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ON THE ASYMPTOTIC EXTENSION DIMENSION

D. Repovš1 and M. Zarichnyi2 UDC 515.12

We introduce an asymptotic counterpart of the extension dimension defined by Dranishnikov. The main
result establishes the relationship between the asymptotic extensional dimension of a proper metric space
and the extension dimension of its Higson corona.

1. Introduction

The asymptotic dimension of metric spaces was first defined by Gromov [1] for finitely generated groups.
Since that time, this dimension is an object of study in numerous publications (see an expository paper [2]).

A metric space .X; d/ is of asymptotic dimension � n (written asdimX � n) if, for every D > 0; there
exists a uniformly bounded cover U of X such that U D U0 [ : : : [ Un; where every family U i is D -disjoint,
i D 0; 1; : : : ; n: Recall that a family A of subsets of X is uniformly bounded if

meshA D supfdiamA j A 2 Ag <1

(as usual, diamA D supfd.x; y/ j x; y 2 Ag is the diameter of a subset A in a metric space .X; d/) and is called
D -disjoint if

inf fd.a; a0/ j a 2 A; a0 2 A0g > D

for all distinct A;A0 2 A:
The asymptotic dimension can be characterized in different ways and, in particular, in terms of the extensions

of maps into Euclidean spaces [3]: A proper metric space X is of asymptotic dimension � n if and only if any
proper asymptotically Lipschitz map f WA! RnC1 (see the definition in what follows) defined on a closed subset
A of X admits a proper asymptotically Lipschitz extension over X: This result corresponds to the Aleksandrov
theorem in the classical dimension theory: For any metric space X; dimX � n; where dim stands for the covering
dimension, if and only if any continuous map f WA! Sn defined on a closed subset A of X admits a continuous
extension over X:

In [3, 4] Dranishnikov introduced the notion of extension dimension. This dimension takes its values in the
so-called dimension types of CW-complexes. The aim of the present paper is to develop an asymptotic counterpart
of the extension dimension. Our main result is a generalization of the well-known result due to Dranishnikov [3]
on the equality, for the spaces of finite asymptotic dimensions, of the asymptotic dimension of a proper metric
space and the dimension of the Higson corona of this space.
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2. Preliminaries

A typical metric is denoted by d: By Nr.x/ we denote an open ball of radius r centered at a point x of a
metric space.

2.1. Asymptotic Category. A map f WX ! Y between metric spaces is called .�; "/-Lipschitz for � > 0;

" � 0 if

d.f .x/; f .x0// � �d.x; x0/C "

for any x; x0 2 X: A map is called asymptotically Lipschitz if it is .�; "/-Lipschitz for some �; " > 0:
The .�; 0/-Lipschitz maps are also called �-Lipschitz and the .1; 0/-Lipschitz maps are also called short.
A metric space X is called proper if every closed ball is compact in X:
The asymptotic category A was introduced by A. Dranishnikov [3]. The objects of A are proper metric spaces

and the morphisms are proper asymptotically Lipschitz maps. Recall that a map is called proper if the preimage of
every compact set is compact.

We also need the notion of coarse map. A map between proper metric spaces is called coarse uniform if, for
any C > 0; one can find K > 0 such that, for every x; x0 2 X with d.x; x0/ < C; we have d.f .x/; f .x0// < K:
A map f WX ! Y is called metric proper if the preimage f �1.B/ is bounded for every bounded set B � Y: A
map is coarse if it is both metric proper and coarse uniform.

2.2. Higson Compactification and Higson Corona. Let 'WX ! R be a function defined on a metric space
X: For every x 2 X and every r > 0; let

Varr'.x/ D supfj'.y/ � '.x/j j y 2 Nr.x/g:

A function ' is called slowly oscillating if, for any r > 0; we have Varr'.x/ ! 0 as x ! 1 (this means
that, for any " > 0; there exists a compact subspace K � X such that jVarr'.x/j < " for all x 2 X nK: Let NX
be the compactification of X corresponding to the family of all continuous bounded slowly oscillating functions.
The Higson corona of X is the remainder �X D NX nX of this compactification.

It is known that the Higson corona is a functor from the category of proper metric spaces and coarse maps into
the category of compact Hausdorff spaces. In particular, if X � Y; then �X � �Y:

For any subset A of X; by A0 we denote its trace on �X; i.e., the intersection of the closure of A in NX with
�X: Obviously, the set A0 coincides with the Higson corona �A:

2.3. Cone. Let X be a metric space of diameter � 1: The open cone of X is a set OX D .X �RC/=.X �
f0g/ endowed with the metric (by Œx; t � we denote the equivalence class of .x; t/ 2 X �RC ):

d.Œx1; t1�; Œx2; t2�/ D jt1 � t2j Cminft1; t2gd.x1; x2/:

For a map f WX ! Y of metric spaces, by Of WOX ! OY we denote the map defined as Of .Œx; t �/ D
Œf .x/; t �:

Proposition 2.1. If f WX ! Y is a Lipschitz map, then Of is an asymptotically Lipschitz map.

Proof. Suppose that a map f WX ! Y is �-Lipschitz. Then, for any Œx1; t1�; Œx2; t2� 2 OX; we have
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d.Of .Œx1; t1�/;Of .Œx2; t2�// D d.Œf .x1/; t1�; Œf .x2/; t2�/

D jt1 � t2j Cminft1; t2gd.f .x1/; f .x2//

� �0.jt1 � t2j Cminft1; t2gd.x1; x2//;

where �0 D maxf�; 1g:
Proposition 2.1 is proved.

The open cone of a finite CW-complex is a coarse CW-complex in a sense of [5].
Denote by ˛LWOL! R the function defined as ˛L.Œx; t �/ D t: Obviously, ˛L is a short function.
Let QOL D fŒx; t � 2 OL j t � 1g: Denote by ˇLW

QOL! L the map ˇL.Œx; t �/ D x:

Lemma 2.1. The map ˇL is slowly oscillating.

Proof. For R > 0; the R -ball centered at Œx; 0� is fŒx; t � j t < Rg: If

d.Œx; t �; Œx1; t1�/ < K < R;

then

jt � t1j Cminft; t1gd.x; x1/ < K;

i.e., .t �R/d.x; x1/ < R and d.x; x1/ < K=.t �K/: Therefore,

d.ˇL.x/; ˇL.x1// < K=.R �K/! 0 as R!1:

Lemma 2.1 is proved.

Let ŇLW QOL ! L be the (unique) extension of the map ˇL: By �LW � QOL ! L we denote the restriction of
ˇL:

Proposition 2.2. Let f WA ! OL be a proper asymptotically Lipschitz map defined on a proper closed
subset A of a proper metric space X: There exists a neighborhood W of A in X and a proper asymptotically
Lipschitz map gWW ! OL with the following property: one can find constants �; s > 0 such that

˛L.g.a// � �d.a;X nW /C s:

Proof. We can assume that L is a subset of In for some n and there exists a Lipschitz retraction r WU ! L

of a neighborhood U of L in In: Since OIn is Lipschitz equivalent to RnC1
C

; there exists a .�0; s0/-Lipschitz
extension QgWX ! OIn of g:

We set W D Qg�1.OU/ and Ng D QgjW: For every a 2 A and w 2 X nW; we have

d.g.a/; Qg.w/ � �0d.a;w/C s0 � �0d.a;X nW /C s:

Suppose that d.L; In n U/ D c > 0: Thus, since Qg.w/ … CU; we get
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d.g.a/; Qg.w// D j˛L.g.a// � ˛L. Qg.w//j Cminf˛L.g.a//; ˛L. Qg.w//gd.ˇL.g.a//; ˇL. Qg.w///

� j˛L.g.a// � ˛L. Qg.w//j C cminf˛L.g.a//; ˛L. Qg.w//g � c
0˛L.g.a//;

where c0 D minfc; 1g: Hence, ˛L.g.a// � �d.a;X nW /C s; where � D �0=c0; s D s0=c0:
Proposition 2.2 is proved.

3. Auxiliary Results

In the present section, we collect some results required in the proof of the main result. They are proved in [3].
However, it turns out that we have also covered the case of functions with infinite values.

A map f WX ! RC [ f1g is said to be coarsely proper if the preimage f �1.Œ0; c�/ is bounded for every
c 2 RC:

Lemma 3.1. For any function 'WX ! RC with '.x/! 0 as x !1; the function 1='WX ! RC [ f1g
is coarsely proper.

Proposition 3.1. Let f WX ! RC [ f1g be a coarsely proper function. Then there exists an asymptotically
Lipschitz proper function qWX ! RC with q � f:

Proof. This was proved in [3] for the case of f WX ! RC (see Proposition 3.5). This proof also works in our
case.

Proposition 3.2. Let fnWX ! RC [ f1g be a sequence of coarsely proper functions. Then there exists a
filtration X D [1nD1An and a coarsely proper function f WX ! RC with f jAn � n and f j.X n An/ � fn for
every n:

Proof. Let Bn D

[n

iD1
f �1

i .Œ0; n�/: The sets Bi are bounded and B1 � B2 � : : : : Therefore, there exist

bounded subsets A1 � A2 � : : : such that An \

�[1

iD1
Bi

�
D Bn and

[1

iD1
Ai D X: For x 2 An n An�1;

we set f .x/ D n: Obviously, f is coarsely proper and f jAn � n: We now suppose that x … An: Then x … Bn

and, therefore, x … f �1
n .Œ0; n�/; i.e., fn.x/ > n � f j.X n An/:

Proposition 3.2 is proved.

The following assertion is an evident modification of Lemma 3.6 from [3] and its proof also works in the
analyzed case.

Lemma 3.2. Suppose that f WA ! RC [ f1g is a coarsely proper map defined on a closed subset A of a
proper metric space X and gWW ! RC is a proper asymptotically Lipschitz map such that g � f jW and there
exist � and s such that �d.a;X n W / C s � g.a/ for every a 2 A: Then there exists a proper asymptotically
Lipschitz map NgWX ! RC for which Ng � f and NgjA D g:

3.1. Almost Geodesic Spaces. A metric space X is said to be almost geodesic if there exists C > 0 such
that, for any two points x; y 2 X there is a short map f W Œ0; Cd.x; y/�! X with f .0/ D x and f .Cd.x; y// D
y: If, in this definition C D 1; then we come to the well-known notion of geodesic space.

We are now going to describe the construction of embedding of a discrete metric space X into an almost
geodesic space of asymptotic dimension minfasdimX; 1g:
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For an unbounded discrete metric space X with base point x0; we define a function f WX ! Œ0;1/ by the
formula f .x/ D d.x; x0/: Further, we choose a sequence 0 D t0 < t1 < t2 < : : : in f .X/ such that tiC1 > 2ti
for any i: To every pair of points x; y 2 f �1.Œti ; tiC1�/ for some i; we attach a line segment Œ0; d.x; y/� with the
indicated endpoints. Let OX be the union of X and all attached segments. We endow OX with the maximum metric
that agrees with the initial metric on X and the standard metric on every attached segment.

Note that since X is discrete and proper, every set f �1.Œti ; tiC1�/ is finite and, therefore, OX is a proper metric
space.

Proposition 3.3. The space OX is almost geodesic.

Proof. Suppose that x; y 2 OX: Then x 2 Œx1; x2� and y 2 Œy1; y2�; where x1; x2; y1; y2 2 X and Œx1; x2�;

Œy1; y2� are attached segments. We may suppose that

d.x; y/ D d.x; x1/C d.x1; y1/C d.y1; y/:

Case 1: There exists i such that x1; y1 2 f
�1.Œti ; tiC1�/: Then Œx; x1� [ Œx1; y1� [ Œy1; y� is a segment of

diameter d.x; y/ that connects x and y in OX:

Case 2: f .x1/ 2 Œti ; tiC1� and f .y1/ 2 Œtj ; tjC1�; where i ¤ j: Without loss of generality, we can assume
that i < j:

Obviously, d.x1; y1/ � d.x; y/: Since jtj � tj�1j � d.x1; y1/; we see that jtj � tj�1j � d.x; y/: This
implies that tj =2 � d.x; y/ or, equivalently, tj � d.x; y/:

Moreover,

d.y1; f
�1.Œ0; tj�1�/// � d.x1; y1/ � d.a; b/:

For every k D i; i C 1; : : : ; j1; we choose zk 2 f
�1.tk/: Then

d.y1; zj�1/ � d.y1; f
�1.Œ0; tj�1�/C diam .f �1.Œ0; tj�1�// � d.a; b/C 2tj�1 � d.a; b/C tj � 3d.a; b/:

We connect x and y by the segment

J D Œx; x1� [ Œx1; z1� [
[j�1

kDi
Œzk; zkC1�/ [ Œzj�1; y1� [ Œy1; y�:

Then

diam J � d.x; x1/C d.x1; ziC1/C

0@ j�1X
kDiC1

d.zk; zkC1/

1AC d.zj�1; y1/C d.y1; y/

D d.x; y/C 2tiC1 C

j�1X
kDiC1

2tkC1 C 5d.x; y/C d.x; y/

� 7d.x; y/C 2.tiC1 C : : :C tj / � 7d.x; y/C 4tj � 15d.x; y/:

Proposition 3.3 is proved.
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We need a version of the fact proved in [3] for geodesic spaces.

Proposition 3.4. Let f WX ! Y be a coarse uniform map of an almost geodesic space X: Then f is
asymptotically Lipschitz.

Proof. Let C be a constant from the definition of almost geodesic space. Suppose that x; y 2 X: Then there
exists a short map ˛W Œ0; Cd.x; y/� ! X such that ˛.0/ D x and ˛.Cd.x; y// D y: There are points 0 D t0 <

t1 < : : : < tk�1 < tk D Cd.x; y/; where k � Œd.x; y/�C 1; such that jti � ti�1j � C for any i D 1; : : : ; k:
Since f is coarse uniform, there exists R > 0 such that d.f .x0/; f .y0// < R whenever d.x0; y0/ � C: Then

d.f .x/; f .y// �

kX
iD1

d.f .˛.ti //; f .˛.ti�1/// � kR � .Œd.x; y/�C 1/R � Rd.x; y/C 2R:

Proposition 3.4 is proved.

4. Asymptotic Extension Dimension

Let P be an object of category A: For any object X of A; the Kuratowski notation X�P means the following:
For any proper asymptotically Lipschitz map f WA ! P defined on a closed subset A of X; there is a proper
asymptotically Lipschitz extension of f onto X:

Denote by L the class of compact absolute Lipschitz neighborhood Euclidean extensors (ALNER). Following
[4], we define a preordering relation � on L: For L1; L2 2 L; we have L1 � L2 if and only if X�OL1 implies
that X�OL2 for all proper metric spaces X: The indicated preordering relation leads to the following equivalence
relation � on L : L1 � L2 if and only if L1 � L2 and L2 � L1: By ŒL� we denote the equivalence class
containing L 2 L: The class ŒL� is called the type of asymptotic extension dimension for L: The indicated
preordering relation induces a partial ordering relation for all types of asymptotic extension dimensions.

For a proper metric space X; we say that its asymptotic extension dimension does not exceed ŒOL� (or, briefly,
as-ext-dimX � ŒOL�/; whenever X�OL:

If as-ext-dimX � ŒOL�; then the equality as-ext-dimX D ŒOL� means the following: If we also have
as-ext-dimX � ŒOL0�; then ŒOL� � ŒOL0�:

According to the results of extension of asymptotically Lipschitz functions ([3]; see also [6]), the element Œ��
is maximal.

Theorem 4.1. Let L be a compact metric ALNER. The following conditions are equivalent:

(1) as-ext-dimX � ŒOL�I

(2) ext-dim �X � ŒL�:

Proof. (1)) (2). Assume that as-ext-dimX � ŒOL�: Let 'WC ! L be a map defined on a closed subset
C of �X: Since L 2 ANE; there exists an extension '0WV ! L of ' over a closed neighborhood V of C in
NX D X [ �X: Then VarR'

0.x/! 0 as x !1 for any fixed R > 0: By Lemma 3.1, the function

fnWV \X ! RC [ f1g; fn.x/ D
1

VarR'0.x/
;

is coarsely proper for every n 2 N: By Proposition 3.2, there is a coarsely proper function f WV \ X ! RC and
a filtration V \ X D

S1
nD1An such that f jAn � n and f j.X n An/ � fn: By Proposition 3.5 from [3], there
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is an asymptotically Lipschitz function qWV \ X ! RC with q � f: We assume that q is .�; s/-Lipschitz for
some �; s > 0: A map gWV \X ! OL is defined by the formula g.x/ D Œ'0.x/; q.x/�:

We are now going to check that the map g.x/ is asymptotically Lipschitz. Let x; y 2 V \ X and n � 1 �
d.x; y/ � n:

Suppose that x; y 2 .V \X/ n An: Then q.x/ � fn.x/ and q.y/ � fn.y/: We have

d.g.x/; g.y// D jq.x/ � q.y/j Cminfq.x/; q.y/gd.'0.x/; '0.y//

� �d.x; y/C s Cminfq.x/; q.y/gVarn'
0.x/ � �d.x; y/C s C 1:

If x 2 An; then q.x/ � n and we find

d.g.x/; g.y// � �d.x; y/C s C nd.'0.x/; '0.y//

� �d.x; y/C s C ndiam L � �d.x; y/C s C .d.x; y/C 1/diam L

� .�C diam L/d.x; y/C .s C diam L/:

For y 2 An; the arguments are similar.
Further, by assumption, there is an asymptotically Lipschitz extension NgWX ! OL of g: Consider a compo-

sition �L� NgW �X ! OL: Clearly, �L� NgjC D ': We conclude that ext-dim�X � ŒL�:

(2)) (1). Let f WA ! OL be an asymptotically Lipschitz map defined on a proper closed subset A of a
proper metric space X: By Proposition 2.2, there is a proper asymptotically Lipschitz map Qf WW ! OL defined
in a neighborhood W of A and constants � and s such that

˛Lf .a/ � �d.a;X nW /C s

for all a 2 A: Denote by 'W �X ! L an extension of the composition �L� Qf : Since L is an absolute neigh-
borhood extensor, there exists an extension  WV ! L of ' onto a closed neighborhood of �X in the Higson
compactification NX: We extend  to a map O W .V \X/O! L as follows: Let J be a segment attached to V with
endpoints a and b: We require that O must linearly map J onto a geodesic segment in L with endpoints  .a/
and  .b/:

We now show that O is a slowly oscillating map. Since  is slowly oscillating, for any " > 0 and R > 0;

there exists K > 0 such that VarR .x/ < " whenever d.x; x0/ > K: Suppose that O is not slowly oscillating.
Then there exist R > 0; C > 0; and sequences .xi

1/ and .xi
2/ in .V \ X/O such that d.xi

1; x
i
2/ < R; xi

1 ! 1;

xi
2 ! 1 and d. O .xi

1/;
O .xi

2// > C for any i: We assume that xi
1 2 Œa

i
1; b

i
1� and xi

2 2 Œa
i
2; b

i
2� for every i;

where ai
1; b

i
1; a

i
2; b

i
2 2 X \ V: Without loss of generality we can assume that ai

1 ! 1 and there exists C1 > 0

such that d. O .xi
1/;
O .ai

1// > C1 for every i: If d.ai
1; b

i
1/ < K for all i and some K > 0; then

d. O .xi
1/;
O .ai

1// < d.
O .ai

1/;
O .bi

1//! 0;

and we arrive at a contradiction. Hence, we can assume that d.ai
1; b

i
1/!1: Then

d.ai
1; x

i
1/=d.a

i
1; b

i
1/ < R=d.a

i
1; b

i
1/! 0
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and, therefore, by the definition of the map O ; we get

d. O .xi
1/;
O .ai

1//=d.
O .ai

1/;
O .bi

1//! 0:

Thus, clearly, d. O .xi
1/;
O .ai

1//! 0; and we arrive at a contradiction.
Since the map Qf is asymptotically Lipschitz, there exists K > 0 such that, for any a 2 W; we have

diam .˛L
Qf .N1.a//C ˛L

Qf .a/diam . .N1.a// � K:

We define a function r W .X \ V /O! RC [ f1g by the formula r.x/ D K=. .N1.x///: We have f .a/ � r.a/
for any a 2 A: The function r is asymptotically proper and, by Proposition 3.1, there exists a .�0; s0/-Lipschitz
function Nf WX ! RC for some �0; s0 with Nf � r and Nf jA D ˛Lf:

We define a map gW .X \ V /O ! OL by the formula g.x/ D . .x/; Nf .x//: Obviously, gjA D f: We are
now going to show that g is a coarse uniform map.

Suppose that x; y 2 X; d.x; y/ < 1: Then

d.g.x/; g.y// � j Nf .x/ � Nf .y/j Cminf Nf .x/; Nf .y/gd. .x/;  .y// � �0 C s0 CK:

Note that, since Nf is proper, g is also proper. Since g is coarse uniform, by Proposition 3.4, g is asymptoti-
cally Lipschitz. Therefore, as-ext-dimX � ŒOL�:

Theorem 4.1 is proved.

Corollary 4.1 (finite-sum theorem). Assume that X is a proper metric space and X D X1 [ X2; where
X1 and X2 are closed subsets of X with as-ext-dimXi � ŒOL�; i D 1; 2; for some L 2 L: Then as-ext-
dimX � ŒOL�:

Proof. Since �X D �X1 [ �X2; the result follows from Theorem 4.1 and the finite-sum theorem for the
extension dimension (see [7]).

5. Remarks and Open Problems

Problem 5.1. Is the following equality true: as-ext-dim Rn D Sn ?

Problem 5.2. Let L1; L2 be finite polyhedra in Euclidean spaces endowed with the induced metric. Is the
inequality ŒL1� � ŒL2� introduced in [4] equivalent to the inequality ŒL1� � ŒL2� in Sec. 4?

We can define a counterpart of the asymptotic extension dimension by using warped cones instead of open
cones. Following [8], we now briefly review this construction. Let F be a foliation on a compact smooth manifold
V: Also let N be an arbitrary subbundle complementary to TF in TM: We choose Euclidean metrics gN in
N and gF in TF : The foliated warped cone OF is the manifold V � Œ0;1/=V � f0g equipped with the metric
induced for t � 1 by the Riemannian metric gRCgFC t

2gN : Since we are interested in the asymptotic properties
of warped cones, the metric structure of any bounded neighborhood of the apex of the cone is irrelevant.

Problem 5.3. Is the obtained warped cone an absolute neighborhood extensor in the asymptotic category?

The affirmative answer to this question would allow us to introduce the asymptotic extension dimension theory
with values in warped cones.
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Problem 5.4. Is it possible to characterize the dimension of the sublinear corona (see [9]) in terms of the
asymptotic extension dimension?

This research was supported by the Slovenian Research Agency, Grants P1-0292-0101-04 and BI-UA/07-08-
001.
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