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aMathematics Department, Faculty of Mathematics and Informatics, University of M’sila, Algeria.
bLaboratory of Fixed Point Theory and Applications, Department of Mathematics, E.N.S. Kouba,

Algiers, Algeria

E-mail: abdelhak.mokhtari@univ-msila.dz

cCollege of Sciences at Dammam, University of Imam Abdulrahman Bin Faisal, 31441 Dammam,

Kingdom of Saudi Arabia
dBasic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O.

Box 1982, 31441, Dammam, Kingdom of Saudi Arabia

E-mail: kmsaoudi@iau.edu.sa

eFaculty of Education, University of Ljubljana, 1000 Ljubljana, Slovenia.
fFaculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia.

gInstitute of Mathematics, Physics and Mechanics, 1000 Ljubljana, Slovenia

E-mail: dusan.repovs@guest.arnes.si (Corresponding author)

Abstract. In this paper, existence of pairs of solutions is obtained for compact potential operators

on Hilbert spaces. An application to a second-order boundary value problem is also given as an
illustration of our results.

Key Words and Phrases: Hilbert space, potential operator, genus, fixed point theorem, boundary

value problem.

2020 Mathematics Subject Classification: 35J25, 47G40, 47H10

1. Introduction

There are many papers that study the existence of fixed points for different types
of operators, among the most important of these, the potential operator (or gradient
operator) which can be regarded as the Gâteaux derivative of a suitable functional.
Potential operators arise in many steady-state phenomena in physical problems from
quantum mechanics, e.g. the potential of the Hamiltonian operator in the Schrödinger
equation, see [3, 24, 25].

In fact, the variational methods to study linear and nonlinear equations are fully
based on potential operators (see [4, 5, 11, 12, 22]). In [11], the authors considered
nonlinear mappings ϕ ∈ C1(H,R) defined on a Hilbert space H, ordered by a cone P
and such that ϕ satisfies the Palais-Smale condition and has the expression

ϕ′ = I −A. (1)
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When A satisfies some growth conditions, A was shown to have a fixed point. A
combination of topological and variational methods were used and an application to
a second-order dynamic equation was given.

In [12], the authors discussed the existence of fixed points for a class of nonlinear
operators on Hilbert spaces with lattice structure, by a combination of variational
and partial ordered methods and they gave an application to second-order ordinary
differential equations. In [23], the authors proved fixed point theorems for a widely
more generalized hybrid non-self mappings on a Hilbert space. Using these results,
they were able to prove the Browder-Petryshyn fixed point theorem [6] for strict
pseudo-contractive non-self mappings and also generalized the fixed point theorem
from [17] to the super hybrid non-self mappings.

Motivated by these previous works, we are concerned in this paper with the ex-
istence of pairs of fixed points on a Hilbert space H for an odd compact potential
operator A : H −→ H, satisfying the following sublinear growth condition

(H) There exists θ ∈ [0, 1) such that lim sup
∥u∥→+∞

∥Au∥
∥u∥θ

< ∞.

When θ = 1, this condition is known as the quasiboundedness of A. If

lim sup
∥u∥→+∞

∥Au∥
∥u∥θ

< 1,

then existence of the fixed point of A is guaranteed by an application of Rothe’s
theorem (see, e.g., [13]).

The proofs of our results are based on the critical point theory. In particular, we
apply Clark’s theorem on a functional associated with the operator A. We choose
it in an appropriate way so that its critical points are the same as the fixed points
of A, as shown by relation (1). This method guarantees that the critical points on
the boundary of the ball, that is different from the origin 0H , which assures that the
associated fixed points are nontrivial, which Schauder’s theorem does not guarantee
(see the next section).

This method requires the existence of linear operator and a set of unit vectors
satisfying some properties. Moreover, this method naturally leads to multiplicity
results which are rather difficult to achieve with classical fixed point theorems. We
point out that Clark’s theorem is often applied to prove the existence and multiplicity
of weak solutions of boundary problems (see, e.g., [10, 19, 20]), but we belive that
our work is among the first to apply it in the fixed point theory. Our main existence
theorems are applied to a Dirichlet boundary value problems associated to a second-
order ordinary differential equation. This simple model was chosen only to illustrate
the effectiveness of the new fixed point theorems.

Our first existence result reads as follows.

Theorem 1.1. Let H be a Hilbert space and A : H → H an odd compact potential
operator satisfying assumption (H). Assume that there exist a linear operator B1 on
H, r1 > 0, and e1 ∈ H, with ∥e1∥ = 1, such that

(H1)
(
B1(e1), e1

)
> 1,

(H2)
(
A(sr1e1), r1e1

)
≥ sr21

(
B1(e1), e1

)
, for all s ∈ (0, 1).
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Then operator A has a pair of fixed points in H \ {0}.

Our second existence result reads as follows.

Theorem 1.2. Let H be a Hilbert space and A : H → H an odd compact potential
operator satisfying assumption (H). Assume that there exists a linear self adjoint
operator B2 on H such that

(H1)′ there exist e2, e3 ∈ H with ∥ei∥ = 1, i = 2, 3, and (e2, e3) = 0, satisying{ (
B2(ei), ei

)
> 1, i = 2, 3.(

B2(e2), e3
)2 − (

1−
(
B2(e2), e2

))(
1−

(
B2(e3), e3

))
< 0,

(H2)′ there exists a constant r2 > 0 satisfying(
A(su), u

)
≥

(
B2(su), u

)
, for all u ∈ ∂B(0, r2)∩ < e2, e3 >, for all s ∈ (0, 1),

where ∂B(0, r2) denotes the boundary of the ball B(0, r2) and < e2, e3 > is the
subspace spanned by the vectors e2 and e3.

Then operator A has two pairs of fixed points in H \ {0}.

We complete the introduction by an outline of the paper. In Section 2, we collect
the necessary preliminary material. In Section 3, we prove the first existence result
(Theorem 1.1). In Section 4, we prove the second existence result (Theorem 1.2).
Finally, in Section 5, we give an application to a second-order boundary value problem
to illustrate our results.

2. Preliminaries

Let E be a real Banach space and Σ the class of all closed subsets F ⊂ E \ {0}
that are symmetric with respect to the origin, i.e., u ∈ F implies −u ∈ F .

Definition 2.1. Let F ∈ Σ. The Krasnosel’skii genus γ(F ) is defined as the least
positive integer n such that there is an odd mapping φ ∈ C(F,Rn \ {0}). If such n
does not exist, then we set γ(F ) = +∞. Moreover, by definition, γ(∅) = 0.

Next we shall present a result on the computation of the genus that will be used
in this work.

Proposition 2.1. (see [21]) Let F ⊂ E, Ω be a bounded neighborhood of 0 in RN ,
and assume that there exists an odd homeomorphism h ∈ C(F, ∂Ω). Then γ(F ) = N .

More details on the genus can be found in [1, 7, 16, 18].

Definition 2.2. Let J ∈ C1(E,R). If any sequence (un) ⊂ E for which (J(un)) is
bounded and J ′(un) → 0, as n → +∞ in E′, possesses a convergent subsequence, then
we say that J satisfies the Palais-Smale condition (denoted by (PS) condition).

The following theorem, due to Clark [9], will be crucial in the proof of our existence
results.

Theorem 2.1. Let J ∈ C1(E,R) be a functional satisfying the (PS) condition. As-
sume further that:

(a) J is even and bounded from below,



4 PAIRS OF FIXED POINTS FOR A CLASS OF OPERATORS ON HILBERT SPACES

(b) there is a compact set K ∈ Σ such that γ(K) = k and sup
x∈K

J(x) < J(0).

Then J possesses at least k pairs of distinct critical points and their corresponding
critical values are less than J(0).

We point out that this result is a consequence of a basic multiplicity theorem
involving an invariant functional under the action of a compact topological group
(see [9, 21]).

Recall that a mapping is said to be compact if it maps bounded sets into relatively
compact sets. An operator A : E −→ E′ is called a potential operator, if there exists
a Gâteaux differentiable functional T : E −→ R such that T ′(x) = A(x), for every
x ∈ E (see [8, 14]), where E′ refers to the topological dual of E. Due to Avez [2], we
know that, for all u ∈ E,

T (u) =

∫ 1

0

(A(su), u)E′,E ds.

Here (·, ·)E′,E refers to the duality pairing between E and its topological dual E′.
In this paper, we shall assume that

(
H, (·, ·)

)
is a Hilbert space with (·, ·) denoting

the scalar product on H and ∥ · ∥ =
√

(·, ·). Let A be a compact operator satisfying
(H). Then there exist positive constants c, b such that for all u ∈ H, we have

∥Au∥ ≤ c∥u∥θ + b.

Indeed, by (H) there exists some R > 0 such that for all u ∈ H with ∥u∥ ≥ R, we
have ∥Au∥ ≤ c∥u∥θ. Let B(0, R) ⊂ H be the ball centered at the origin with radius

R. Since A is a compact operator, it follows that A(B(0, R)) is compact, whence
A(B(0, R)) is bounded, i.e. there exists b > 0 such that

∥Au∥ ≤ b, for all u ∈ B(0, R).

Then Schauder’s fixed point theorem applies and yields a solution lying in the ball,
which is possibly the trivial fixed point. On the other hand, our Theorem 1.1 will
provide existence of a nontrivial fixed point u. Since A is odd, it follows that −u is
also a fixed point.

3. Proof of Theorem 1.1

Consider the functional J : H → R defined by

J(u) =
1

2
∥u∥2 −

∫ 1

0

(A(su), u) ds, (2)

where Tu =
∫ 1

0
(A(su), u) ds. Let X1 = span{e1} ⊂ H be the subspace spanned by the

vector e1 and consider the set

K = {u ∈ X1 : ∥u∥ = r1} = {λe1 : ∥λe1∥ = r1} = {−r1e1, r1e1}.

Step 1. It is clear that K is symmetric. Since X1 and R are isomorphic and K
and S0 are homeomorphic. Proposition 2.1 implies that γ(K) = 1; here S0 refers to
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the unit sphere in R. Using Hypotheses (H1) and (H2) , we get

J(−r1e1) = J(r1e1) =
1

2
r21 −

∫ 1

0

(
A(sr1e1), r1e1

)
ds

≤ 1

2
r21 −

1

2
r21
(
B1(e1), e1

)
=

1

2

(
1−

(
B1(e1), e1

))
r21 < 0.

It follows that

sup
K

J(u) = max
u∈{−r1e1,r1r1}

J(u) < 0 = J(0).

Step 2. J is bounded from below. Indeed,

J(u) ≥ 1
2∥u∥

2 −
∫ 1

0
∥A(su)∥∥u∥ ds

≥ 1
2∥u∥

2 − ∥u∥
∫ 1

0
(c∥su∥θ + b) ds

≥ 1
2∥u∥

2 − c
θ+1∥u∥

θ+1 − b∥u∥,
(3)

and our claim follows from the fact that θ ∈ [0, 1).
Step 3. First, notice that since A is a potential operator, there exists a Gâteaux

differentiable functional T : H −→ R such that T ′ = A. More precisely,

T (u) =

∫ 1

0

< A(su), u > ds.

Hence J(u) = 1
2∥u∥

2 − Tu and J ′(u)v = (u, v) − (Au, v), for all v ∈ H, that is
J ′ = I −A.

Moreover, J satisfies the (PS) condition. Indeed, let (un) be a sequence in H such
that J ′(un) → 0 and J(un) is bounded. From (3), we get that (un) is bounded from
below in H. Since A is compact, there exists a subsequence (unk

) ⊂ H such that
A(unk

) → v ∈ H. Therefore unk
→ v in H for

∥unk
− v∥ ≤ ∥unk

−A(unk
)∥+ ∥A(unk

)− v∥ =∥J ′(unk
)∥+ ∥A(unk

)− v∥,

and the right-hand side tends to 0, as k → +∞.
By Theorem 2.1, we conclude that J has a pair of nontrivial critical points which

are fixed points for the operator A. This completes the proof of Theorem 1.1. □

4. Proof of Theorem 1.2

We argue as in the proof of Theorem 1.1. Let X2 = span{e2, e3} be the subspace
of H spanned by the vectors e2 and e3 and consider the set:

K ′ = {u ∈ X2 : ∥u∥ = r2} = {αe2 + βe3 : α2 + β2 = r22}.

Clearly, K ′ ∈
∑

and the homeomorphism

h : K ′ ∋ u = αe2 + βe3 7→ (
α√

α2 + β2
,

β√
α2 + β2

) ∈ S1

is odd. Now, Proposition 2.1 guarantees that γ(K ′) = 2. Here, S1 is the unit sphere
in R2.
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For u ∈ K ′, assumption (H1)′ now yields

J(u) = J(αe2 + βe3) =
1

2
r22 −

∫ 1

0

(
A(su), u

)
ds

≤ 1

2
r22 −

∫ 1

0

(
B2(su), u

)
ds =

1

2
r22 −

1

2

(
B2(αe2 + βe3), αe2 + βe3

)
=

1

2
r22 −

1

2
α2

(
B2(e2), e2

)
− 1

2
αβ

(
B2(e2), e3

)
− 1

2
αβ

(
B2(e3), e2

)
− 1

2
β2

(
B2(e3), e3

)
=

1

2

(
1−

(
B2(e2), e2

))
α2 +

1

2

(
1−

(
B2(e3), e3

))
β2 − αβ

(
B2(e2), e3

)
.

Since the right-hand side term is strictly negative, it follows by compactness of K ′

that supK′ J(u) < 0 = J(0). The rest of the proof parallels that of Theorem 1.1. This
completes the proof of Theorem 1.2. □

Remark 4.1. If we attempt to extend the preceding results to the existence of n pairs
of fixed points, then we can consider the (n− 1)-dimensional subspace

Kn = {u ∈ Xn = ⟨e1, e2, ..., en⟩, ∥u∥ = r} = {α1e1+α2e2+ ...+αnen,
√
Σn

i=1α
2
i = r}.

Clearly, K is symmetric. If we assume that(
A(su), u

)
≥

(
B(su), u

)
, for all u ∈ Kn, s ∈ (0, 1),

where B a linear self-adjoint operator, the question amounts to finding a sufficient
condition for sup

Kn

J(u) to be negative.

Let u ∈ Kn. Then, since B is linear and selfadjoint,

J(u) =
1

2
r2 −

∫ 1

0

(
A(su), u

)
ds ≤ 1

2
r2 − 1

2

(
B(Σn

i=1αiei),Σ
n
i=1αiei

)
=

1

2
r2 − 1

2
Σn

i=1

(
Σn

j=1αiαj(Bei, ej)
)

=
1

2

[
α2
1 + α2

2 + ...+ α2
n︸ ︷︷ ︸

r2

−Σn
i=1

(
Σn

j=1αiαj(Bei, ej)
]
.

However, we do not know whether the term on the right-hand side is negative.

5. Applications

Example 5.1. Consider the following boundary value problem{
−u′′(t) = f(t, u(t)), t ∈ [0, 1],

u(0) = u(1) = 0,
(4)

where f : [0, 1] × R → R is a continuous function. Clearly, solutions of problem (4)
can be obtained as fixed points of the mapping A defined on H1

0 by

Au(t) =

∫ 1

0

G(t, s)f(s, u(s)) ds, (5)
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where

G(t, s) =

{
t(1− s), t ≤ s,
s(1− t), s ≤ t

and H1
0 is the standard Hilbert space with scalar product (u, v) =

∫ 1

0
u′(t)v′(t)dt and

the corresponding norm ∥u∥ =
(∫ 1

0
|u′(t)|2dt

)1/2

. Then A satisfies{
−(Au)′′(t) = f(t, u(t)),
(Au)(0) = (Au)(1) = 0.

(6)

Remark 5.1. One can check that the operator A : H1
0 → H1

0 is compact (see [4]).

Next, we shall give an application to a second-order boundary value problem.

Theorem 5.1. Assume that there are positive functions ai ∈ L1(0, 1), ai >
0, a.e. t ∈ (0, 1) (i = 2, 3), and a1 ∈ L∞(0, 1), where m = ess inf

(0,1)
a1 > 0 and

M = ess sup
(0,1)

a1, satisfying the following conditions

(D1) there exists r1 ∈ (0, 1) such that f(t,u)
u ≥ a1(t), for all u ∈ [−r1, r1] \ {0},

(D2) f(t, u) ≤ a2(t)|u|θ + a3(t), for all u ∈ R and some θ ∈ [0, 1),
(D3) there exist e1, e2 ∈ H1

0 with (e1, e2) = 0 and ∥e1∥ = ∥e2∥ = 1 such that
m|ei|L2 > 1, i = 1, 2,

(D4) M2 + 2π2m < π4 +m2.

If f satisfies (f3), then problem (4) has two pairs of nontrivial solutions in H1
0 .

Proof. Let

J(u) =
1

2
∥u∥2 −

∫ 1

0

F (t, u)dt, (7)

where F (t, u) =
∫ u

0
f(t, v)dv. Using (D1) together with the Lebesgue dominated

convergence theorem, we can prove that J ∈ C1(H1
0 ,R) and that for all u, v ∈ H1

0 ,

J ′(u)(v) =

∫ 1

0

u′v′ dt−
∫ 1

0

f(t, u(t))v(t) dt =

∫ 1

0

u′v′ dt+

∫ 1

0

(Au)′′(t)v(t) dt

=

∫ 1

0

(u′v′ − (Au)′(t))v′(t) dt = (u, v)− (Au, v).

Hence A is a potential operator. Define

Bu(t) =

∫ 1

0

G(t, s)a1(s)u(s) ds. (8)

We shall apply Theorem 1.2. The functional J and operator B are as given by (7)
and (8). By (D3), for i = 1, 2, we have(

B(ei), ei
)

=

∫ 1

0

(
B(ei)

)′
(t)′i(t)dt = −

∫ 1

0

(
B(ei)

)′′
(t)ei(t)dt

=

∫ 1

0

a1(t)e
2
i (t)dt ≥ m|ei|2L2 > 1.
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Using the Cauchy-Schwarz and the Poincaré inequalities together with assumption
(D4), we get the estimates

(
B(e1), e2

)2 − (
1−

(
B(e1), e1

))(
1−

(
B(e2), e2

))
=

(∫ 1

0

(
B(e1)

)′
(t)e′2(t)dt

)2

−
(
1−

∫ 1

0

(
B(e1)

)′
(t)e′1(t)dt

)(
1−

∫ 1

0

(
B(e2)

)′
(t)e′2(t)dt

)
=

(∫ 1

0

(
B(e1)

)′′
(t)e2(t)dt

)2

−
(
1 +

∫ 1

0

(
B(e1)

)′′
(t)e1(t)dt

)(
1 +

∫ 1

0

(
B(e2)

)′′
(t)e2(t)dt

)
=

(∫ 1

0

a1(t)e1(t)e2(t)dt
)2

−
(
1−

∫ 1

0

a1(t)e
2
1(t)dt

)(
1−

∫ 1

0

(a1(t)e
2
2(t)dt

)
≤ M2|e1|2L2 |e2|2L2 −

(
1−m|e1|2L2

)(
1−m|e2|2L2

)
≤ M2|e1|2L2 |e2|2L2 − 1 +m|e2|2L2 +m|e1|2L2 −m2|e1|2L2 |e2|2L2

≤ 1

λ2
1

M2 +
2

λ1
m− 1− 1

λ2
1

m2 =
1

π4
M2 +

2

π2
m− 1− 1

π4
m2 < 0,

where λ1 = π2 is the first eigenvalue of the linear Dirichlet problem:{
−u′′(t) = λu(t), t ∈ [0, 1],
u(0) = u(1) = 0.

Let u ∈ H1
0 with ∥u∥ = r1 and s ∈ (0, 1). Since

|u|∞ ≤ ∥u∥ = r1,

i.e., −r1 ≤ u ≤ r1, we have, by (D1),

(
A(su), u

)
−
(
B(su), u

)
= −

∫ 1

0

(
A(su)

)′′
(t)u(t) dt+

∫ 1

0

(
B(su)

)′′
(t)u(t) dt

=

∫ 1

0

f(t, su(t))

u(t)
u2(t) dt−

∫ 1

0

a1(t)sre
2(t) dt

=

∫ 1

0

(
f(t, su(t))

u(t)
− a1(t)

)
u2(t) dt ≥ 0.

We can now deduce that conditions (H1)
′ and (H2)

′ are satisfied. Regarding condition
(H), it is easy to see that it follows from condition (D2). Indeed, since the embedding



PAIRS OF FIXED POINTS FOR A CLASS OF OPERATORS ON HILBERT SPACES 9

H1
0 ↪→ C is continuous, we have

∥Au∥ = sup
∥v∥

H1
0
≤1

|(Au, v)| = sup
∥v∥

H1
0
≤1

∣∣∣∣∫ 1

0

(Au)′(t)v′(t) dt

∣∣∣∣
= sup

∥v∥
H1

0
≤1

∣∣∣∣∫ 1

0

−(Au)′′(t)v(t) dt

∣∣∣∣ ≤ sup
∥v∥

H1
0
≤1

∫ 1

0

|f(t, u(t))v(t)| dt

≤ c

∫ 1

0

(a2(t)|u(t)|θ + a3(t)) dt ≤ c∥u∥θ
∫ 1

0

a2(t) dt+

∫ 1

0

a3(t) dt.

Letting c1 =
∫ 1

0
a2(t) dt and c2 =

∫ 1

0
a3(t) dt, we obtain

lim sup
∥u∥→+∞

∥Au∥
∥u∥θ

< ∞,

hence (H) is satisfied.
Finally, Theorem 1.2 guarantees that operator A has two pairs of fixed points in

H1
0 . As a consequence, problem (4) admits two pairs of nontrivial solutions in H1

0 .
This completes the proof of Theorem 5.1. □

Example 5.2. For any θ ∈ [0, 1) and r1, t ∈ (0, 1), consider the following function

f(t, u) =

{
a2(t)u

θ, if u ≥ 0,
−a2(t)(−u)θ, if u < 0,

where ai, i ∈ {1, 2, 3}, are defined as follows

• a1(t) = 1 + t,

• a2(t) = r1−θ
1 a1(t),

• a3(t) = t.

Then function f satisfies the hypotheses of Theorem 5.1.
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