Characterizing compact Clifford semigroups that embed into convolution and functor-semigroups

Taras Banakh • Matija Cencelj • Olena Hryniv • Dušan Repovš

Received: 7 August 2010 / Accepted: 13 June 2011 / Published online: 24 June 2011
© Springer Science+Business Media, LLC 2011

Abstract

We study algebraic and topological properties of the convolution semigroup of probability measures on a topological groups and show that a compact Clifford topological semigroup S embeds into the convolution semigroup $P(G)$ over some topological group G if and only if S embeds into the semigroup $\exp (G)$ of compact subsets of G if and only if S is an inverse semigroup and has zerodimensional maximal semilattice. We also show that such a Clifford semigroup S embeds into the functor-semigroup $F(G)$ over a suitable compact topological group G for each weakly normal monadic functor F in the category of compacta such that $F(G)$ contains a G-invariant element (which is an analogue of the Haar measure on G).

[^0]Keywords Convolution semigroup • Global semigroup • Hypersemigroup • Clifford semigroup • Regular semigroup • Topological group • Radon measure • Weakly normal monadic functor

1 Introduction

According to [7] (and [19]) each (commutative) semigroup S embeds into the global semigroup $\Gamma(G)$ over a suitable (abelian) group G. The global semigroup $\Gamma(G)$ over G is the set of all non-empty subsets of G endowed with the semigroup operation $(A, B) \mapsto A B=\{a b: a \in A, b \in B\}$. If G is a topological group, then the global semigroup $\Gamma(G)$ contains a subsemigroup $\exp (G)$ consisting of all non-empty compact subsets of G and carrying a natural topology which makes it a topological semigroup. This is the Vietoris topology generated by the sub-base consisting of the sets

$$
U^{+}=\{K \in \exp (G): K \subset U\} \quad \text { and } \quad U^{-}=\{K \in \exp (G): K \cap U \neq \emptyset\}
$$

where U runs over open subsets of G. Endowed with the Vietoris topology the semigroup $\exp (G)$ will be referred to as the hypersemigroup over G (because its underlying topological space is the hyperspace $\exp (G)$ of G, see [17]). The problem of detecting topological semigroups embeddable into the hypersemigroups over topological groups has been considered in the literature, see [7].

This problem was resolved in [5] for the class of Clifford compact topological semigroups: such a semigroup S embeds into the hypersemigroup over a topological group if and only if the set E of idempotents of S is a zero-dimensional commutative subsemigroup of S. This characterization implies the result of [8] that the closed interval $[0,1]$ with the operation of the minimum does not embed into the hypersemigroup over a topological group.

We recall that a semigroup S is Clifford if S is the union of its subgroups. We say that a topological semigroup S_{1} embeds into another topological semigroup S_{2} if there is a semigroup homomorphism $h: S_{1} \rightarrow S_{2}$ which is a topological embedding.

In this paper we shall apply the already mentioned result of [5] and shall characterize Clifford compact semigroups embeddable into the convolution semigroups $P(G)$ over topological groups G. The convolution semigroup $P(G)$ consists of probability Radon measures on G and carries the $*$-weak topology generated by the sub-base $\{\mu \in P(G): \mu(U)>a\}$ where $a \in \mathbb{R}$ and U runs over open subsets of G. A measure μ defined on the σ-algebra of Borel subsets of G is called Radon if for every $\varepsilon>0$ there is a compact subset $K \subset G$ with $\mu(K)>1-\varepsilon$. The semigroup operation on $P(G)$ is given by the convolution measures. We recall that the convolution $\mu * \nu$ of two measures μ, ν is the measure assigning to each bounded continuous function $f: G \rightarrow \mathbb{R}$ the value of the integral $\int_{\mu * \nu} f=\int_{\nu} \int_{\mu} f(x y) d y d x$. For more detail information on the convolution semigroups, see [12, 14].

The following theorem is the principal result of this paper.
Theorem 1.1 For any Clifford compact topological semigroup S the following assertions are equivalent:
(1) S embeds into the hypersemigroup $\exp (G)$ over a topological group G;
(2) S embeds into the convolution semigroup $P(G)$ over a topological group G;
(3) The set E of idempotents of S is a zero-dimensional commutative subsemigroup of S.

This theorem will be applied to a characterization of Clifford compact topological semigroups embeddable into the hyperpsemigroups or convolution semigroups over topological groups G belonging to certain varieties of topological groups. A class \mathcal{G} of topological groups is called a variety if it is closed under arbitrary Tychonov products, and taking closed subgroups, and quotient groups by closed normal subgroups.

Theorem 1.2 Let \mathcal{G} be a non-trivial variety of topological groups. For a Clifford compact topological semigroup S the following assertions are equivalent:
(1) S embeds into the hypersemigroup $\exp (G)$ over a topological group $G \in \mathcal{G}$;
(2) S embeds into the convolution semigroup $P(G)$ over a topological group $G \in \mathcal{G}$;
(3) The set E of idempotents is a zero-dimensional commutative subsemigroup of S and all closed subgroups of S belong to the class \mathcal{G}.

In fact, the equivalence of the first and last statements in Theorems 1.1 and 1.2 was proved in Theorems 3 and 4 of [5] so it remains to prove the equivalence of the assertions (1) and (2). This will be done in Proposition 1.3.

We recall that a semigroup S is called regular if each element $x \in S$ is regular in the sense that $x y x=x$ for some $y \in S$. An element $x \in S$ is called (uniquely) invertible if there is a (unique) element $x^{-1} \in S$ (called the inverse of x) such that $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$. A semigroup S is called inverse if each element of S is uniquely invertible. By [9, 1.17], [15, II.1.2] a semigroup S is inverse if and only if it is regular and the set E of idempotents of S is a commutative subsemigroup of S. An inverse semigroup S is Clifford if and only if $x x^{-1}=x^{-1} x$ for all $x \in S$. In this case S decomposes into the union $S=\bigcup_{e \in E} H_{e}$ of the maximal subgroups $H_{e}=\left\{x \in S: x x^{-1}=e=x^{-1} x\right\}$ of S parametrized by idempotents e of S.

We recall that a topological semigroup S is called a topological inverse semigroup if S is an inverse semigroup and the inversion map $(\cdot)^{-1}: S \rightarrow S,(\cdot)^{-1}: x \mapsto x^{-1}$ is continuous. The set E of idempotents of a topological inverse semigroup S is a closed commutative subsemigroup of S called the idempotent semilattice of S. We say that two idempotents $e, f \in E$ are incomparable if their product ef differs from e and f. Two elements x, y of an inverse semigroup S are called conjugate if $x=z y z^{-1}$ and $y=z^{-1} x z$ for some element $z \in S$. For any idempotent $e \in E$ let $\uparrow e=\{f \in E: e f=$ $e\}$ denote the principal filter of e. A topological space X is called totally disconnected if for any distinct points $x, y \in X$ there is a closed-and-open subset $U \subset X$ containing x but not y.

The following proposition shows that the semigroups $\exp (G)$ and $P(G)$ over a topological group G have the same regular subsemigroups (which are necessarily topological inverse semigroups). Moreover, regular subsemigroups of $\exp (G)$ or $P(G)$ have many specific topological and algebraic features.

Proposition 1.3 Let G be a topological group. A topological regular semigroup S embeds into $P(G)$ if and only if S embeds into $\exp (G)$. If the latter happens, then
(1) S is a topological inverse semigroup;
(2) The idempotent semilattice E of S has totally disconnected principal filters $\uparrow e$, $e \in E$
(3) An element $x \in S$ is an idempotent if and only if $x^{2} x^{-1}$ is an idempotent;
(4) Any distinct conjugated idempotents of S are incomparable.

This proposition allows one to construct many examples of topological regular semigroups non-embeddable into the hypersemigroups or convolution semigroups over a topological groups. The first two assertions of this proposition imply the result of [8] to the effect that non-trivial semigroups of left (or right) zeros as well as connected topological semilattices do not embed into the hypersemigroup $\exp (G)$ over a topological group G. The last two assertions imply that the semigroups $\exp (G)$ and $P(G)$ do not contain Brandt semigroups and bicyclic semigroups. By a Brandt semigroup we understand a semigroup of the form $B(H, I)=I \times H \times I \cup\{0\}$ where H is a group, I is a non-empty set, and the product $(\alpha, h, \beta) *\left(\alpha^{\prime}, h^{\prime}, \beta^{\prime}\right)$ of two non-zero elements of $B(H, I)$ is equal to ($\alpha, h h^{\prime}, \beta^{\prime}$) if $\beta=\alpha^{\prime}$ and 0 otherwise. A bicyclic semigroup is a semigroup generated by two elements p, q with the relation $q p=1$. Brandt semigroups and bicyclic semigroups play an important role in the structure theory of inverse semigroups, see [15].

In fact, the semigroups $\exp (G)$ and $P(G)$ are special cases of the so-called functor-semigroups introduced by Teleiko and Zarichnyi [17]. They observed that any weakly normal monadic functor $F: \mathcal{C o m p} \rightarrow \mathcal{C}$ omp in the category of compact Hausdorff spaces lifts to the category of compact topological semigroups, which means that for any compact topological semigroup X the space $F X$ possesses a natural semigroup structure. The semigroup operation $*$ on $F X$ can be defined by the following formula

$$
a * b=F p(a \otimes b) \quad \text { for } a, b \in F X
$$

where $p: X \times X \rightarrow X$ is the semigroup operation of X and $a \otimes b \in F(X \times X)$ is the tensor product of the elements $a, b \in F X$, see [17, §3.4].

Therefore we actually consider in this paper the following general problem:
Problem 1.4 Given a weakly normal monadic functor $F: \mathcal{C}$ omp $\rightarrow \mathcal{C}$ omp, find a characterization of compact (regular, inverse, Clifford) topological semigroups embeddable into the semigroup $F X$ over a compact topological group X. Given a compact topological group X describe invertible elements and idempotents of the semigroup $F X$.

Observe that for the functors exp and P the answer to the first part of this problem is given in Theorem 1.1. Functor-semigroups induced by the functors G of inclusion hyperspaces and λ of superextension have been studied in [2-4, 6, 11].

In fact, Theorem 1.2 also can be partly generalized to some monadic functors F (including the functors \exp , P, G and λ). Given a compact topological group G let us define an element $a \in F(G)$ to be G-invariant if $g * a=a=a * g$ for every $g \in G$. Here we identify G with a subspace of $F(G)$ (which is possible because F, being weakly normal, preserves singletons). A G-invariant element in $F(G)$ exists for the
functors \exp , P, λ, and G. For the functors \exp and P a G-invariant element on $F(G)$ is unique: it is $G \in \exp (G)$ and the Haar measure on G, respectively.

Theorem 1.5 Let $F: \mathcal{C o m p} \rightarrow \mathcal{C}$ omp be a weakly normal monadic functor such that for every compact topological group G the semigroup $F(G)$ contains a G invariant element. Each Clifford compact topological inverse semigroup S with zerodimensional idempotent semilattice E embeds into the functor-semigroup $F(G)$ over the compact topological group $G=\prod_{e \in E} \widetilde{H}_{e}$ where each \widetilde{H}_{e} is a non-trivial compact topological group containing the maximal subgroup $H_{e} \subset S$ corresponding to an idempotent $e \in E$ of S.

Proof By Theorem 3 of [5] (see also [13]), each Clifford compact topological inverse semigroup S with zero-dimensional idempotent semilattice E embeds into the product $\prod_{e \in E} H_{e}^{0}$, where H_{e}^{0} stands for the extension of the maximal subgroup H_{e} by an isolated point $0 \notin H_{e}$ such that $x 0=0 x=0$ for all $x \in H_{e}$. For every idempotent $e \in E$, fix a non-trivial compact topological group \widetilde{H}_{e} containing H_{e}. By our hypothesis, the space $F\left(\widetilde{H}_{e}\right)$ contains an \widetilde{H}_{e}-invariant element $z_{e} \in F\left(\widetilde{H}_{e}\right)$. Then H_{e}^{0} can be identified with the closed subsemigroup $H_{e} \cup\left\{z_{e}\right\}$ of $F\left(\widetilde{H}_{e}\right)$ and the product $\prod_{e \in E} H_{e}^{0}$ can be identified with a subsemigroup of the product $\prod_{e \in E} F\left(\widetilde{H}_{e}\right)$. By [17, p. 126], the latter product can be identified with a subspace (actually a subsemigroup) of $F\left(\prod_{e \in E} \widetilde{H}_{e}\right)=F(G)$, where $G=\prod_{e \in E} \widetilde{H}_{e}$. In this way, we obtain an embedding of S into $F(G)$.

As we have said, the functors λ of superextension and G of inclusion hyperspaces satisfy the hypothesis of Theorem 1.5. However, Proposition 1.3 is specific for the functor P and cannot be generalized to the functors λ or G.

Indeed, for the 4-element cyclic group C_{4} the semigroup $\lambda\left(C_{4}\right)$ is isomorphic to the commutative inverse semigroup $C_{4} \oplus C_{2}^{1}$, where $C_{2}^{1}=C_{2} \cup\{1\}$ is the result of attaching an external unit to the 2 -element cyclic group C_{2}, (see [6]). On the other hand, the 12 -element semigroup $C_{4} \oplus C_{2}^{1}$ cannot be embedded into $\exp \left(C_{4}\right)$ because the set of regular elements of $\exp \left(C_{4}\right)$ consists of 7 elements (which are shifted subgroups of C_{4}). Also the commutative inverse semigroup $\lambda\left(C_{4}\right) \cong C_{4} \oplus C_{2}^{1}$ can be embedded into $G\left(C_{4}\right)$ (because λ is a submonad of G) but cannot embed into $\exp \left(C_{4}\right)$.

2 Idempotents and invertible elements of the convolution semigroups

In this section we prove Proposition 1.3. For each topological group G the semigroups $P(G)$ and $\exp (G)$ are related via the map of the support. We recall that the support of a Radon measure $\mu \in P(G)$ is the closed subset

$$
S_{\mu}=\{x \in G: \mu(O x)>0 \text { for each neighborhood } O x \text { of } x\}
$$

of G. Let 2^{G} denote the semigroup of all non-empty closed subsets of G endowed with the semigroup operation $A * B=\overline{A B}$. By

$$
\text { supp : } P(G) \rightarrow 2^{G}, \quad \text { supp : } \mu \mapsto S_{\mu}
$$

we denote the support map.

The following proposition is well-known, see (the proof of) Theorem 1.2.1 in [12].
Proposition 2.1 Let G be a topological group. For any measures $\mu, \nu \in P(G)$ the following holds: $S_{\mu * \nu}=\overline{S_{\mu} \cdot S_{\nu}}$. This means that the support map supp : $P(G) \rightarrow 2^{G}$ is a semigroup homomorphism.

We shall show that for any regular element μ of the convolution semigroup $P(G)$ the support S_{μ} is compact and thus belongs to the subsemigroup $\exp (G)$ of 2^{G}. First, we characterize idempotent measures on a topological group G.

A measure $\mu \in P(G)$ is called an idempotent measure if $\mu * \mu=\mu$. In 1954 Wendel [20] proved that each idempotent measure on a compact topological group coincides with the Haar measure of some compact subgroup. Later, Wendel's result was generalized to locally compact groups by Pym [16] and to all topological groups by Tortrat [18]. By the Haar measure on a compact topological group G we understand the unique G-invariant probability measure on G. It is a classical result that such a measure exists and is unique. Thus we have the following characterization of idempotent measures on topological groups:

Proposition 2.2 A probability Radon measure $\mu \in P(G)$ on a topological group G is an idempotent of the semigroup $P(G)$ if and only if μ is the Haar measure of some compact subgroup of G.

We shall use this proposition to describe regular elements of the convolution semigroups. To this end we apply Proposition 4 of [5] that describes regular elements of the hypersemigroups over topological groups:

Proposition 2.3 (Banakh-Hryniv) For a compact subset $K \in \exp (G)$ of a topological group G the following assertions are equivalent:
(1) K is a regular element of the semigroup $\exp (G)$;
(2) K is uniquely invertible in $\exp (G)$;
(3) $K=H x$ for some compact subgroup H of G and some $x \in G$.

A similar description of regular elements holds for the convolution semigroup:
Proposition 2.4 For a measure $\mu \in P(G)$ on a topological group G the following assertions are equivalent:
(1) μ is a regular element of the semigroup $P(G)$;
(2) μ uniquely invertible in $P(G)$;
(3) $\mu=\lambda * x$ for some idempotent measure $\lambda \in P(G)$ and some element $x \in G$.

Proof Assume that μ is a regular element of $P(G)$ and $\nu \in P(G)$ is a measure such that $\mu * \nu * \mu=\mu$. The measure $\mu * \nu$, being an idempotent of $P(G)$ coincides with the Haar measure λ on some compact subgroup H of G. It follows that $\overline{S_{\mu} \cdot S_{\nu}}=$ $S_{\mu * \nu}=S_{\lambda}=H$ and hence S_{μ} and S_{ν} are compact subsets of the group G. Since supp : $P(G) \rightarrow 2^{G}$ is a semigroup homomorphism, we get $S_{\mu} * S_{\nu} * S_{\mu}=S_{\mu}$, which
means that S_{μ} is a regular element of the semigroup $\exp (G)$ and hence $S_{\mu}=\tilde{H} x$ for some compact subgroup \tilde{H} and some element $x \in G$ according to Proposition 2.3.

We claim that $\tilde{H}=H$. Indeed, $H \tilde{H} x=S_{\lambda} S_{\mu}=S_{\mu * \nu} S_{\mu}=S_{\mu * \nu * \mu}=S_{\mu}=\tilde{H} x$ implies that $H \subset \tilde{H}$. Next, for any point $y \in S_{v}$ we get

$$
\tilde{H} x y \subset \tilde{H} x S_{v}=S_{\mu} S_{v}=S_{\lambda}=H \subset \tilde{H}
$$

which yields $x y \in \tilde{H}$ and finally $H=\tilde{H}$.
Next, we show that $\mu=\lambda * x$, which is equivalent to $\lambda=\mu * x^{-1}$. Observe that $S_{\mu * x^{-1}}=S_{\mu} x^{-1}=H x x^{-1}=H$. Now the equality $\mu * x^{-1}=\lambda$ will follow as soon as we check that the measure $\mu * x^{-1}$ is H-invariant. Take any point $y \in H$ and note that

$$
y * \mu * x^{-1}=y * \mu * \nu * \mu * x^{-1}=y * \lambda * \mu * x^{-1}=\lambda * \mu * x^{-1}=\mu * x^{-1},
$$

which means that the measure $\mu * x^{-1}$ on H is left-invariant. Since H possesses a unique left-invariant probability measure λ, we conclude that $\mu=\lambda * x$.

Finally, we show that μ is uniquely invertible in $P(G)$. It suffices to check that the measure v is equal to $x^{-1} * \lambda$ provided $v=v * \mu * v$. For this just observe that S_{v} being a unique inverse of S_{μ} is equal to $x^{-1} H$. Then $S_{x * \nu}=x S_{\nu}=x x^{-1} H$. Finally, noticing that for every $y \in H$ we get

$$
x * v * y=x * \nu * \mu * v * y=x * \nu * \lambda * y=x * v * \lambda=x * v
$$

which means that $x * v$ is a right invariant measure on H. Since λ is the unique right-invariant measure on H we also get $x * \nu=\lambda$ and hence $\nu=x^{-1} * \lambda$.

Given a semigroup S we denote the set of regular elements of S by $\operatorname{Reg}(S)$.
Proposition 2.5 For any topological group G, the support map

$$
\operatorname{supp}: \operatorname{Reg}(P(G)) \rightarrow \operatorname{Reg}(\exp (G))
$$

is a homeomorphism.
Proof The preceding proposition implies that the map

$$
\operatorname{supp}: \operatorname{Reg}(P(G)) \rightarrow \operatorname{Reg}(\exp (G))
$$

is bijective. In order to check the continuity of this map, we must prove that for any open set $U \subset G$ the preimages

$$
\begin{aligned}
& \operatorname{supp}^{-1}\left(U^{+}\right)=\{\mu \in \operatorname{Reg}(P(G)): \operatorname{supp}(\mu) \subset U\} \text { and } \\
& \operatorname{supp}^{-1}\left(U^{-}\right)=\{\mu \in \operatorname{Reg}(P(G)): \operatorname{supp}(\mu) \cap U \neq \emptyset\}
\end{aligned}
$$

are open in $P(G)$. The openness of $\operatorname{supp}^{-1}\left(U^{-}\right)$follows from the observation that $\operatorname{supp}(\mu) \cap U \neq \emptyset$ if and only if $\mu(U)>0$. To see that $\operatorname{supp}^{-1}\left(U^{+}\right)$is
open, fix any measure $\mu \in \operatorname{Reg}(P(G))$ with $\operatorname{supp}(\mu) \subset U$. By Proposition 2.4, $\operatorname{supp}(\mu)=H x$ for some compact subgroup H of G and some $x \in G$. The compactness of H allows us to find an open neighborhood V of the neutral element of G such that $H V^{2} H V^{-2} H V \subset U x^{-1}$. Now consider the open neighborhood $W=\left\{v \in \operatorname{Reg}(P(G)): v(H V x)>\frac{1}{2}\right\}$ of the measure μ. We claim that $W \subset \operatorname{supp}^{-1}\left(U^{+}\right)$. Indeed, given any measure $v \in W$ we can apply Proposition 2.4 to find an idempotent measure λ and $y \in G$ such that $\nu=\lambda * y$. Then $\frac{1}{2}<\nu(H V x)=\lambda\left(H V x y^{-1}\right)$. We claim that $S_{\lambda} \subset H V V H$. Indeed, given an arbitrary point $z \in S_{\lambda}$ use the S_{λ}-invariance of λ to conclude that $\lambda\left(z H V x y^{-1}\right)=$ $\lambda\left(H V x y^{-1}\right)>1 / 2$, which implies that the intersection $z H V x y^{-1} \cap H V x y^{-1}$ is non-empty which yields $z \in H V x y^{-1}\left(H V x y^{-1}\right)^{-1}=H V V H$. The inequality $\lambda\left(H V x y^{-1}\right)>1 / 2$ implies that $H V x y^{-1}$ intersects S_{λ} and hence the set $H V V H$. Then $y \in H V^{-2} H H V x$ and $S_{v}=S_{\lambda} * y \subset H V^{2} H H V^{-2} H V x \subset U x^{-1} x=U$, which implies that $v \in \operatorname{supp}^{-1}\left(U^{+}\right)$. This completes the proof of the continuity of the map supp : $\operatorname{Reg}(P(G)) \rightarrow \operatorname{Reg}(\exp (G))$.

The proof of the continuity of the inverse map

$$
\operatorname{supp}^{-1}: \operatorname{Reg}(\exp (G)) \rightarrow \operatorname{Reg}(P(G))
$$

is even more involved. Assume that supp ${ }^{-1}$ is discontinuous at some point $K_{0} \in$ $\operatorname{Reg}(\exp (G))$. By Proposition 2.3, K_{0} is a coset of some compact subgroup of G. After a suitable shift, we can assume that K_{0} is a compact subgroup of G and then $\mu_{0}=\operatorname{supp}^{-1}\left(K_{0}\right)$ is the unique Haar measure on K_{0}.

Since supp ${ }^{-1}$ is discontinuous at K_{0}, there is a neighborhood $O\left(\mu_{0}\right) \subset P(G)$ of μ_{0} such that $\operatorname{supp}^{-1}\left(O\left(K_{0}\right)\right) \not \subset O\left(\mu_{0}\right)$ for any neighborhood $O\left(K_{0}\right) \subset \operatorname{Reg}(\exp (G))$ of K_{0} in $\operatorname{Reg}(\exp (G))$.

It is well-known that the topology of G is generated by the left uniform structure, which is generated by bounded left-invariant pseudometrics. Each bounded leftinvariant pseudometric ρ on G induces a pseudometric $\hat{\rho}$ on $P(G)$ defined by

$$
\hat{\rho}\left(\mu_{1}, \mu_{2}\right)=\inf \left\{\mu(\rho): \mu \in P(G \times G) P \operatorname{pr}_{1}(\mu)=\mu_{1}, P \operatorname{pr}_{2}(\mu)=\mu_{2}\right\}
$$

where $P \operatorname{pr}_{i}: P(G \times G) \rightarrow P(G)$ is the map induced by the projection $\mathrm{pr}_{i}: G \times G \rightarrow$ G onto the i th coordinate. By [1, §4] or [10, 3.10], the topology of the space $P(G)$ is generated by the pseudometrics $\hat{\rho}$ where ρ runs over all bounded left-invariant continuous pseudometrics on G.

Consequently, we can find a left-invariant continuous pseudometric ρ on G such that the neighborhood $O\left(\mu_{0}\right)$ contains the ε_{0}-ball $B\left(\mu_{0}, \varepsilon_{0}\right)=\{\mu \in P(G)$: $\left.\hat{\rho}\left(\mu, \mu_{0}\right)<\varepsilon_{0}\right\}$ for some $\varepsilon_{0}>0$. Replacing ρ by a larger left-invariant pseudometric, we can additionally assume that for the pseudometric space $G_{\rho}=(G, \rho)$ the map $\gamma: G_{\rho} \times G_{\rho} \rightarrow G_{\rho}, \gamma:(x, y) \mapsto x y^{-1}$, is continuous at each point $(x, y) \in K_{0} \times K_{0}$ (this follows from the fact that for each continuous left-invariant pseudometric ρ_{1} on G we can find a continuous left-invariant pseudometric ρ_{2} on G such that the map $\gamma: G_{\rho_{2}} \times G_{\rho_{2}} \rightarrow G_{\rho_{1}}$ is continuous at points of the compact subset $\left.K_{0} \times K_{0}\right)$.

The continuity and the left-invariance of the pseudometric ρ implies that the set $G_{0}=\{x \in G: \rho(x, 1)=0\}$ is a closed subgroup of G. Let $G^{\prime}=\left\{x G_{0}: x \in G\right\}$ be the left coset space of G by G_{0} and $q: G \rightarrow G^{\prime}, q: x \mapsto x G_{0}$, be the quotient
projection. The space $G^{\prime}=G / G_{0}$ will be considered as a G-space endowed with the natural left action of the group G. The pseudometric ρ induces a continuous leftinvariant metric ρ^{\prime} on G^{\prime} such that $\rho(x, y)=\rho^{\prime}(q(x), q(y))$ for all $x, y \in G$. So, q : $(G, \rho) \rightarrow\left(G^{\prime}, \rho^{\prime}\right)$ is an isometry. The pseudometrics ρ and ρ^{\prime} induce the Hausdorff pseudometrics ρ_{H} and ρ_{H}^{\prime} on the hyperspaces $\exp (G)$ and $\exp \left(G^{\prime}\right)$ such that the map $\exp q: \exp (G) \rightarrow \exp \left(G^{\prime}\right)$ is an isometry. Also these pseudometrics induce the pseudometrics $\hat{\rho}$ and $\hat{\rho}^{\prime}$ on the spaces of measures $P(G), P\left(G^{\prime}\right)$ such that the map $P q:(P(G), \hat{\rho}) \rightarrow\left(P\left(G^{\prime}\right), \hat{\rho}^{\prime}\right)$ is an isometry. The continuity of the map $\gamma: G_{\rho}^{2} \rightarrow$ G_{ρ} at K_{0}^{2} implies that $\left(K_{0}, \rho\right)$ is a (not necessarily separated) topological group, $K_{0} \cap G_{0}$ is a closed normal subgroup of K_{0} and hence $K_{0}^{\prime}=q\left(K_{0}\right)=K_{0} / K_{0} \cap G_{0}$ has the structure of topological group. Then $\mu_{0}^{\prime}=P q\left(\mu_{0}\right)$ is a Haar measure in K_{0}^{\prime}.

By the choice of the neighborhood $O\left(\mu_{0}\right)$, for every $n \in \mathbb{N}$ we can find a compact set $K_{n} \in \operatorname{Reg}(\exp (G))$ such that the measure $\mu_{n}=\operatorname{supp}^{-1}\left(K_{n}\right)$ does not belong to $O\left(\mu_{0}\right)$. Then $\hat{\rho}\left(\mu_{n}, \mu_{0}\right) \geq \varepsilon_{0}$ by the choice of the pseudometric ρ.

For every $n \in \mathbb{N}$ let $\mu_{n}^{\prime}=P q\left(\mu_{n}\right) \in P\left(G^{\prime}\right)$, and $K_{n}^{\prime}=q\left(K_{n}\right) \in \exp \left(G^{\prime}\right)$. The convergence of the sequence $\left(K_{n}\right)$ to K_{0} in the pseudometric space $\left(\exp (G), \rho_{H}\right)$ implies the convergence of the sequence $\left(K_{n}^{\prime}\right)$ to K_{0}^{\prime} in the metric space $\left(\exp \left(G^{\prime}\right), \rho_{H}^{\prime}\right)$, which implies that the union $K^{\prime}=\bigcup_{n \in \omega} K_{n}^{\prime}$ is compact in the metric space ($G^{\prime}, \rho^{\prime}$). Then the subspace $P\left(K^{\prime}\right)$ is compact in the metric space $\left(P(G), \hat{\rho}^{\prime}\right)$ and hence the sequence $\left(\mu_{n}^{\prime}\right)_{n \in \mathbb{N}}$ contains a subsequence that converges to some measure μ^{\prime} in $\left(P\left(G^{\prime}\right), \hat{\rho}^{\prime}\right)$. We lose no generality assuming that whole sequence $\left(\mu_{n}^{\prime}\right)_{n \in \mathbb{N}}$ converges to μ^{\prime}. Since $\varepsilon_{0} \leq \hat{\rho}\left(\mu_{n}, \mu_{0}\right)=\hat{\rho}^{\prime}\left(\mu_{n}^{\prime}, \mu_{0}^{\prime}\right)$, we conclude that $\mu^{\prime} \neq \mu_{0}^{\prime}$. We shall derive a contradiction (with the uniqueness of a left-invariant probability measure on compact groups) by showing that μ^{\prime} is a left-invariant measure on K_{0}^{\prime}, distinct from the Haar measure μ_{0}^{\prime}.

The $\hat{\rho}^{\prime}$-convergence $\mu_{n}^{\prime} \rightarrow \mu^{\prime}$ and ρ_{H}^{\prime}-convergence $\operatorname{supp}\left(\mu_{n}^{\prime}\right)=K_{n}^{\prime} \rightarrow K_{0}^{\prime}$ imply that $\operatorname{supp}\left(\mu^{\prime}\right) \subset K_{0}^{\prime}$ and thus μ^{\prime} is a probability measure on the compact topological group K_{0}^{\prime}. It remains to check that the measure μ^{\prime} is left-invariant. Assuming the converse, we can find a point $a \in K_{0}^{\prime}$ such that $a * \mu^{\prime} \neq \mu^{\prime}$ and thus $\varepsilon=\hat{\rho}^{\prime}\left(\mu^{\prime}, a *\right.$ $\left.\mu^{\prime}\right)>0$. Since the map $\gamma: G_{\rho} \times G_{\rho} \rightarrow G_{\rho}$ is continuous at each point $(x, y) \in$ $K_{0} \times K_{0}$, we can find a positive $\delta<\frac{\varepsilon}{4}$ so small that $\rho\left(x y, x^{\prime} y\right)<\frac{\varepsilon}{4}$ for any $x, y \in K_{0}$ and $x^{\prime} \in G$ with $\rho\left(x^{\prime}, x\right)<\delta$. Since $\rho_{H}\left(K_{n}, K_{0}\right) \rightarrow 0$ and $\hat{\rho}^{\prime}\left(\mu_{n}^{\prime}, \mu^{\prime}\right) \rightarrow 0$, there is a number $n \in \mathbb{N}$ and a point $a_{n} \in K_{n}$ such that $\rho\left(a, a_{n}\right)<\delta$ and $\hat{\rho}^{\prime}\left(\mu_{n}^{\prime}, \mu^{\prime}\right) \leq \varepsilon / 4$. Consider two left shifts $l_{a}: G \rightarrow G, l_{a}: x \mapsto a x$, and $l_{a_{n}}: G \rightarrow G$. The choice of δ guarantees that $\rho_{K_{0}}\left(l_{a}, l_{a_{n}}\right)=\sup _{x \in K_{0}} \rho\left(l_{a}(x), l_{a_{n}}(x)\right) \leq \frac{\varepsilon}{4}$. Then

$$
\hat{\rho}^{\prime}\left(a * \mu^{\prime}, a_{n} * \mu^{\prime}\right)=\hat{\rho}^{\prime}\left(P l_{a}\left(\mu^{\prime}\right), P l_{a_{n}}\left(\mu^{\prime}\right)\right) \leq \frac{\varepsilon}{4}
$$

The left shift $l_{a_{n}}: G \rightarrow G$, being an isometry of the pseudometric space (G, ρ), induces an isometry $l_{a_{n}}^{\prime}: G^{\prime} \rightarrow G^{\prime}$ of the metric space ($G^{\prime}, \rho^{\prime}$), which induces the isometry $P l_{a_{n}}^{\prime}: P\left(G^{\prime}\right) \rightarrow P\left(G^{\prime}\right)$ of the corresponding space of measures. So, $\hat{\rho}^{\prime}\left(a_{n} * \mu^{\prime}, a_{n} * \mu_{n}^{\prime}\right)=\hat{\rho}^{\prime}\left(P l_{a_{n}}^{\prime}\left(\mu^{\prime}\right), P l_{a_{n}}^{\prime}\left(\mu_{n}^{\prime}\right)\right)=\hat{\rho}^{\prime}\left(\mu^{\prime}, \mu_{n}^{\prime}\right) \leq \frac{\varepsilon}{4}$. The compact set K_{n}, being a regular element of the semigroup $\exp (G)$ is equal to $H_{n} x_{n}$ for some compact subgroup $H_{n} \subset G$ and some point $x_{n} \in G$ according to Proposition 2.3. Then $\mu_{n}=\operatorname{supp}^{-1}\left(K_{n}\right)$ is equal to $\lambda_{n} * x_{n}$ where λ_{n} is the Haar measure on the
group H_{n}. Since λ_{n} is left-invariant, $a_{n} * \mu_{n}=a_{n} * \lambda_{n} * x_{n}=\lambda_{n} * x_{n}=\mu_{n}$ and hence $a_{n} * \mu_{n}^{\prime}=\mu_{n}^{\prime}$.

Now we see that

$$
\begin{aligned}
\hat{\rho}^{\prime}\left(\mu^{\prime}, a * \mu^{\prime}\right) & \leq \hat{\rho}^{\prime}\left(\mu^{\prime}, \mu_{n}^{\prime}\right)+\hat{\rho}^{\prime}\left(\mu_{n}^{\prime}, a_{n} * \mu_{n}^{\prime}\right)+\hat{\rho}^{\prime}\left(a_{n} * \mu_{n}^{\prime}, a_{n} * \mu^{\prime}\right)+\hat{\rho}^{\prime}\left(a_{n} * \mu^{\prime}, a * \mu^{\prime}\right) \\
& \leq \frac{\varepsilon}{4}+0+\frac{\varepsilon}{4}+\frac{\varepsilon}{4}<\varepsilon=\hat{\rho}^{\prime}\left(\mu^{\prime}, a * \mu^{\prime}\right),
\end{aligned}
$$

which is a desired contradiction.

The following corollary establishes the first part of Proposition 1.3. The second part of that proposition follows from Theorem 2 of [5].

Corollary 2.6 Let G be a topological group. Then a topological regular semigroup S can be embedded into the hypersemigroup $\exp (G)$ if and only if S can be embedded into the convolution semigroup $P(G)$.

Proof If $S \subset \exp (G)$ is a regular subsemigroup, then $S \subset \operatorname{Reg}(\exp (G))$ and $\operatorname{supp}^{-1}(S)$ is an isomorphic copy of S in $P(G)$ according to Propositions 2.5. Conversely, if $S \subset P(G)$ is a regular subsemigroup, then its image $\operatorname{supp}(S)$ is an isomorphic copy of S in $\exp (G)$.

Acknowledgements This research was supported by the Slovenian Research Agency grants P1-0292-0101-04, J1-9643-0101 and J1-2057-0101. We thank the referee for comments and suggestions.

References

1. Banakh, T.: Topology of spaces of probability measures, II. Mat. Stud. 5, 88-106 (1995) (in Russian)
2. Banakh, T., Gavrylkiv, V.: Algebra in superextensions of groups, II: cancelativity and centers. Algebra Discrete Math. 4, 1-14 (2008)
3. Banakh, T., Gavrylkiv, V.: Algebra in the superextensions of groups: minimal left ideals. Mat. Stud. 31(2), 142-148 (2009)
4. Banakh, T., Gavrylkiv, V.: Algebra in the superextensions of twinic groups. Diss. Math. 473 (2010), 74 p.
5. Banakh, T., Hryniv, O.: Embedding topological semigroups into the hyperspaces over topological groups. Acta Univ. Carol. Math. Phys. 48(2), 3-18 (2007)
6. Banakh, T., Gavrylkiv, V., Nykyforchyn, O.: Algebra in superextensions of groups. I: zeros and commutativity. Algebra Discrete Math. 3, 1-29 (2008)
7. Bershadskii, S.G.: Imbeddability of semigroups in a global supersemigroup over a group. In: Semigroup Varieties and Semigroups of Endomorphisms, pp. 47-49. Leningrad. Gos. Ped. Inst., Leningrad (1979)
8. Bilyeu, R.G., Lau, A.: Representations into the hyperspace of a compact group. Semigroup Forum 13, 267-270 (1977)
9. Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. 1. Math. Surv., No. 7, Amer. Math. Soc., Providence (1964)
10. Fedorchuk, V.V.: Functors of probability measures in topological categories. J. Math. Sci. 91(4), 3157-3204 (1998)
11. Gavrylkiv, V.: Right-topological semigroup operations on inclusion hyperspaces. Mat. Stud. 29(1), 18-34 (2008)
12. Heyer, H.: Probability Measures on Locally Compact Groups. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 94. Springer, Berlin (1977)
13. Hryniv, O.: Universal objects in some classes of Clifford topological inverse semigroups. Semigroup Forum 75(3), 683-689 (2007)
14. Parthasarathy, K.R.: Probability Measures on Metric Spaces. Amer. Math. Soc., Providence (2005)
15. Petrich, M.: Introduction to Semigroups. Charles E. Merrill Publishing, Columbus (1973)
16. Pym, J.S.: Idempotent measures on semigroups. Pac. J. Math. 12, 685-698 (1962)
17. Teleiko, A., Zarichnyi, M.: Categorial Topology of Compact Hausdorff Spaces. VNTL Publ., Lviv (1999)
18. Tortrat, A.: Lois de probabilité sur un espace topologique complètement régulier et produits infinis à termes indépendants dans un groupe topologique. Ann. Inst. H. Poincaré Sect. B 1, 217-237 (1964/1965)
19. Trnkova, V.: On a representation of commutative semigroups. Semigroup Forum 10(3), 203-214 (1975)
20. Wendel, J.G.: Haar measure and the semigroup of measures on a compact group. Proc. Am. Math. Soc. 5, 923-929 (1954)

[^0]: Communicated by Jimmie D. Lawson.
 T. Banakh

 Instytut Matematyki, Jan Kochanowski University, Kielce, Poland
 e-mail: tbanakh@yahoo.com
 T. Banakh - O. Hryniv

 Department of Mathematics, Ivan Franko National University of Lviv, Lviv, Ukraine
 O. Hryniv
 e-mail: olena_hryniv@ukr.net
 M. Cencelj

 Institute of Mathematics, Physics and Mechanics, and Faculty of Education, University of Ljubljana, P.O.B. 2964, Ljubljana, 1001, Slovenia
 e-mail: matija.cencelj@guest.arnes.si
 D. Repovš (\boxtimes)

 Faculty of Mathematics and Physics, and Faculty of Education, University of Ljubljana, P.O.B. 2964, Ljubljana, 1001, Slovenia
 e-mail: dusan.repovs@guest.arnes.si

