ON SOME GENERALIZATION OF THE BICYCLIC SEMIGROUP: THE TOPOLOGICAL VERSION

Matija CENCELJ ${ }^{1}$, Oleg GUTIK ${ }^{2}$, Dušan REPOVŠ ${ }^{3}$
${ }^{1}$ Faculty of Education, University of Ljubljana, Kardeljeva Pl., 16, Ljubljana, 1000, SLOVENIA
e-mail: matija.cencelj@pef.uni-lj.si
${ }^{2}$ Department of Mechanics and Mathematics, Ivan Franko National University of Lviv, Universytetska Str., 1, 79000, Lviv, UKRAINE
e-mail: oleg.gutik@lnu.edu.ua
${ }^{3}$ Faculty of Education, and Faculty of Mathematics and Physics, University of Ljubljana, Kardeljeva Pl., 16,
Ljubljana, 1000, SLOVENIA
e-mail: dusan.repovs@guest.arnes.si

Abstract

We show that every Hausdorff Baire topology τ on $\mathcal{C}=\left\langle a, b \mid a^{2} b=a, a b^{2}=b\right\rangle$ such that (\mathcal{C}, τ) is a semitopological semigroup is discrete and we construct a nondiscrete Hausdorff semigroup topology on \mathcal{C}. We also discuss the closure of a semigroup \mathcal{C} in a semitopological semigroup and prove that \mathcal{C} does not embed into a topological semigroup with the countably compact square.

Key words: topological semigroup, semitopological semigroup, bicyclic semigroup, closure, embedding, Baire space.

1. Introduction and preliminaries

In this paper all topological spaces are assumed to be Hausdorff. If Y is a subspace of a topological space X and $A \subseteq Y$, then we shall denote the topological closure of A in Y by $\operatorname{cl}_{Y}(A)$. Further we shall follow the terminology of $[7,8,10,19]$.

For a topological space X, a family $\left\{A_{s} \mid s \in \mathscr{A}\right\}$ of subsets of X is called locally finite if for every point $x \in X$ there exists an open neighbourhood U of x in X such that the set $\left\{s \in \mathscr{A} \mid U \cap A_{s} \neq \varnothing\right\}$ is finite. A subset A of X is said to be

- co-dense in X if $X \backslash A$ is dense in X;
- an F_{σ}-set in X if A is a union of a countable family of closed subsets in X.

[^0](C) Cencelj, M.; Gutik, O.; Repovš, D., 2022

We recall that a topological space X is said to be

- compact if each open cover of X has a finite subcover;
- countably compact if each open countable cover of X has a finite subcover;
- sequentially compact if each sequence in X has a convergent subsequence;
- pseudocompact if each locally finite open cover of X is finite;
- a Baire space if for each sequence $A_{1}, A_{2}, \ldots, A_{i}, \ldots$ of nowhere dense subsets of X the union $\bigcup_{i=1}^{\infty} A_{i}$ is a co-dense subset of X;
- Čech complete if X is Tychonoff and for every compactification $c X$ of X, the remainder $c X \backslash X$ is an F_{σ}-set in $c X$;
- locally compact if every point of X has an open neighbourhood with a compact closure.
According to Theorem 3.10 .22 of [10], a Tychonoff topological space X is pseudocompact if and only if each continuous real-valued function on X is bounded.

If S is a semigroup, then we shall denote the Green relations on S by \mathscr{R} and \mathscr{L} (see Section 2.1 of [8]):

$$
a \mathscr{R} b \text { if and only if } a S^{1}=b S^{1} ; \quad \text { and } \quad a \mathscr{L} b \text { if and only if } S^{1} a=S^{1} b .
$$

A semigroup S is called simple if S does not contain any proper two-sided ideals.
A semitopological (resp. topological) semigroup is a topological space together with a separately (resp. jointly) continuous semigroup operation.

An important theorem of Andersen [1] (see also [8, Theorem 2.54]) states that in any [0-]simple semigroup which is not completely [0-]simple, each nonzero idempotent (if there are any) is the identity element of a copy of the bicyclic semigroup $\mathcal{B}(a, b)=\langle a, b| a b=$ $1\rangle$. The bicyclic semigroup is bisimple and every one of its congruences is either trivial or a group congruence. Moreover, every non-annihilating homomorphism h of the bicyclic semigroup is either an isomorphism or the image of $\mathcal{B}(a, b)$ under h is a cyclic group (see Corollary 1.32 in [8]). Eberhart and Selden [9] showed that every Hausdorff semigroup topology on the bicyclic semigroup $\mathcal{B}(a, b)$ is discrete. Bertman and West [6] proved that every Hausdorff topology τ on $\mathcal{B}(a, b)$ such that $(\mathcal{B}(a, b), \tau)$ is a semitopological semigroup is also discrete. Neither stable nor Γ-compact topological semigroups can contain a copy of the bicyclic semigroup [2, 13]. Also, the bicyclic semigroup cannot be embedded into any countably compact topological inverse semigroup [11]. Moreover, the conditions were given in [4] and [5] when a countably compact or pseudocompact topological semigroup cannot contain the bicyclic semigroup, which is topological semigroup with a countably compact square and with a pseudocompact square. However, Banakh, Dimitrova and Gutik [5] have constructed (assuming the Continuum Hypothesis or the Martin Axiom) an example of a Tychonoff countably compact topological semigroup which contains the bicyclic semigroup.

Jones [14] found semigroups \mathcal{A} and \mathcal{C} which play a role similar to the bicyclic semigroup in Andersen's Theorem. Let

$$
\mathcal{A}=\left\langle a, b \mid a^{2} b=a\right\rangle
$$

and

$$
\mathcal{C}=\left\langle a, b \mid a^{2} b=a, a b^{2}=b\right\rangle .
$$

It is obvious that the semigroup \mathcal{C} is a homomorphic image of \mathcal{A}, and the bicyclic semigroup is a homomorphic image of \mathcal{C}. Also, every non-injective homomorphic image of the semigroup \mathcal{C} contains an idempotent. Jones [14] showed that every [0-] simple idempotentfree semigroup S on which \mathscr{R} is nontrivial contains (a copy of) \mathcal{A} or \mathcal{C}. Moreover, if S is also \mathscr{L}-trivial and is not \mathscr{R}-trivial then it must contain \mathcal{A} (but not \mathcal{C}), and if S is both \mathscr{R} - and \mathscr{L}-nontrivial then S must contain either \mathcal{C} or both \mathcal{A} and its dual \mathcal{A}^{d}.

In the general case, the countable compactness of topological semigroup S does not guarantee that S contains an idempotent. By Theorem 8 of [4], a topological semigroup S contains an idempotent if S satisfies one of the following conditions: 1) S is doubly countably compact; 2) S is sequentially compact; 3) S is p-compact for some free ultrafilter p on ω; 4) $S^{2^{\text {c }}}$ is countably compact; 5) $S^{\kappa^{\omega}}$ is countably compact, where κ is the minimal cardinality of a closed subsemigroup of S. This motivates the establishing of the semigroups \mathcal{A} and \mathcal{C} as topological semigroups, in particular their semigroup topologizations and the question of their embeddings into compact-like topological semigroups.

In this paper we study the semigroup \mathcal{C} as a semitopological semigroup. We show that every Hausdorff Baire topology τ on \mathcal{C} such that (\mathcal{C}, τ) is a semitopological semigroup is discrete and we construct a nondiscrete Hausdorff semigroup topology on \mathcal{C}. We also discuss the closure of a semigroup \mathcal{C} in a semitopological semigroup and prove that \mathcal{C} does not embed into a topological semigroup with a countably compact square.

2. Algebraic properties of the semigroup \mathcal{C}

The semigroup $\mathcal{C}=\left\langle a, b \mid a^{2} b=a, a b^{2}=b\right\rangle$ was introduced by Rédei [18] and further studied by Megyesi and Pollák [16] and by Rankin and Reis [17]. Its salient properties are summarized here:

Proposition 1. (i) \mathcal{C} is a 2-generated simple idempotent-free semigroup in which $a \mathscr{R} a^{2}$ and $b \mathscr{L} b^{2}$, so that \mathscr{R} and \mathscr{L} are nontrivial; however \mathscr{H} is trivial.
(ii) Each element of \mathcal{C} is uniquely expressible as $b^{k}(a b)^{l} a^{m}, k, l, m \geqslant 0, k+l+m>0$.
(iii) The product of elements $b^{k}(a b)^{l} a^{m}$ and $b^{n}(a b)^{p} a^{q}$ in \mathcal{C} is equal to

$$
\begin{cases}b^{k+n-m}(a b)^{p} a^{q}, & \text { if } m<n \tag{1}\\ b^{k}(a b)^{l+p+1} a^{q}, & \text { if } m=n \neq 0 \\ b^{k}(a b)^{l+p} a^{q}, & \text { if } m=n=0 \\ b^{k}(a b)^{l} a^{q+m-n}, & \text { if } m>n\end{cases}
$$

(iv) The semigroup \mathcal{C} is minimally idempotent-free (i.e., it is idempotent-free but each of its proper quotients contains an idempotent).

Definition 1 ([15]). A semigroup S is said to be stable if the following conditions hold:
(i) $s, t \in S$ and $S s \subseteq S s t$ implies that $S s=S s t$; and
(ii) $s, t \in S$ and $s S \subseteq t s S$ implies that $s S=t s S$.

By formula (1) we have that

$$
b \cdot b^{n}(a b)^{p} a^{q}=b^{n+1}(a b)^{p} a^{q}
$$

and

$$
a \cdot b \cdot b^{n}(a b)^{p} a^{q}= \begin{cases}(a b)^{p+1} a^{q}, & \text { if } n=0 \\ b^{n}(a b)^{p} a^{q}, & \text { if } n \geqslant 1\end{cases}
$$

for each $b^{n}(a b)^{p} a^{q} \in \mathcal{C}$. Hence we get that $b \cdot \mathcal{C} \subseteq a \cdot b \cdot \mathcal{C}$, but $b \cdot \mathcal{C} \neq a \cdot b \cdot \mathcal{C}$. This yields the following proposition:

Proposition 2. The semigroup \mathcal{C} is not stable.
The following remark follows from formula (1) above:
Remark 1. The semigroup operation in \mathcal{C} implies that the following assertions hold:
(i) The map $\varphi_{i, j}: \mathcal{C} \rightarrow \mathcal{C}$ defined by the formula $\varphi_{i, j}(x)=b^{i} \cdot x \cdot a^{j}$ is injective for all nonnegative integers i and j (for $i=j=0$ we put that $\varphi_{0,0}(x)=x$);
(ii) The subsemigroups $\mathcal{C}_{a b}=\langle a b\rangle, \mathcal{C}_{a}=\langle a\rangle$ and $\mathcal{C}_{b}=\langle b\rangle$ in \mathcal{C} are infinite cyclic semigroups.

3. On topologizations of the semigroup \mathcal{C}

Let X be a topological space. A continuous map $f: X \rightarrow X$ is called a retraction of X if $f \circ f=f$; and the set of all values of a retraction of X is called a retract of X (cf. [10]).

Proposition 3. If τ is a Hausdorff topology on \mathcal{C} such that (\mathcal{C}, τ) is a semitopological semigroup then for every positive integer k the sets

$$
\mathfrak{R}_{k}=\left\{b^{n}(a b)^{p} a^{q} \mid n=k, k+1, k+2, \ldots, p=0,1,2, \ldots, q=0,1,2, \ldots\right\},
$$

and

$$
\mathfrak{L}_{k}=\left\{b^{n}(a b)^{p} a^{q} \mid q=k, k+1, k+2, \ldots, n=0,1,2, \ldots, p=0,1,2, \ldots\right\}
$$

are retracts in (\mathcal{C}, τ) and hence closed subsets of (\mathcal{C}, τ).
Proof. By formula (1) we have that

$$
\begin{align*}
& b^{m}(a b)^{l} a^{m} \cdot b^{n}(a b)^{p} a^{q}= \begin{cases}b^{n}(a b)^{p} a^{q}, & \text { if } m<n ; \\
b^{n}(a b)^{l+p+1} a^{q}, & \text { if } m \neq n ; \\
(a b)^{l+p} a^{q}, & \text { if } m=n=0 ; \\
b^{m}(a b)^{l} a^{q+m-n}, & \text { if } m>n,\end{cases} \tag{2}\\
& b^{i}(a b)^{l} a^{m} \cdot b^{n}(a b)^{p} a^{n}= \begin{cases}b^{i+n-m}(a b)^{p} a^{n}, & \text { if } m<n ; \\
b^{i}(a b)^{l+p+1} a^{n}, & \text { if } m=n \neq 0 ; \\
b^{i}(a b)^{l+p}, & \text { if } m=n=0 ; \\
b^{i}(a b)^{l} a^{m}, & \text { if } m>n .\end{cases} \tag{3}
\end{align*}
$$

Then left and right translations of the element $b^{k}(a b)^{l} a^{k}$ of the semigroup \mathcal{C} are retractions of the topological space (\mathcal{C}, τ) and hence the sets \mathfrak{R}_{k} and \mathfrak{L}_{k} are retracts of the topological space (\mathcal{C}, τ) for every positive integer k. The last statement of the proposition follows from Exercise 1.5.C of [10].

Proposition 4. If τ is a Hausdorff topology on \mathcal{C} such that (\mathcal{C}, τ) is a semitopological semigroup then $\mathcal{C}_{a b}$ is an open-and-closed subsemigroup of (\mathcal{C}, τ).

Proof. We observe that $\mathcal{C}_{a b}=\mathcal{C} \backslash\left(\mathfrak{R}_{1} \cup \mathfrak{L}_{1}\right)$ and hence by Proposition 3 we have that $\mathcal{C}_{a b}$ is an open subset of (\mathcal{C}, τ). Also, formula (1) implies that

$$
a \cdot b^{n}(a b)^{p} a^{q} \cdot b=\left\{\begin{array}{ll}
b^{n-1}(a b)^{p} a^{q} \cdot b, & \text { if } n>1 ; \\
(a b)^{p+l} a^{q} \cdot b, & \text { if } n=1 ; \\
a^{q+1} \cdot b, & \text { if } n=0
\end{array}=\right.
$$

$$
= \begin{cases}b^{n}, & \text { if } n>1 \quad \text { and } q=0 ; \tag{4}\\ b^{n-1}(a b)^{p+1} & \text { if } n>1 \text { and } q=1 ; \\ b^{n-1}(a b)^{p} a^{q-1}, & \text { if } n>1 \text { and } q>1 ; \\ b, & \text { if } n=1 \text { and } q=0 ; \\ (a b)^{p+2}, & \text { if } n=1 \text { and } q=1 ; \\ (a b)^{p+1} a^{q-1}, & \text { if } n=1 \text { and } q>1 ; \\ a b, & \text { if } n=0 \text { and } q=0 ; \\ a, & \text { if } n=0 \text { and } q=1 ; \\ a^{q}, & \text { if } n=0 \text { and } q>1,\end{cases}
$$

for nonnegative integers n, p and q. By formula (4),

$$
\mathcal{C}_{0,0}=\left\{(a b)^{i} \mid i=1,2,3, \ldots\right\}
$$

is the set of solutions of the equation $a \cdot X \cdot b=a b$. Then the Hausdorffness of the space (\mathcal{C}, τ) and the separate continuity of the semigroup operation in \mathcal{C} imply that $\mathcal{C}_{a b}=\mathcal{C}_{0,0}$ is a closed subset of (\mathcal{C}, τ).

We observe that formula (4) implies that

$$
\begin{align*}
& b^{k}(a b)^{l} a^{m} \cdot b= \begin{cases}b^{k+1}, & \text { if } m=0 ; \\
b^{k}(a b)^{l+1}, & \text { if } m=1 ; \\
b^{k}(a b)^{l} a^{m-1}, & \text { if } m>1,\end{cases} \tag{5}\\
& a \cdot b^{n}(a b)^{p} a^{q}= \begin{cases}b^{n-1}(a b)^{p} a^{q}, & \text { if } n>1 ; \\
(a b)^{p+1} a^{q}, & \text { if } n=1 ; \\
a^{q+1}, & \text { if } n=0,\end{cases}
\end{align*}
$$

for nonnegative integers k, l, m, n, p and q.
Proposition 5. If τ is a Hausdorff topology on \mathcal{C} such that (\mathcal{C}, τ) is a semitopological semigroup then

$$
\mathcal{C}_{0, i}=\left\{(a b)^{p} a^{i} \mid p=0,1,2,3, \ldots\right\}
$$

and

$$
\mathcal{C}_{i, 0}=\left\{b^{i}(a b)^{p} \mid p=0,1,2,3, \ldots\right\}
$$

are open subsets of (\mathcal{C}, τ) for any positive integer i.
Proof. By Proposition $4, \mathcal{C}_{0,0}$ is an open subset (\mathcal{C}, τ) and by Hausdorffness of (\mathcal{C}, τ) the set $\mathcal{C}_{0,0} \backslash\{a b\}$ is open in (\mathcal{C}, τ), too. Then formula (5) implies that the equation $X \cdot b=(a b)^{p+2}$, where $p=0,1,2,3, \ldots$, has a unique solution $X=(a b)^{p} a$, and hence since all right translations in (\mathcal{C}, τ) are continuous maps we get that $\mathcal{C}_{0,1}$ is an open subset of the topological space (\mathcal{C}, τ). Also, formula (4) implies that the equation $a \cdot X=(a b)^{p+2}$, where $p=0,1,2,3, \ldots$, has a unique solution $X=b(a b)^{p}$, and hence since all left translations in (\mathcal{C}, τ) are continuous maps we get that $\mathcal{C}_{1,0}$ is an open subset of the topological space (\mathcal{C}, τ).

By formula (5), the equation $X \cdot b=(a b)^{l} a^{m-1}$, where $l-1$ and $m-1$ are positive integers, has a unique solution $X=(a b)^{l} a^{m}$. Then the separate continuity of the semigroup operation in (\mathcal{C}, τ) implies that if $\mathcal{C}_{0, m-1}$ is an open subset of (\mathcal{C}, τ) then $\mathcal{C}_{0, m}$ is open in (\mathcal{C}, τ), too. Similarly, formula (6) implies that the equation $a \cdot X=b^{n-1}(a b)^{p}$, where $n-1$ and $p-1$ are positive integers, has a unique solution $X=b^{n}(a b)^{p}$, and hence the separate continuity of the semigroup operation in (\mathcal{C}, τ) and openess of the set $\mathcal{C}_{n-1,0}$ in (\mathcal{C}, τ) imply that the set $\mathcal{C}_{n, 0}$ is an open subset of the topological space (\mathcal{C}, τ). Next, we complete the proof of the proposition by induction.

Proposition 6. If τ is a Hausdorff topology on \mathcal{C} such that (\mathcal{C}, τ) is a semitopological semigroup then

$$
\mathcal{C}_{i, j}=\left\{b^{i}(a b)^{p} a^{j} \mid p=0,1,2,3, \ldots\right\}
$$

is an open subset of (\mathcal{C}, τ) for all positive integers i and j.
Proof. First we observe that Proposition 5 and Hausdorffness of (\mathcal{C}, τ) imply that $\mathcal{C}_{k, 0} \backslash$ $\left\{b^{k}(a b)\right\}$ is an open subset of (\mathcal{C}, τ) for every positive integer k. Then formula (5) implies that the equation $X \cdot b=b^{k}(a b)^{p+1}$, where $p=0,1,2,3, \ldots$, has a unique solution $X=b^{k}(a b)^{p} a$, and hence since all right and left translations in (\mathcal{C}, τ) are continuous maps we get that $\mathcal{C}_{k, 1}$ is an open subset of the topological space (\mathcal{C}, τ).

Also, by formula (5) we have that the equation $X \cdot b=b^{k}(a b)^{p} a^{l}$ has a unique solution $X=b^{k}(a b)^{p} a^{l+1}$. Then the openess of the set $\mathcal{C}_{k, l}$ implies that the set $\mathcal{C}_{k, l+1}$ is open in (\mathcal{C}, τ). Then induction implies the assertion of the proposition.

Propositions 4, 5 and 6 imply Theorem 1, which describes all Hausdorff topologies τ on \mathcal{C} such that (\mathcal{C}, τ) is a semitopological semigroup.
Theorem 1. If τ is a Hausdorff topology on \mathcal{C} such that (\mathcal{C}, τ) is a semitopological semigroup then $\mathcal{C}_{i, j}$ is an open-and-closed subset of (\mathcal{C}, τ) for all nonnegative integers i and j.

Since the bicyclic semigroup $\mathcal{B}(a, b)$ admits only the discrete topology which turns $\mathcal{B}(a, b)$ into a Hausdorff semitopological semigroup [6], Theorem 1 implies the following:

Corollary 1. If \mathcal{C} is a semitopological semigroup then the homomorphism $h: \mathcal{C} \rightarrow \mathcal{B}(a, b)$, defined by the formula $h\left(b^{k}(a b)^{l} a^{m}\right)=b^{k} a^{m}$, is continuous.

Later we shall need the following lemma.
Lemma 1. Every Hausdorff Baire topology on the infinite cyclic semigroup S such that (S, τ) is a semitopological semigroup is discrete.

Proof. Since every infinite cyclic semigroup is isomorphic to the additive semigroup of positive integers $(\mathbb{N},+)$ we assume without loss of generality that $S=(\mathbb{N},+)$.

Fix an arbitrary $n_{0} \in \mathbb{N}$. Then Hausdorffness of ($\mathbb{N},+$) implies that $\left\{1, \ldots, n_{0}\right\}$ is a closed subset of $(\mathbb{N},+)$, and hence by Proposition 1.14 of [12] we get that $\mathbb{N}_{n_{0}}=$ $\mathbb{N} \backslash\left\{1, \ldots, n_{0}\right\}$ with the induced topology from (\mathbb{N}, τ) is a Baire space.

If no point in $\mathbb{N}_{n_{0}}$ is isolated, then since (\mathbb{N}, τ) is Hausdorff, it follows that $\{n\}$ is nowhere dense in $\mathbb{N}_{n_{0}}$ for all $n>n_{0}$. But, if this is the case, then since the space (\mathbb{N}, τ) is countable we conclude that $\mathbb{N}_{n_{0}}$ cannot be a Baire space. Hence $\mathbb{N}_{n_{0}}$ contains an isolated point n_{1} in $\mathbb{N}_{n_{0}}$. Then the separate continuity of the semigroup operation in $(\mathbb{N},+, \tau)$
implies that n_{0} is an isolated point in (\mathbb{N}, τ), because $n_{1}=n_{0}+(\underbrace{1+\ldots+1}_{\left(n_{1}-n_{0}\right) \text {-times }})$. This completes the proof of the lemma.

Theorem 2. Every Hausdorff Baire topology τ on \mathcal{C} such that (\mathcal{C}, τ) is a semitopological semigroup is discrete.
Proof. By Proposition $4, \mathcal{C}_{a b}$ is an open-and-closed subsemigroup of (\mathcal{C}, τ). Then by Proposition 1.14 of [12] we have that $\mathcal{C}_{a b}$ is a Baire space and hence Lemma 1 implies that every element of $\mathcal{C}_{a b}$ is an isolated point of the topological space (\mathcal{C}, τ).

Now, by formula (4), the equation $a \cdot X \cdot b=(a b)^{p+2}$ has a unique solution $X=$ $b(a b)^{p} a$ for every nonnegative integer p, and since the semigroup operation in (\mathcal{C}, τ) is separately continuous we conclude that $b(a b)^{p} a$ is an isolated point in (\mathcal{C}, τ) for every integer $p \geqslant 0$. Similarly, formula (4) implies that the equation $a \cdot X \cdot b=b^{n}(a b)^{p} a^{n}$ has the unique solution $X=b^{n-1}(a b)^{p} a^{n-1}$ for every nonnegative integer p and every integer $n>1$. Then by induction we get that the separate continuity of the semigroup operation in (\mathcal{C}, τ) implies that $b^{n+1}(a b)^{p} a^{n+1}$ is an isolated point in the topological space (\mathcal{C}, τ) for all nonnegative integers n and p.

We fix arbitrary distinct nonnegative integers n and m. We can assume without loss of generality that $n<m$. In the case when $m<n$ the proof is similar. Since by Remark $1(i)$ we have that the map $\varphi_{m-n, 0}: \mathcal{C} \rightarrow \mathcal{C}$ defined by the formula $\varphi_{m-n, 0}(x)=$ $b^{m-n} \cdot x$ is injective and by the previous part of the proof, the point $b^{m}(a b)^{p} a^{m}$ is isolated in (\mathcal{C}, τ) for every nonnegative integer p, we conclude that the separate continuity of the semigroup operation in (\mathcal{C}, τ) implies that $b^{n}(a b)^{p} a^{m}$ is an isolated point in the topological space (\mathcal{C}, τ) for every nonnegative integer p.

Since every Čech complete space (and hence every locally compact space) is Baire, Theorem 2 implies Corollaries 2 and 3.
Corollary 2. Every Hausdorff Čech complete (locally compact) topology τ on \mathcal{C} such that (\mathcal{C}, τ) is a Hausdorff semitopological semigroup is discrete.
Corollary 3. Every Hausdorff Baire topology (and hence Čech complete or locally compact topology) τ on \mathcal{C} such that (\mathcal{C}, τ) is a Hausdorff topological semigroup is discrete.

The following example implies that there exists a Tychonoff nondiscrete topology τ_{p} on the semigroup \mathcal{C} such that $\left(\mathcal{C}, \tau_{p}\right)$ is a topological semigroup.
Example 1. Let p be a fixed prime number. We define a topology τ_{p} on the semigroup \mathcal{C} by the base

$$
\mathscr{B}_{p}\left(b^{i}(a b)^{k} a^{j}\right)=\left\{U_{\alpha}\left(b^{i}(a b)^{k} a^{j}\right) \mid \alpha=1,2,3, \ldots\right\}
$$

at every point $b^{i}(a b)^{k} a^{j} \in \mathcal{C}$, where

$$
U_{\alpha}\left(b^{i}(a b)^{k} a^{j}\right)=\left\{b^{i}(a b)^{k+\lambda \cdot p^{\alpha}} a^{j} \mid \lambda=1,2,3, \ldots\right\} .
$$

Simple verifications show that the topology τ_{p} on \mathcal{C} is generated by the following metric:

$$
d\left(b^{i_{1}}(a b)^{k_{1}} a^{j_{1}}, b^{i_{2}}(a b)^{k_{2}} a^{j_{2}}\right)= \begin{cases}0, & \text { if } i_{1}=i_{2}, k_{1}=k_{2} \text { and } j_{1}=j_{2} ; \\ 2^{s}, & \text { if } i_{1}=i_{2}, k_{1} \neq k_{2} \text { and } j_{1}=j_{2} ; \\ 1, & \text { otherwise },\end{cases}
$$

where s is the largest of p which divides $\left|k_{1}-k_{2}\right|$. This implies that $\left(\mathcal{C}, \tau_{p}\right)$ is a Tychonoff space. Also, it is easy to see that $U_{\alpha}\left(b^{i}(a b)^{k} a^{j}\right)$ is a closed subset of the topological space $\left(\mathcal{C}, \tau_{p}\right)$, for every $b^{i}(a b)^{k} a^{j} \in \mathcal{C}$ and every positive integer α, and hence $\left(\mathcal{C}, \tau_{p}\right)$ is a 0 -dimensional topological space (i.e., $\left(\mathcal{C}, \tau_{p}\right)$ has a base which consists of open-andclosed subsets). We observe that the topological space (\mathcal{C}, τ_{p}) doesn't contain any isolated points.

For every positive integer α and arbitrary elements $b^{k}(a b)^{l} a^{m}$ and $b^{n}(a b)^{t} a^{q}$ of the semigroup \mathcal{C}, formula (1) implies that the following conditions hold:
(i) if $m<n$ then $U_{\alpha}\left(b^{k}(a b)^{l} a^{m}\right) \cdot U_{\alpha}\left(b^{n}(a b)^{t} a^{q}\right) \subseteq U_{\alpha}\left(b^{k+n-m}(a b)^{t} a^{q}\right)$;
(ii) if $m=n \neq 0$ then $U_{\alpha}\left(b^{k}(a b)^{l} a^{m}\right) \cdot U_{\alpha}\left(b^{n}(a b)^{t} a^{q}\right) \subseteq U_{\alpha}\left(b^{k}(a b)^{l+t+1} a^{q}\right)$;
(iii) if $m=n=0$ then $U_{\alpha}\left(b^{k}(a b)^{l} a^{m}\right) \cdot U_{\alpha}\left(b^{n}(a b)^{t} a^{q}\right) \subseteq U_{\alpha}\left(b^{k}(a b)^{l+t} a^{q}\right)$; and
(iv) if $m>n$ then $U_{\alpha}\left(b^{k}(a b)^{l} a^{m}\right) \cdot U_{\alpha}\left(b^{n}(a b)^{t} a^{q}\right) \subseteq U_{\alpha}\left(b^{k}(a b)^{l} a^{q+m-n}\right)$.

Therefore $\left(\mathcal{C}, \tau_{p}\right)$ is a topological semigroup.

4. On the closure and embedding of the semitopological SEMIGROUP \mathcal{C}

In the case of the bicyclic semigroup $\mathcal{B}(a, b)$ we have that if a topological semigroup S contains $\mathcal{B}(a, b)$ then the nonempty remainder of $\mathcal{B}(a, b)$ under the closure in S is an ideal in $\operatorname{cl}_{S}(\mathcal{B}(a, b))$ (see [9]). This immediately follows from that facts that the bicyclic semigroup $\mathcal{B}(a, b)$ admits only the discrete topology which turns $\mathcal{B}(a, b)$ into a Hausdorff semitopological semigroup and that the equations $A \cdot X=B$ and $X \cdot A=B$ have finitely many solutions in $\mathcal{B}(a, b)$ (see [6, Proposition 1] and [9, Lemma I.1]).

The following example shows that the semigroup \mathcal{C} with the discrete topology does not have similar "properties of the closure" as the bicyclic semigroup.

Example 2. It well known that each element of the bicyclic semigroup $\mathcal{B}(a, b)$ is uniquely expressible as $b^{i} a^{j}$, where i and j are nonnegative integers. Since all elements of the semigroup have similar expressibility we shall denote later the elements of the bicyclic semigroup by underlining $b^{i} a^{j}$.

We define a map $\pi: \mathcal{C} \rightarrow \mathcal{B}(a, b)$ by the formula $\pi\left(b^{i}(a b) k a^{j}\right)=b^{i} a^{j}$. Simple verifications and formula (1) show that thus defined map π is a homomorphism. We extend the semigroup operation from the semigroups \mathcal{C} and $\mathcal{B}(a, b)$ on $S=\mathcal{C} \sqcup \mathcal{B}(a, b)$ in the following way:

$$
b^{k}(a b)^{l} a^{m} \star \underline{b^{n} a^{q}}= \begin{cases}\frac{b^{k+n-m} a^{q},}{b^{k} a^{q},}, & \text { if } m<n ; \\ b^{k}(a b)^{l} a^{q+m-n}, & \text { if } m>n\end{cases}
$$

and

$$
\underline{b^{k} a^{m}} \star b^{n}(a b)^{p} a^{q}= \begin{cases}b^{k+n-m}(a b)^{p} a^{q}, & \text { if } m<n ; \\ \frac{b^{k} a^{q}}{b^{k} a^{q+m-n}}, & \text { if } m=n ; \\ \underline{\text { if } m>n},\end{cases}
$$

A routine check of all 118 cases and their compatibility shows that such a binary operation is associative.

Now, we define the topology τ on the semigroup S in the following way:
(i) all elements of the semigroup \mathcal{C} are isolated points in (S, τ); and
(ii) the family $\mathscr{B}\left(\underline{b^{i} a^{j}}\right)=\left\{U_{n}\left(\underline{b^{i} a^{j}}\right) \mid n=1,2,3, \ldots\right\}$, where

$$
U_{n}\left(\underline{b^{i} a^{j}}\right)=\left\{\underline{b^{i} a^{j}}\right\} \cup\left\{b^{i}(a b)^{k} a^{j} \in \mathcal{C} \mid k=n, n+1, n+2, \ldots\right\},
$$

is a base of the topology τ at the point $\underline{b^{i} a^{j}} \in \mathcal{B}(a, b)$.
Simple verifications show that (S, τ) is a Hausdorff 0 -dimensional scattered locally compact metrizable space.
Proposition 7. (S, τ) is a topological semigroup.
Proof. The definition of the topology τ on S implies that it suffices to show that the semigroup operation in (S, τ) is continuous in the following three cases:

1) $b^{i} a^{k} \star b^{m} a^{p}$;
2) $b^{i} a^{k} \star b^{m}(a b)^{n} a^{p}$; and
3) $b^{i}(a b)^{l} a^{k} \star \underline{b^{m}} a^{p}$.

In case 1) we get that

$$
\underline{b^{i} a^{k}} \star \underline{b^{m} a^{p}}= \begin{cases}\underline{b^{i-k+m} a^{p}}, & \text { if } k<m \\ \underline{b^{i} a^{p},}, & \text { if } k=m \\ \underline{b^{i} a^{k}-m+p}, & \text { if }, k>m\end{cases}
$$

and for every positive integer u the following statements hold:
a) if $k<m$ then $U_{u}\left(\underline{b^{i} a^{k}}\right) \star U_{u}\left(\underline{b^{m} a^{p}}\right) \subseteq U_{u}\left(\underline{b^{i-k+m} a^{p}}\right)$;
b) if $k=m$ then $U_{u}\left(\underline{b^{i} a^{k}}\right) \star U_{u}\left(\underline{b^{m} a^{p}}\right) \subseteq U_{u}\left(\underline{b^{i} a^{p}}\right)$;
c) if $k>m$ then $U_{u}\left(\underline{b^{i} a^{k}}\right) \star U_{u}\left(\underline{b^{m} a^{p}}\right) \subseteq U_{u}\left(\underline{b^{i} a^{k-m+p}}\right)$.

In case 2) we have that

$$
\underline{b^{i} a^{k}} \star b^{m}(a b)^{n} a^{p}= \begin{cases}b^{i-k+m}(a b)^{n} a^{p}, & \text { if } k<m \\ \underline{b^{i} a^{p}}, & \text { if } k=m \\ \underline{b^{i} a^{k}-m+p}, & \text { if }, k>m\end{cases}
$$

and hence for every positive integer u the following statements hold:
a) if $k<m$ then

$$
U_{u}\left(\underline{b^{i} a^{k}}\right) \star\left\{b^{m}(a b)^{n} a^{p}\right\}=\left\{b^{i-k+m}(a b)^{n} a^{p}\right\} ;
$$

b) if $k=m$ then

$$
U_{u}\left(\underline{b^{i} a^{k}}\right) \star\left\{b^{m}(a b)^{n} a^{p}\right\} \subseteq U_{u}\left(\underline{b^{i} a^{p}}\right) ;
$$

c) if $k>m$ then

$$
U_{u}\left(\underline{b^{i} a^{k}}\right) \star\left\{b^{m}(a b)^{n} a^{p}\right\} \subseteq U_{u}\left(\underline{b^{i} a^{k-m+p}}\right) .
$$

In case 3) we have that

$$
b^{i}(a b)^{l} a^{k} \star \underline{b^{m} a^{p}}=\left\{\begin{array}{ll}
\frac{b^{i-k+m} a^{p}}{b^{i} a^{p}}, & \text { if } k<m \\
\frac{b^{i}(a b)^{l} a^{k-m+p},}{}, & \text { if } k>m
\end{array},\right.
$$

Then for every positive integer u the following statements hold:
a) if $k<m$ then

$$
\left\{b^{i}(a b)^{l} a^{k}\right\} \star U_{u}\left(\underline{b^{m} a^{p}}\right) \subseteq\left\{b^{i-k+m}(a b)^{n} a^{p}\right\} ;
$$

b) if $k=m$ then

$$
\left\{b^{i}(a b)^{l} a^{k}\right\} \star U_{u}\left(\underline{b^{m} a^{p}}\right) \subseteq U_{u}\left(\underline{b^{i} a^{p}}\right) ;
$$

c) if $k>m$ then

$$
\left\{b^{i}(a b)^{l} a^{k}\right\} \star U_{u}\left(\underline{b^{m} a^{p}}\right)=\left\{b^{i}(a b)^{l} a^{k-m+p}\right\} .
$$

This completes the proof of the proposition.
The following example shows that the semigroup \mathcal{C} with the discrete topology may has similar closure in a topological semigroup as the bicyclic semigroup.

Example 3. Let S be the semigroup \mathcal{C} with adjoined zero 0 . We determine the topology τ on the semigroup S in the following way:
(i) All elements of the semigroup \mathcal{C} are isolated points in (S, τ); and
(ii) The family $\mathscr{B}(0)=\left\{U_{n}(0) \mid n=1,2,3, \ldots\right\}$, where

$$
U_{n}(0)=\{0\} \cup\left\{b^{i}(a b)^{k} a^{j} \in \mathcal{C} \mid i, j \geqslant n\right\}
$$

is a base of the topology τ at the zero 0 .
Simple verifications show that (S, τ) is a Hausdorff 0 -dimensional scattered space.
Since all elements of the semigroup \mathcal{C} are isolated points in (S, τ) we conclude that it is sufficient to show that the semigroup operation in (S, τ) is continuous in the following cases:

$$
0 \cdot 0, \quad 0 \cdot b^{m}(a b)^{n} a^{p}, \quad \text { and } \quad b^{m}(a b)^{n} a^{p} \cdot 0
$$

Since the following assertions hold for each positive integer i :
(i) $U_{i}(0) \cdot U_{i}(0) \subseteq U_{i}(0)$;
(ii) $U_{i+m}(0) \cdot\left\{b^{m}(a b)^{n} a^{p}\right\} \subseteq U_{i}(0)$;
(iii) $\left\{b^{m}(a b)^{n} a^{p}\right\} \cdot U_{i+p}(0) \subseteq U_{i}(0)$,
we conclude that (S, τ) is a topological semigroup.
Remark 2. We observe that we can show that for the discrete semigroup \mathcal{C} cases of closure of \mathcal{C} in topological semigroups proposed in [9] for the bicyclic semigroup can be realized in the following way: we identify the element $b^{i} a^{j}$ of the bicyclic semigroup with the subset $\mathcal{C}_{i, j}$ of the semigroup \mathcal{C}.

We don't know the answer to the following question: Does there exist a topological semigroup S which contains \mathcal{C} as a dense subsemigroup such that $S \backslash \mathcal{C} \neq \varnothing$ and \mathcal{C} is an ideal of S ?

The following proposition describes the closure of the semigroup \mathcal{C} in an arbitrary semitopological semigroup.

Proposition 8. Let S be a Hausdorff semitopological semigroup which contains \mathcal{C} as a dense subsemigroup. Then there exists a countable family $\mathscr{U}=\left\{U_{\mathcal{C}_{i, j}} \mid i, j=0,1,2,3, \ldots\right\}$ of open disjunctive subsets of the topological space S such that $\mathcal{C}_{i, j} \subseteq U_{\mathcal{C}_{i, j}}$ for all nonnegative integers i and j.

Proof. When $S=\mathcal{C}$ the statement of the proposition follows from Theorem 1. Hence we can assume that $S \neq \mathcal{C}$.

First, we observe that formulae (5) and (6) imply that for left and right translations $\lambda_{a b}: S \rightarrow S: x \mapsto a b \cdot x$ and $\rho_{a b}: S \rightarrow S: x \mapsto x \cdot a b$ of the semigroup S their sets of fixed points $\operatorname{Fix}\left(\lambda_{a b}\right)$ and $\operatorname{Fix}\left(\rho_{a b}\right)$ are non-empty and moreover

$$
\bigcup\left\{\mathcal{C}_{i, j} \mid i=0,1,2,3, \ldots, j=1,2,3, \ldots\right\} \subseteq \operatorname{Fix}\left(\rho_{a b}\right)
$$

and

$$
\bigcup\left\{\mathcal{C}_{i, j} \mid i=1,2,3, \ldots, j=0,1,2,3, \ldots\right\} \subseteq \operatorname{Fix}\left(\lambda_{a b}\right)
$$

Also, formulae (2) and (3) imply that for every positive integer n the left and right translations $\lambda_{b^{n} a^{n}}: S \rightarrow S: x \mapsto b^{n} a^{n} \cdot x$ and $\rho_{b^{n} a^{n}}: S \rightarrow S: x \mapsto x \cdot b^{n} a^{n}$ of the semigroup S have non-empty sets of fixed points $\operatorname{Fix}\left(\lambda_{b^{n} a^{n}}\right)$ and $\operatorname{Fix}\left(\rho_{b^{n} a^{n}}\right)$, and moreover

$$
\bigcup\left\{\mathcal{C}_{i, j} \mid i=0,1,2,3, \ldots, j=n+1, n+2, n+3, \ldots\right\} \subseteq \operatorname{Fix}\left(\rho_{b^{n} a^{n}}\right) ;
$$

and

$$
\bigcup\left\{\mathcal{C}_{i, j} \mid i=n+1, n+2, n+3, \ldots, j=0,1,2,3, \ldots\right\} \subseteq \operatorname{Fix}\left(\lambda_{b^{n} a^{n}}\right)
$$

Then the Hausdorffness of S, separate continuity of the semigroup operation on S and Exercise 1.5.C of [10] imply that $\operatorname{Fix}\left(\lambda_{a b}\right), \operatorname{Fix}\left(\rho_{a b}\right), \operatorname{Fix}\left(\lambda_{b^{n} a^{n}}\right)$ and $\operatorname{Fix}\left(\rho_{b^{n} a^{n}}\right)$ are closed non-empty subset of S, for every positive integer n, and hence are retracts of S.

Now, since $\mathcal{C}_{0,0} \subseteq S \backslash\left(\operatorname{Fix}\left(\lambda_{a b}\right) \cup \operatorname{Fix}\left(\rho_{a b}\right)\right)$ we conclude that there exists an open subset $U_{\mathcal{C}_{0,0}}=S \backslash\left(\operatorname{Fix}\left(\lambda_{a b}\right) \cup \operatorname{Fix}\left(\rho_{a b}\right)\right)$ which contains the set $\mathcal{C}_{0,0}$ and $\mathcal{C}_{i, j} \cap U_{\mathcal{C}_{0,0}}=\varnothing$ for all nonnegative integers i, j such that $i+j>0$.

Since the semigroup operation in S is separately continuous we conclude that the map $\lambda_{a}: S \rightarrow S: x \mapsto a \cdot x$ is continuous, and hence

$$
U_{\mathcal{C}_{1,0}}=\lambda_{a}^{-1}\left(U_{\mathcal{C}_{0,0}}\right) \backslash\left(\operatorname{Fix}\left(\rho_{a b}\right) \cup \operatorname{Fix}\left(\lambda_{b a}\right)\right)
$$

is an open subset of S. It is obvious that $\mathcal{C}_{1,0} \subseteq U_{\mathcal{C}_{1,0}}$. We claim that $U_{\mathcal{C}_{1,0}} \cap U_{\mathcal{C}_{0,0}}=\varnothing$. Suppose to the contrary that there exists $x \in S$ such that $x \in U_{\mathcal{C}_{1,0}} \cap U_{\mathcal{C}_{0,0}}$. Since $\operatorname{Fix}\left(\lambda_{b a}\right)$ and $\operatorname{Fix}\left(\rho_{b a}\right)$ are closed subsets of S we conclude that there exists $(a b)^{i} \in U_{\mathcal{C}_{1,0}} \cap U_{\mathcal{C}_{0,0}}$. Then we have that

$$
\lambda_{a}\left((a b)^{i}\right)=a \cdot(a b)^{i}=a \notin U_{\mathcal{C}_{0,0}},
$$

a contradiction. The obtained contradiction implies that $U_{\mathcal{C}_{1,0}} \cap U_{\mathcal{C}_{0,0}}=\varnothing$.
Also, the continuity of the right shift $\rho_{b}: S \rightarrow S: x \mapsto x \cdot b$ implies that

$$
U_{\mathcal{C}_{0,1}}=\rho_{b}^{-1}\left(U_{\mathcal{C}_{0,0}}\right) \backslash\left(\operatorname{Fix}\left(\lambda_{a b}\right) \cup \operatorname{Fix}\left(\rho_{b a}\right)\right)
$$

is an open neighbourhood of the set $\mathcal{C}_{0,1}$ in S. Similar arguments as in the previous case imply that $U_{\mathcal{C}_{0,1}} \cap U_{\mathcal{C}_{0,0}}=\varnothing$.

Suppose that there exists $x \in S$ such that $x \in U_{\mathcal{C}_{1,0}} \cap U_{\mathcal{C}_{0,1}}$. If $x \in \mathcal{C}$ then $x=b(a b)^{p}$ for some nonnegative integer p. Then we have that

$$
\rho_{b}(x)=x \cdot b=b(a b)^{p} \cdot b=b^{2} \notin U_{\mathcal{C}_{0,0}} .
$$

If $x \in U_{\mathcal{C}_{1,0}} \backslash \mathcal{C}$ then every open neighbourhood $V(x)$ of the point x in the topological space S contains infinitely many points of the form $b(a b)^{p} \in \mathcal{C}$. Then we have that $\rho_{b}(V(x)) \ni b^{2}$. The obtained contradiction implies that $U_{\mathcal{C}_{1,0}} \cap U_{\mathcal{C}_{0,1}}=\varnothing$.

We put

$$
U_{\mathcal{C}_{1,1}}=\left(\rho_{b}^{-1}\left(U_{\mathcal{C}_{1,0}}\right) \cap \lambda_{a}^{-1}\left(U_{\mathcal{C}_{0,1}}\right)\right) \backslash\left(\operatorname{Fix}\left(\lambda_{b a}\right) \cup \operatorname{Fix}\left(\rho_{b a}\right)\right) .
$$

Then $U_{\mathcal{C}_{1,1}}$ is an open subset of the topological space S such that $\mathcal{C}_{1,1} \subseteq U_{\mathcal{C}_{1,1}}$. Similar arguments as in the previous cases imply that

$$
U_{\mathcal{C}_{1,1}} \cap U_{\mathcal{C}_{0,1}}=U_{\mathcal{C}_{1,0}} \cap U_{\mathcal{C}_{1,1}}=U_{\mathcal{C}_{1,1}} \cap U_{\mathcal{C}_{0,0}}=\varnothing
$$

Next, we use induction for constructing the family \mathscr{U}. Suppose that for some positive integer $n \geqslant 1$ we have already constructed the family

$$
\mathscr{U}_{n}=\left\{U_{\mathcal{C}_{i, j}}^{\prime} \mid i, j=0,1, \ldots, n\right\}
$$

of open disjunctive subsets of the topological space S with the property $\mathcal{C}_{i, j} \subseteq U_{\mathcal{C}_{i, j}}$, for all $i, j=0,1, \ldots, n$. We shall construct the family

$$
\mathscr{U}_{n+1}=\left\{U_{\mathcal{C}_{i, j}} \mid i, j=0,1, \ldots, n, n+1\right\}
$$

in the following way. For all $i, j \leqslant n$ we put $U_{\mathcal{C}_{i, j}}=U_{\mathcal{C}_{i, j}}^{\prime} \in \mathscr{U}_{n}$ and

```
\(U_{\mathcal{C}_{0, n+1}}=\rho_{b}^{-1}\left(U_{\mathcal{C}_{0, n}}\right) \backslash\left(\operatorname{Fix}\left(\lambda_{a b}\right) \cup \operatorname{Fix}\left(\rho_{b^{n+1} a^{n+1}}\right)\right) ;\)
\(U_{\mathcal{C}_{1, n+1}}=\rho_{b}^{-1}\left(U_{\mathcal{C}_{1, n}}\right) \backslash\left(\operatorname{Fix}\left(\lambda_{b a}\right) \cup \operatorname{Fix}\left(\rho_{b^{n+1} a^{n+1}}\right)\right) ;\)
\(U_{\mathcal{C}_{n, n+1}}=\rho_{b}^{-1}\left(U_{\mathcal{C}_{n-1, n}}\right) \backslash\left(\operatorname{Fix}\left(\lambda_{b^{n} a^{n}}\right) \cup \operatorname{Fix}\left(\rho_{b^{n+1} a^{n+1}}\right)\right) ;\)
\(U_{\mathcal{C}_{n+1,0}}=\lambda_{a}^{-1}\left(U_{\mathcal{C}_{n, 0}}\right) \backslash\left(\operatorname{Fix}\left(\rho_{a b}\right) \cup \operatorname{Fix}\left(\lambda_{b^{n+1} a^{n+1}}\right)\right) ;\)
\(U_{\mathcal{C}_{n+1,1}}=\lambda_{a}^{-1}\left(U_{\mathcal{C}_{n, 1}}\right) \backslash\left(\operatorname{Fix}\left(\rho_{b a}\right) \cup \operatorname{Fix}\left(\lambda_{b^{n+1} a^{n+1}}\right)\right) ;\)
\(U_{\mathcal{C}_{n+1, n}}=\lambda_{a}^{-1}\left(U_{\mathcal{C}_{n, n}}\right) \backslash\left(\operatorname{Fix}\left(\rho_{b^{n} a^{n}}\right) \cup \operatorname{Fix}\left(\lambda_{b^{n+1} a^{n+1}}\right)\right) ;\)
\(U_{\mathcal{C}_{n+1, n+1}}=\left(\rho_{b}^{-1}\left(U_{\mathcal{C}_{n+1, n}}\right) \cap \lambda_{a}^{-1}\left(U_{\mathcal{C}_{n, n+1}}\right)\right) \backslash\left(\operatorname{Fix}\left(\rho_{b^{n+1} a^{n+1}}\right) \cup \operatorname{Fix}\left(\lambda_{b^{n+1} a^{n+1}}\right)\right)\).
```

Similar arguments as in previous case imply that \mathscr{U}_{n+1} is a family of open disjunctive subsets of the topological space S with the property $\mathcal{C}_{i, j} \subseteq U_{\mathcal{C}_{i, j}}$, for all $i, j=0,1, \ldots, n+$ 1.

Next, we put $\mathscr{U}=\bigcup_{n=0}^{\infty} \mathscr{U}_{n}$. It is easy to see that the family \mathscr{U} is as required. This completes the proof of the proposition.

It well known that if a topological semigroup S is a continuous image of a topological semigroup T such that T is embeddable into a compact topological semigroup, then the semigroup S is not necessarily embeddable into a compact topological semigroup. For example, the bicyclic semigroup $\mathcal{B}(a, b)$ does not embed into any compact topological semigroup, but $\mathcal{B}(a, b)$ admits only discrete semigroup topology and $\mathcal{B}(a, b)$ is a continuous image of the free semigroup F_{2} of the rank 2 (i.e., generated by two elements) with the discrete topology. Moreover, the semigroup F_{2} with adjoined zero 0 admits a compact Hausdorff semigroup topology τ_{c} : all elements of F_{2} are isolated points and the family $\mathscr{B}_{0}=\left\{U_{n} \mid n=1,2,3, \ldots\right\}$, where the set U_{n} consists of zero 0 and all words of length $\geqslant n$. Therefore it is natural to ask the following: Does there exist a Hausdorff compact topological semigroup S which contains the semigroup \mathcal{C} ? The following theorem gives a negative answer to this question.

Theorem 3. There does not exist a Hausdorff topological semigroup S with a countably compact square $S \times S$ such that S contains \mathcal{C} as a subsemigroup.

Proof. Suppose to the contrary that there exists a Hausdorff topological semigroup S with a countably compact square $S \times S$ which contains \mathcal{C} as a subsemigroup. Then since the closure of a subsemigroup \mathcal{C} in a topological semigroup S is a subsemigroup of S (see [7, Vol. 1, p. 9]) we conclude that Theorem 3.10.4 from [10] implies that without loss of generality we can assume that \mathcal{C} is a dense subsemigroup of the topological semigroup S. We consider the sequence $\left\{\left(a^{n}, b^{n}\right)\right\}_{n=1}^{\infty}$ in $\mathcal{C} \times \mathcal{C} \subseteq S \times S$. Since $S \times S$ is countably compact we conclude that this sequence has an accumulation point $(x ; y) \in S \times S$. Since $a^{n} b^{n}=a b$, the continuity of the semigroup operation in S implies that $x y=a b$. By Proposition 8 there exists an open neighbourhood $U(a b)$ of the point $a b$ in S such that $U(a b) \cap \mathcal{C} \subseteq \mathcal{C}_{0,0}$. Then the continuity of the semigroup operation in S implies that there exist open neighbourhoods $U(x)$ and $U(y)$ of the points x and y in S such that $U(x) \cdot U(y) \subseteq U(a b)$. Next, by the countable compactness of $S \times S$ we conclude that S is countably compact, too, as a continuous image of $S \times S$ under the projection, and this implies that x and y are accumulation points of the sequences $\left\{a^{n}\right\}_{n=1}^{\infty}$ and $\left\{b^{n}\right\}_{n=1}^{\infty}$ in S, respectively. Then there exist positive integers i and j such that $a^{i} \in U(x), b^{j} \in U(y)$ and $j>i$. Therefore we get that

$$
a^{i} \cdot b^{j}=b^{j-i} \in(U(x) \cdot U(y)) \cap \mathcal{C} \subseteq(U(a b)) \cap \mathcal{C} \subseteq \mathcal{C}_{0,0}
$$

which is a contradiction. The obtained contradiction implies the statement of the theorem.

Theorem 3 implies the following corollaries:
Corollary 4. There does not exist a Hausdorff compact topological semigroup which contains \mathcal{C} as a subsemigroup.

Corollary 5. There does not exist a Hausdorff sequentially compact topological semigroup which contains \mathcal{C} as a subsemigroup.

We recall that the Stone-Čech compactification of a Tychonoff space X is a compact Hausdorff space βX containing X as a dense subspace so that each continuous map $f: X \rightarrow Y$ to a compact Hausdorff space Y extends to a continuous map $\bar{f}: \beta X \rightarrow Y$ [10].

Theorem 4. There does not exist a Tychonoff topological semigroup S with the pseudocompact square $S \times S$ which contains \mathcal{C} as subsemigroup.

Proof. By Theorem 1.3 from [3], for any topological semigroup S with the pseudocompact square $S \times S$ the semigroup operation $\mu: S \times S \rightarrow S$ extends to a continuous semigroup operation $\beta \mu: \beta S \times \beta S \rightarrow \beta S$, so S is a subsemigroup of the compact topological semigroup βS. Therefore if S contains the semigroup \mathcal{C} then βS also contains the semigroup \mathcal{C} which contradicts Corollary 4.

Theorem 5. The discrete semigroup \mathcal{C} does not embed into a Hausdorff pseudocompact semitopological semigroup S such that \mathcal{C} is a dense subsemigroup of S and $S \backslash \mathcal{C}$ is a left (right, two-sided) ideal of S.

Proof. Suppose to the contrary that there exists a Hausdorff pseudocompact semitopological semigroup S which contains \mathcal{C} as a dense discrete subsemigroup and $I=S \backslash \mathcal{C}$ is a left ideal of S. Then the set of solutions \mathscr{S} of the equations $x \cdot b a=b a$ in S is a subset of \mathcal{C} and hence by the formula

$$
b^{k}(a b)^{l} a^{m} \cdot b a= \begin{cases}b^{k+1} a, & \text { if } m=0 \\ b^{k}(a b)^{l+1} a, & \text { if } m=1 \\ b^{k}(a b)^{l} a^{m}, & \text { if } m>1\end{cases}
$$

we get that $\mathscr{S}=\mathcal{C}_{0,0}$. Since $b a$ is an isolated point in S and I is a left ideal of S we conclude that the separate continuity of the semigroup operation of S implies that the space S contains a discrete open-and-closed subspace $\mathcal{C}_{0,0}$. This contradicts the pseudocompactness of S. The obtained contradiction implies the statement of the theorem. In the case of a right or a two-sided ideal the proof is similar.

Theorem 6. The semigroup \mathcal{C} does not embed into a Hausdorff countably compact semitopological semigroup S such that \mathcal{C} is a dense subsemigroup of S and $S \backslash \mathcal{C}$ is a left (right, two-sided) ideal of S.

Proof. Suppose to the contrary that there exists a Hausdorff countably compact semitopological semigroup S which contains \mathcal{C} as a dense subsemigroup and $I=S \backslash \mathcal{C}$ is a left ideal of S. Then the arguments presented in the proof of Theorem 5 imply that $\mathcal{C}_{0,0}$ is a closed subset of S, and hence by Theorem 3.10 .4 of [10] is countably compact. Since $\mathcal{C}_{0,0}$ is countable we have that the space $\mathcal{C}_{0,0}$ is compact. Since every compact space is Baire, Lemma 1 implies that $\mathcal{C}_{0,0}$ is a discrete subspace of S. Then similar arguments as in the proof of Theorem 2 imply that \mathcal{C}, with the topology induced from S, is a discrete semigroup, which contradicts Theorem 5. The obtained contradiction implies the statement of the theorem.

Acknowledgements

This research was supported by the Slovenian Research Agency grants P1-0292-0101, J1-4144-0101 and BI-UA/11-12/001. The authors acknowledge the referee for his/her comments and suggestions.

References

1. O. Andersen, Ein Bericht über die Struktur abstrakter Halbgruppen, PhD Thesis, Hamburg, 1952.
2. L. W. Anderson, R. P. Hunter, and R. J. Koch, Some results on stability in semigroups, Trans. Amer. Math. Soc. 117 (1965), 521-529. DOI: 10.1090/S0002-9947-1965-0171869-7
3. T. Banakh and S. Dimitrova, Openly factorizable spaces and compact extensions of topological semigroups, Commentat. Math. Univ. Carol. 51 (2010), no. 1, 113-131.
4. T. Banakh, S. Dimitrova, and O. Gutik, The Rees-Suschkiewitsch Theorem for simple topological semigroups, Mat. Stud. 31 (2009), no. 2, 211-218.
5. T. Banakh, S. Dimitrova, and O. Gutik, Embedding the bicyclic semigroup into countably compact topological semigroups, Topology Appl. 157 (2010), no. 18, 2803-2814. DOI: 10.1016/j.topol.2010.08.020
6. M. O. Bertman and T. T. West, Conditionally compact bicyclic semitopological semigroups, Proc. R. Ir. Acad., Sect. A 76 (1976), no. 21-23, 219-226.
7. J. H. Carruth, J. A. Hildebrant, and R. J. Koch, The theory of topological semigroups, Vol. I, Marcel Dekker, Inc., New York and Basel, 1983; Vol. II, Marcel Dekker, Inc., New York and Basel, 1986.
8. A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Vol. I., Amer. Math. Soc. Surveys 7, Providence, R.I., 1961; Vol. II., Amer. Math. Soc. Surveys 7, Providence, R.I., 1967.
9. C. Eberhart and J. Selden, On the closure of the bicyclic semigroup, Trans. Amer. Math. Soc. 144 (1969), 115-126. DOI: 10.1090/S0002-9947-1969-0252547-6
10. R. Engelking, General topology, 2nd ed., Heldermann, Berlin, 1989.
11. O. Gutik and D. Repovš, On countably compact 0 -simple topological inverse semigroups, Semigroup Forum 75 (2007), no. 2, 464-469. DOI: 10.1007/s00233-007-0706-x
12. R. C. Haworth and R. A. McCoy, Baire spaces, Dissertationes Math., Warszawa, PWN, 1977. Vol. 141.
13. J. A. Hildebrant and R. J. Koch, Swelling actions of Γ-compact semigroups, Semigroup Forum 33 (1986), no. 1, 65-85. DOI: 10.1007/BF02573183
14. P. R. Jones, Analogues of the bicyclic semigroup in simple semigroups without idempotents, Proc. Royal Soc. Edinburgh 106A (1987), no. 1-2, 11-24. DOI: 10.1017/S0308210500018163
15. R. J. Koch and A. D. Wallace, Stability in semigroups, Duke Math. J. 24 (1957), no. 2, 193-196. DOI: 10.1215/S0012-7094-57-02425-0
16. L. Megyesi and G. Pollák, On simple principal ideal semigroups, Studia Sci. Math. Hungar. 16 (1981), 437-448.
17. S. A. Rankin and C. M. Reis, Semigroups with quasi-zeroes, Canad. J. Math. 32 (1980), no. 3, 511-530. DOI: $10.4153 /$ CJM-1980-040-x
18. L. Rédei, Halbgruppen und Ringe mit Linkseinheiten ohne Linkseinselemente, Acta Math. Acad. Sci. Hungar. 11 (1960), 217-222. DOI: 10.1007/BF02020940
19. W. Ruppert, Compact semitopological semigroups: an intrinsic theory, Lecture Notes in Mathematics, Vol. 1079, Springer, Berlin, 1984. DOI: 10.1007/BFb0073675

Статтл: надійшла до редколегіі 01.10.2022 доопрацъована 12.12.2022 прийнята до друку 22.12.2022

ПРО ОДНЕ УЗАГАЛЬНЕННЯ БІЦИКЛІЧНОЇ НАПІВГРУПИ: ТОПОЛОГІЧНА ВІРСІЯ

Матія ЦЕНЦЕЛЬ ${ }^{1}$, Олег ГУТІК ${ }^{2}$, Душан РЕПОВШ ${ }^{3}$
${ }^{1}$ Faculty of Education, University of Ljubljana,
Kardeljeva Pl., 16, Ljubljana, 1000, SLOVENIA
e-mail: matija.cencelj@pef.uni-lj.si
${ }^{2}$ Лъвівський начіоналъний університет імені Івана Франка, вул. Університетська 1, 79000, м. Лъвів e-mail: oleg.gutik@lnu.edu.ua
${ }^{3}$ Faculty of Education, and Faculty of Mathematics and Physics, University of Ljubljana, Kardeljeva Pl., 16, Ljubljana, 1000, SLOVENIA
e-mail: dusan.repovs@guest.arnes.si

Доводимо, що кожна гаусдорфова берівська топологія τ на напівгрупі $\mathcal{C}=\left\langle a, b \mid a^{2} b=a, a b^{2}=b\right\rangle$ така, що $(\mathcal{C}, \tau)-$ напівтопологічна напівгрупа є дискретною та будуємо недискретну гаусдорфову напівгрупову топологію на \mathcal{C}. Досліджено замикання напівгрупи \mathcal{C} у напівтопологічній напівгрупі та доведено, що \mathcal{C} не занурюється в топологічну напівгрупу зі зліченно компактним квадратом.

Ключові слова: топологічна напівгрупа, напівтопологічна напівгрупа, біциклічна напівгрупа, замикання, занурення, берівський простір.

[^0]: 2020 Mathematics Subject Classification: 22A15, 20M20, 20M05, 54C25, 54E52.

