

(

( min
1≤i≤N

ki )
1

p−
m N 1−p+

M Sh

) p∗
m (x j )p−

m

p∗
m (x j )−p−

m

}∑

j∈J

δx j

≥
∫

Ω

|u|h(x)dx + min

{(

( min
1≤i≤N

ki )

1
p+

M N 1−p+
M Sh

) p∗
m (x j )p+

M
p∗
m (x j )−p+

M ,

(

( min
1≤i≤N

ki )
1

p−
m N 1−p+

M Sh

) p∗
m (x j )p−

m

p∗
m (x j )−p−

m

}

CardJ .

If Card(J ) = ∞, we get a contradiction. On the other hand, by assumptions (A2) and
(f 2), we have

Eλ,β(un) − 1

θλ
〈E ′

λ,β(un), un〉

≥
( 1

p+
M

− 1

θλ

) N∑

i=1

∫

Ω

∣
∣∂xi un

∣
∣pi (x) dx + λ

(1

r̃
− 1

θλ

) ∫

Ω

|un|r(x) dx

+
∫

Ω

( 1

θλ
− 1

h−
)
|un|h(x) dx + β

∫

Ω

(

F(x, un) − f (x, un)
un

θλ

)

dx

≥
( 1

θλ
− 1

h−
) ∫

Ω

|un|h(x) dx .

Now, settingAτ = ∪x∈A(B(x, τ )∩Ω) = {x ∈ Ω : dist(x,A) < τ },whenn → +∞,
we find
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Cλ,β ≥
( 1

θλ
− 1

h−
Aτ

)( ∫

Ω

|u|h(x) dx +
∑

j∈J

ν jδx j

)

≥
( 1

θλ
− 1

h−
Aτ

)
min

{

inf
j∈J

(

( min
1≤i≤N

ki )

1
p+

M N 1−p+
M Sh

) p∗
m (x j )p+

M
p∗
m (x j )−p+

M ,

inf
j∈J

(

( min
1≤i≤N

ki )
1

p−
m N 1−p+

M Sh

) p∗
m (x j )p−

m

p∗
m (x j )−p−

m

}

.

Since τ > 0 and arbitrary, and h is continuous, we obtain

Cλ,β ≥
( 1

θλ
− 1

h−
A

)
min

{

inf
j∈J

(

( min
1≤i≤N

ki )

1
p+

M N 1−p+
M Sh

) p∗
m (x j )p+

M
p∗
m (x j )−p+

M ,

inf
j∈J

(

( min
1≤i≤N

ki )
1

p−
m N 1−p+

M Sh

) p∗
m (x j )p−

m

p∗
m (x j )−p−

m

}

.

Therefore, if the condition

Cλ,β <
( 1

θλ
− 1

h−
A

)
min

{

inf
j∈J

(

( min
1≤i≤N

ki )

1
p+

M N 1−p+
M Sh

) p∗
m (x j )p+

M
p∗
m (x j )−p+

M ,

inf
j∈J

(

( min
1≤i≤N

ki )
1

p−
m N 1−p+

M Sh

) p∗
m (x j )p−

m

p∗
m (x j )−p−

m

}

,

holds, then the index set J is empty, and consequently, ρh(un) → ρh(u) as n → ∞.
Thus, by applying Lemma 3 and relation (2.6), we can conclude that un → u strongly
in Lh(x)(Ω) as n → +∞. This completes the proof of Claim 1.
Claim 2. un → u strongly in X as n → +∞.

Since, {un}n∈N is bounded in X and X is a reflexive space, there exists a subse-
quence, still denoted by {un}n∈N and u ∈ X such that

un⇀u weakly in X . (4.16)

By Theorem 3, we know that X is compactly embedded in Lh(x)(Ω), where 1 ≤
h(x) ≤ p∗

m(x). Therefore, since un⇀u in the Banach space X , we can infer that

un → u in Lh(x)(Ω). (4.17)

Using (4.4) and (4.16) and the fact that

|〈E ′
λ,β(un), un − u〉| ≤ ‖E ′

λ,β(un)‖X∗ ‖un − u‖X ,
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we see that lim
n→∞ |〈E ′

λ,β(un), un − u〉| = 0, that is,

lim
n→∞

[ ∫

Ω

N∑

i=1

ai (x, ∂xi un)
(
∂xi un − ∂xi u

)
dx + λ

∫

Ω

|un|r(x)−2un(un − u) dx

−
∫

Ω

|un|h(x)−2un(un − u) dx − β

∫

Ω

f (x, un)(un − u) dx

]

= 0.

(4.18)

Hence, by applying the Hölder inequality, we get

∣
∣
∣

∫

Ω

|un|r(x)−2un(un − u) dx
∣
∣
∣ ≤ 2

∥
∥|un|r(x)−1

∥
∥

Lr ′(x)(Ω)

∥
∥un − u

∥
∥

Lr(x)(Ω)
. (4.19)

Assume to the contrary, that
∥
∥|un|r(x)−1

∥
∥

Lr ′(x)(Ω)
→ ∞, and using relation (2.6), we

obtain

∫

Ω

(|un|r(x)−1)r ′(x)
dx → +∞ if and only if

∫

Ω

(|un|r(x)
)

dx → +∞,

which, in turn, implies ‖un‖Lr(x)(Ω) → +∞. However, we know that

‖un‖Lr(x)(Ω) → ‖u‖Lr(x)(Ω),

so we get a contradiction. Therefore, by relation (4.19) and Theorem 3, we obtain

lim
n→∞

∫

Ω

|un|r(x)−2un(un − u) dx = 0. (4.20)

Moreover, given assumption (f 2) and the Hölder inequality, we derive

∣
∣
∣

∫

Ω

f (x, un)(un − u) dx
∣
∣
∣

≤
∫

Ω

| f (x, un)||un − u| dx

≤ C f

∫

Ω

|un − u| dx + C f

∫

Ω

|un|�(x)−1|un − u| dx

≤ C f ‖un − u‖L1(Ω) + 2C f ‖|un|�(x)−1‖L�′(x)(Ω)
‖un − u‖L�(x)(Ω),

so, by relations (4.17) and (2.6), we get as above

lim
n→∞

∫

Ω

f (x, un)(un − u) dx = 0, (4.21)
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hence, by combining relations (4.18), (4.20) and (4.21), we find

lim
n→∞

∫

Ω

N∑

i=1

ai (x, ∂xi un)
(
∂xi un − ∂xi u

)
dx = 0. (4.22)

By assumption (A2), we obtain

lim
n→∞

∫

Ω

N∑

i=1

|∂xi un|pi (x)−2∂xi un
(
∂xi un − ∂xi u

)
dx = 0, (4.23)

and since un⇀u in X , we have

lim
n→∞

∫

Ω

N∑

i=1

|∂xi u|pi (x)−2∂xi u
(
∂xi un − ∂xi u

)
dx = 0. (4.24)

By combining relations (4.23) and (4.24), we can infer that

lim
n→∞

N∑

i=1

∫

Ω

(
|∂xi un|pi (x)−2∂xi un − |∂xi u|pi (x)−2∂xi u

)(
∂xi un − ∂xi u

)
dx = 0.

(4.25)

Hence, by employing elementary inequalities (see, e.g., Di Benedetto [19, Chapter I]),
for any γ > 1, there exists a positive constant Cγ such that the following inequalities
hold

〈|ξ|γ−2ξ − |ρ|γ−2ρ,ξ − ρ〉 ≥

⎧
⎪⎨

⎪⎩

Cγ|ξ − ρ|γ if γ ≥ 2

Cγ
|ξ−ρ|2

(|ξ|+|ρ|)2−γ , (ξ, ρ) 
= (0, 0) if 1 < γ < 2

(4.26)

for all ξ, � ∈ R. So, by relation (4.25) and inequalities (4.26), we see that

lim
n→∞

N∑

i=1

∫

Ω

∣
∣
∣∂xi un − ∂xi u

∣
∣
∣

pi (x)

dx = 0. (4.27)

Therefore, we can conclude that un → u strongly in X . This completes the proof of
Lemma 5. ��

5 Proofs of Theorems 1 and 2

Proof of Theorem 1 The proof is a direct consequence of the Mountain Pass Theorem,
along with Lemma 4 and Lemma 5. More precisely, it suffices to verify that Eλ,β has
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the mountain pass geometry and that Eλ,β(tu) < 0 for some t > 0. According to
assumption (f 2), there exist R > 0 and θλ such that F(x,ξ) ≥ C ′

f |ξ|θλ , for all x ∈
Ω, |ξ| ≥ R. So, for u ∈ X and any t > 1, we have

Eλ,β(tu) ≤
N∑

i=1

∫

Ω

cai

(

|gi (x)||∂xi (tu)| + |∂xi (tu)|pi (x)

pi (x)

)

dx

+ λ

∫

Ω

1

r(x)
|tu|r(x) dx − 1

h+

∫

Ω

|tu|h(x) dx

− β

∫

{x∈Ω:|u(x)|>R}
C f |tu|θλ dx

− β meas(Ω) inf
{

F(x,ξ) : x ∈ Ω, |ξ| ≤ R
}

≤ 2t max
1≤i≤N

cai

N∑

i=1

‖gi‖L p′
i (x)

(Ω)
‖∂xi u‖L pi (x)(Ω)

+ t p+
M
max1≤i≤N cai

p−
m

N∑

i=1

∫

Ω

|∂xi u|pi (x) dx

+ λt r̃
∫

Ω

1

r(x)
|u|r(x) dx − th−

h+

∫

Ω

|u|h(x) dx

− C f tθλ

∫

Ω

|u|θλ dx − β meas(Ω) inf
{

F(x,ξ) : x ∈ Ω, |ξ| ≤ R
}
,

with r̃ = r+ if λ > 0 and r̃ = r− if λ ≤ 0. So, by assumptions (H) and (f 2), we
have, for all λ ∈ R, that Eλ,β(tu) → −∞ as t → +∞.

On the other hand, based on the assumptions (f 2) and (f 3), it follows that for any
ε > 0, there exists a constant C(ε) such that

|F(x,ξ)| ≤ ε|ξ|p+
M + C(ε)|ξ|�(x) for a.e. x ∈ Ω and all ξ ∈ R. (5.1)

Therefore, we find

Eλ,β(u) ≥ min1≤i≤N ki

p+
M

N∑

i=1

∫

Ω

∣
∣∂xi u

∣
∣pi (x) dx + λ

∫

Ω

1

r(x)
|u|r(x) dx

− 1

h−

∫

Ω

|u|h(x) dx − β

∫

Ω

(ε|u|p+
M + C(ε)|u|�(x)) dx

≥ min1≤i≤N ki

P+
M N P+

M −1
‖u‖P+

M−→p (x)
− |λ|

r−

∫

Ω

|u|r(x) dx

− 1

h−

∫

Ω

|u|h(x) dx − β

∫

Ω

ε|u|p+
M dx − β

∫

Ω

C(ε)|u|�(x) dx .

(5.2)
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Consider 0 < ‖u‖−→p (x) < 1. By using relations (2.3), (2.4) and Theorem 3, we have

Eλ,β(u) ≥ min1≤i≤N ki

p+
M N P+

M −1
‖u‖P+

M−→p (x)
− |λ|C

r− max
{
‖u‖r+

−→p (x)
, ‖u‖r−

−→p (x)

}

− 1

h− C ′
1‖u‖h−

−→p (x)
− βεC ′

2‖u‖P+
M−→p (x)

− βC(ε)C ′
3‖u‖�−

−→p (x)

≥
(min1≤i≤N ki

p+
M N P+

M −1
− βεC ′

2

)
‖u‖P+

M−→p (x)
− |λ|C

r− max
{
‖u‖r+

−→p (x)
, ‖u‖r−

−→p (x)

}

− C ′
1

h− ‖u‖h−
−→p (x)

− βC(ε)C ′
3‖u‖�−

−→p (x)
.

(5.3)

Set ε = min1≤i≤N {ki }
2βC

′
2 p+

M N p+
M −1

and

Φ(t) = min1≤i≤N {ki }
2p+

M N p+
M −1

t p+
M − |λ|C

r− max
{

tr+
, tr−} − C ′

1

h− th− − βC(ε)C ′
3t�

−
.

Since p+
M < min{r−, �−} < h−, we see that there exists ρ > 0 such that max

t≥0
Φ(t) =

Φ(ρ). Hence, by (5.3), there exists ρ > 0 such that Eλ,β(u) ≥ R > 0 as ‖u‖ = ρ.

This yields the existence of an element ũ of X such that Eλ,β(ũ) < 0. Consequently,
the critical value is

Cλ,β := inf
φ∈Γ

max
t∈[0,1] Eλ,β(φ(t)),

where Γ = {φ ∈ C
(
[0, 1] , X

) : φ(0) = 0,φ(1) = ũ}. This concludes the proof of
Theorem 1. ��

In the sequel, we shall prove under some symmetry condition on the function f that
(1.1) possesses infinitely many nontrivial solutions in the case ai (x,ξ) := |ξ|pi (x)−2ξ,
for all i ∈ {1, . . . , N }.

Proof of Theorem 2 We shall use the Z2-symmetric version of the Mountain Pass The-
orem 5, to get the proof of Theorem 2. By assumption (f 4), the function f is even, the
functional Eλ,β is even, too. It suffices to check the condition (I ′

2). In fact, by using
condition (f 2), we have F(x,ξ) ≥ C1|ξ|θλ − C2, for all (x,ξ) ∈ Ω ×R. Then there
exist positive constants C ′

1, C ′
2 and C ′

3 such that

Eλ,β(u) ≤ C ′
1

p−
m

N∑

i=1

∫

Ω

∣
∣∂xi u

∣
∣pi (x) dx + λ

r̃

∫

Ω

|u|r(x) dx

− 1

h+

∫

Ω

|u|h(x) dx − C ′
2‖u‖θλ

Lθλ (Ω)
+ C ′

3,
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with r̃ = r− if λ > 0 and r̃ = r+ if λ ≤ 0. On the other hand, we have the following

inequality
N∑

i=1

∥
∥∂xi u

∥
∥p+

M

L pi (x)(Ω)
≤ C

( N∑

i=1

∥
∥∂xi u

∥
∥

L pi (x)(Ω)

)p+
M
, with C a positive con-

stant. So, by using the last inequality above and Theorem 3, we obtain, in the case
when λ > 0, that

Eλ,β(u) ≤ C ′

p−
m

‖u‖p+
M−→p (x)

+ C4

r̃
‖u‖r+

−→p (x)
− 1

h+

∫

Ω

|u|h(x) dx − C ′
2‖u‖θλ−→p (x)

+ C ′
3.

Let u ∈ X be arbitrary but fixed. We put

Ω< = {x ∈ Ω : |u(x)| < 1} and Ω≥ = Ω\Ω<.

Then we have

Eλ,β(u) ≤ C ′

p−
m

‖u‖p+
M−→p (x)

+ C4

r̃
‖u‖r+

−→p (x)
− 1

h+

∫

Ω

|u|h(x) dx − C ′
2‖u‖θλ−→p (x)

+ C ′
3

≤ C ′

p−
m

‖u‖p+
M−→p (x)

+ C4

r̃
‖u‖r+

−→p (x)
− 1

h+

∫

Ω≥
|u|h−

dx − C ′
2‖u‖θλ−→p (x)

+ C ′
3

≤ C ′

p−
m

‖u‖p+
M−→p (x)

+ C4

r̃
‖u‖r+

−→p (x)
− 1

h+

∫

Ω

|u|h−
dx + 1

h+

∫

Ω<

|u|h−
dx

− C ′
2‖u‖θλ−→p (x)

+ C ′
3.

Since there exists C ′
4 > 0 such that 1

h+
∫
Ω<

|u|h−
dx ≤ C ′

4, for all u ∈ X , we get,

Eλ,β(u) ≤ C ′
p−

m
‖u‖p+

M−→p (x)
+ C4

r̃ ‖u‖r+
−→p (x)

− 1
h+

∫
Ω

|u|h−
dx − C ′

2‖u‖θλ−→p (x)
+ C ′

5, for all

u ∈ X . On the other hand, consider the functional |.|h− : X → R, which is defined as
follows

|u|h− =
( ∫

Ω

|u|h−
dx

)1/h−
.

This functional defines a norm on X . Let X1 be a fixed finite-dimensional subspace
of X . So, |.|h− and ‖.‖−→p (x) are equivalent norms, implying the existence of a positive

constant C5 = C(X1) such that ‖u‖h−
−→p (x)

≤ C5 |u|h−
h− , for all u ∈ X1. Consequently,

we have established the existence of a positive constant C6 such that

0 ≤ Eλ,β(u) ≤ C ′

p−
m

‖u‖p+
M−→p (x)

+ C4

r̃
‖u‖r+

−→p (x)
− C6

h− ‖u‖h−
−→p (x)

− C ′
2‖u‖θλ−→p (x)

+ C ′
5.

Given that θλ > r+ and h− > p+
M , we can conclude that S1 is bounded in X . Hence,

by invoking Theorem 5, it follows that Eλ,β possesses an unbounded sequence of
critical values, which in turn, implies that problem (1.1) has infinitely many weak
solutions in X . The proof of Theorem 2 is thus complete. ��
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