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Abstract. In this paper, we study the existence and multiplicity of solutions for the following Kirchhoff-
Choquard type equation involving the fractional p-Laplacian on the Heisenberg group:

u 2 k__ .
M(1lulf) (s (=AY +V ()|l ~2u) = £(&,10) + fion Mt ~2uin Y,

where (—A);7 is the fractional p-Laplacian on the Heisenberg group H", M is the Kirchhoff function,
V(&) is the potential function, 0 <s < 1,1 < p <, u >0, f(&,u) is the nonlinear function, 0 < A < Q,

Q=2N+2,and Q; = 2Q ’1 is the Sobolev critical exponent. Using the Krasnoselskii genus theorem, the
existence of infinitely many solutions is obtained if u is sufficiently large. In addition, using the fractional
version of the concentrated compactness principle, we prove that problem has m pairs of solutions if u
is sufficiently small. As far as we know, the results of our study are new even in the Euclidean case.
Keywords. Fractional concentration-compactness principle; Krasnoselskii genus; Kirchhoff-Choquard
type equations; Heisenberg group.

1. INTRODUCTION

In this paper, we study the existence and multiplicity of solutions for the following Kirchhoff-
Choquard type equation involving the fractional p-Laplacian on the Heisenberg group of the
form:

M) (1A + V)l 20) = F(&0) + fy O a2 i, (L)

where (—A)j, is the fractional p-Laplacian on the Heisenberg group HY, M is the Kirchhoff
function, V(&) is the potential function, 0 < s < 1,1 < p < %’, f(&,u) is the nonlinear function,
u>0,0<A<Q,Q0=2N+2,and Q) = ZQQ:;“ is the Sobolev critical exponent.
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Suppose that the Kirchhoff function M and potential function V satisfy the following assump-
tions: X
(M) M € C(R,R), and there exist T € ( ,%] and 0 < my < m satisfying

mot™ P < M(r) <mt™! foreveryr e Ry,

that is, M is non-degenerate.

(V1) V(&) € C(HN,R) with V(&) > minV (&) = 0;

(V2) there exists R > 0 satisfying lim|,|_,..meas({§ € Br(n) : V(§) < c}) = 0 for every

¢ > 0, where meas(-) denotes the Lebesgue measure on H".

The nonlinearity f(-,-) : RY x R — R is a Carathéodory function, which requires different
assumptions for critical growth and subcritical growth, respectively. For the case of critical

exponent T = %, f satisfies the following assumptions:
(f1) there exists g € (p, Q3 ) such that, for every € > 0, there exists Ce > 0 satisfying
IF(E,0)| < pelt|P 1 +qCelt]9™! ae. &EcHY and foreveryt € R;
(f2) there exista; >0, q1 € (p, Q) satisfying

t
F(&,1)= /0 f(E,8)ds > ar|t|” ae.EcHY and foreveryscR.

For the case of subcritical exponent 7 € (1, Q?jl), the following conditions should be satisfied
for f:
(1) there exists ¢ € (Tp, Q3 ) such that, for every € > 0, there exists C¢ > 0 satisfying
IF(ED)| < tpelt|P ! +qCelt|7! ae. EcHY and foreveryreR;
(f2) there existay > 0 and ¢, € (Tp, Q) ) satisfying
F(E, ) > ar|t|”? ae. EcHY and foreverys € R;

(f3) there exists go € (™22, 0% ) satisfying qoF (&,1) < f(&,1)t for every (€,1) € HY x R,

mo
where mg and m; are the numbers from the condition (M).

Pohozaev [15] was the first to study Kirchhoff equation problems, and he proved the unique
solvability of the mixed problems of quasi-linear hyperbolic Kirchhoff equations with Dirichlet
boundary conditions. Since then, Kirchhoff type problems have received increasing attention,
especially in various models of biological and physical systems. More recently, Fiscella and
Valdinoci [6] discussed in detail the physical significance of the fractional Kirchhoff problem
and its applications, and proposed a stable Kirchhoff variational problem as a very realistic
model. If the nonlinear term has the convolution form, many interesting results were obtained
for this kind of problem. For example, Fan [5] considered the following fractional Choquard-
Kirchhoff equation with subcritical or critical nonlinearity of the form:

{M([u}%)(—A)Suzm A dylulP2u+ u % in Q,

[x—y

1.2
u=0 in RN\ Q, (12)

where M(t) = a+b?1 0 ¢ (1, 2—5), 0 <s <1, A > 0is a positive parameter, Q is a bounded
domain in RN with smooth boundary, 0 < 4 <N, N >2s,0 < p< wa = %va—fz‘; and 26 <
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q<2;= 1% The existence of solutions for problem (1.2) was obtained by using variational
methods and Nehari manifolds.

By using the concentration-compactness lemma and variational methods, Goel and Sreenadh
[8] proved the existence and multiplicity of positive solutions of the Choquard-Kirchhoff equa-

tion:

_ % s _
—M([ul3)Au = A f ()l 2u+ fo mdylul~u, xeQ,
u=0, x€dQ,

where M(t) = a+ ePr®-1, 2;3 = 211\,\’%2”, f is a continuous real valued sign changing function,

and 1 < ¢ <2.
Liang et al. [12] considered the following Choquard-Kirchhoff equations with Hardy-Littlewood-
Sobolev critical exponent:

2 2 \”()’)|2r‘ 2% -2 N
- (a—i—b/N]Vu] dx) Au = otk(x)|u|?“u+p /N—dy lu|"2""u, xeR",
R R

e —y[#
where a >0,5>0,0< u <4, N >3, o, are real parameters, 22‘1 = 21]\7__2”
exponent in the sense of Hardy-Littlewood-Sobolev inequality, and k(x) € L"(RY) with r =
%. Forthecases 1 <g<2,q=2,2<¢g<2* and4 < g < 2-27, they obtained the existence
and multiplicity results by using the Symmetric Mountain Pass Theorem and genus theory under
suitable conditions.

On the other hand, the study of nonlinear partial differential equations on the Heisenberg
group has brought about widespread attention of many researchers. At the same time, some au-
thors tried to establish the existence and multiplicity of solutions for partial differential equation
solutions on the Heisenberg group. For example, Liang and Pucci [11] applied the Symmetric
Mountain Pass Theorem to consider a class of the critical Kirchhoff-Poisson systems on the
Heisenberg group. Pucci and Temperini [19] proved the existence of entire nontrivial solutions
for the (p,q) critical systems on the Heisenberg group by an application of variational meth-
ods. Pucci [17] applied the Mountain Pass Theorem and the Ekeland variational principle to
prove the existence of nontrivial nonnegative solutions of the Schrodinger-Hardy system on the
Heisenberg group. However, once we turn our attention to the critical Choquard equation on
the Heisenberg group, we immediately notice that the literature is relatively sparse. We note
that Goel and Sreenadh [7] proved the regularity of solutions and the nonexistence of solutions
for the critical Choquard equation on the Heisenberg group by using the Linking Theorem and
the Mountain Pass Theorem.

Sun et al. [22] studied the following critical Choquard-Kirchhoff problem on the Heisenberg

group:

is the critical

o)/
()~ = [

where f is a Carathéodory function, M is the Kirchhoff function, Apy is the Kohn Laplacian on
the Heisenberg group HY, u > 0 is a parameter, and 0 = Zg%zl is the critical exponent in the
sense of Hardy-Littlewood-Sobolev inequality. They were the first to establish a new version of
the concentration-compactness principle on the Heisenberg group. Moreover, the existence of

nontrivial solutions were obtained under non-degenerate and degenerate conditions. For more

dn|ul% " 2u+ pf(&,u),
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fascinating results, we refer to An and Liu [1], Bordoni and Pucci [3], Liu et al. [13], Liu and
Zhang [14], Pucci [16, 17], and Pucci and Temperini [18, 19].

Inspired by the above results, we prove that problem (1.1) has infinitely many solutions for u
large enough. We also prove that this equation has m pairs of solutions for y small enough and
odd nonlinear function f(x,-). In particular, it should be pointed out that our results are new
even in the Euclidean case.

Before stating the main results of this paper, we present some notions about the Heisenberg
group HV. If € = (x,y,#) € HY, then the definition of this group operation is

(&) =Eo& = (x+x,y+y 1+ +2(x'y—yx)) forevery £, & e H".

Next, E~! = —£ is the inverse and therefore (£) 1o &1 = (E0 &)L,

The definition of a natural group of dilations on H" is & (&) = (sx,sy,s*t) for every s > 0.
Hence, 8;(Ey o &) = 85(&p) 0 85(&E). Tt can be easily proved that the Jacobian determinant of
dilations & : HV — HY is constant and equal to s€ for every & = (x,y,¢) € H". The natural
number Q = 2N + 2 is called the homogeneous dimension of H" and the critical exponents is

o*: % We define the Kordnyi norm as follows

1
&g = [()c2 -I—yz)2 -I—tz] * for every & € HY,

and we derive this norm from the Heisenberg group’s anisotropic dilation. Hence, the homoge-
neous degree of the Kordnyi norm is equal to 1, in terms of dilations

Os : (x,3,1) > (sx,5Y, szt) for every s > 0.
The set

BH(&Oar) = {é € HN : dH(é()?g) < r}v

denotes the Korédnyi open ball of radius r centered at &). For the sake of simplicity, we denote

B, = B,(0), where O = (0,0) is the natural origin of H".
The following vector fields

T o X J +2 J Y o 2 J
o0 T ax; T T gy, T Hap
generate the real Lie algebra of left invariant vector fields for j = 1,--- ,n, which forms a basis

satisfying the Heisenberg regular commutation relation on H". This means that
(X, Yj] = —48uT, [Y, Yi] = [X;, Xl = [V}, T] = [X;, T] = 0.
The so-called horizontal vector field is just a vector field with the span of [X, Yj]’}:y
The Heisenberg gradient on H is
VH == (X17X27 e 7Xn:Y17Y27' o 7Y}’L)7
and the Kohn Laplacian on HY is given by
N 2 02 02 02

2 P
e e o TR o TR AR Tels

N
Ay=Y X;+Y7 =
j=1

The Haar measure is invariant under the left translations of the Heisenberg group and is Q-
homogeneous in terms of dilations. More precisely, it is consistent with the (2n+ 1)-dimensional
Lebesgue measure. Hence, as shown by Leonardi and Masnou [10], the topological dimension
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2N + 1 of HY is strictly less than its the

(2N + 1)-dimensional Lebesgue measure of any measurable set Q@ C HY. Therefore,

18,(Q)| = s2|Q|, d(8,E) = s9dE and [By(&y,r)| = apr€, where ag = |By(0,1)].

*

For the case of critical exponent T = %, we have the following theorem.

Theorem 1.1. Let T = Q%, 2<p< %’, and suppose that condition (M) is satisfied. Assume that
the nonlinearity f(€,t) is odd in t for fixed & and satisfies conditions (f1) and (f2), and the
potential function V satisfies conditions (V1) and (V;). Then problem (1.1) has infinitely many
solutions for | large enough.

For the case of subcritical exponent T € (1, %), we also have the following result.

Theorem 1.2. Let T € (1 —k) and suppose that condition (M) is satisfied. Assume that f(-,-)
satisfies conditions (f1)', ( f ), and (f3)', and the potential function V satisfies conditions (V1)
and (V3). Then

(i) for every u > 0, there exists u* > 0 such that problem (1.1) has at least one nontrivial
solution uy_ with the following estimate, for every 1 € (0, u*],

1 jS

Tpq0 E Sy e

lup |l < (| ————] pru% ™ (1.3)
mogqo —m1Tp

and
* 0}
2q0Q;, o

u < ” ) (1.4)
sl < pge

-1 myy, 11
where p = - (1— )—I— 07
(ii) if f(&,t) is odd wzth respect to t, then, for every m € N, there exists W, > 0 such that

problem (1.1) has at least m pairs of solutions uy jand uy _; (j=1,2,---,m) for 0 < 1 < Wy,
which satisfy (1.3) and (1.4).

The paper is organized as follows. In Section 2, we review some necessary definitions and

useful lemmas related to our main proof. In Section 3, we mainly discuss the critical case

T= %, and give the proof of Theorem 1.1. Finally, in Section 4, we discuss the subcritical case

and prove Theorem 1.2.

2. PRELIMINARIES

In this section, we review some necessary definitions and useful lemmas related to our main
proof. First, let u : HY — R be a measurable function. We set

o= ([ [ n|N+3s|pd5d")]

and define the fractional Sobolev space S*”(H") on the Heisenberg group as follows:

S*P(HY) = {u € LP(H") : uis a measurable function with [u]; , < o}
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and the norm

[ Z
lelen, = (2 + ) witnul, = ( [ ura

Moreover, for u > 0, let S, be the closure of Cy’ (H") with respect to the following norm

= (R0, + ) with ] — ( L Nv<5>\u|pda)”

in the presence of potential V().
It follows that (Sy, || - ||,) is a uniformly convex Banach space, which was proved in Pucci et
al. [20]. Now, we can define the weak solution of problem (1.1).

Definition 2.1. We call u € S, a weak solution to problem (1.1) if

w(&) —u(n)P—? —u _
malfye [ [ |5)' mﬁf,f) W g(&) -~ gtm)agan-+ [ v(E )l upat)

:/szf u)pds + / /N n- 15‘;Ld77| w(&)%u(E)p(§)dE  for every ¢ € Sy.

2.1)

The corresponding energy functional 7, (u) : Sy, — R of problem (1.1) is

&)1%% fu(m) %
) = S~ o [ S anag — [ rig e

where M(t) = fo M(s)ds. It is easy to prove that I, € C'(Sy,R) and its critical points are
solutions to problem (1.1).
Next, we define

p
Hoy = infy) P : 22)
U u % u [}
(o o MR g )

I (%
H HHQ* /HN/HN |n 1§|l 77 g

By (2.2), we know that HQ} is positive. Let S denote the completion of Cy’ (HM) with respect to
the norm

and

Jlls = (1t + 1l ) win = ( [ viyuag )

Note that, for every fixed u > 0, the norm ||u||w is equivalent to ||u||,,. Invoking Bordoni and
Pucci [3] and Pucci [17], we have the following embedding result.

Lemma 2.1. Let V(&) satisfy condition (V1). Then, for every y € [p,Q3], the embedding
Sy = SSP(HY) — LY(HN)

is continuous. Moreover, for every y € [p,Q; ), the embedding S, — LY(HN) is compact. In
addition, there exists a constant Cy > 0 satisfying |u|y < Cy||u||y for every u € S,;.
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Lemma 2.2. Let V satisfy conditions (Vi) and (V2), and let y € [p,Q} ) be a fixed exponent.
Then, for every bounded sequence {u,}, in Sy, which up to a subsequence satisfies u, — u in
LY(HN) as n — oo.

Next, let D*?(H") be the completion of C§(H") with respect to the Gagliardo semi-norm
[]s, p- Similarly to the proof of Sun et al. [22, Theorem 3.1], we obtain the following lemma.

Lemma 2.3. For every 0 < sp, let {u,}, C D*?(HN) be a bounded sequence satisfying
Uy, — u,
Juv wdn — K> [gv me + Y jes Kby,
i e i (€)]95 — v = i ML ()% + K8,

where J is an at most countable index set, x; € HY ,and 5x,~ is the Dirac mass at xj. Furthermore,

let
_ p
k. — lim limsup/ / [14:(8) Ljﬁ(n)’ dndé
R pseo J{gemV:[>RY JEY  |§ — N TP

and

= Jim limsup [ / I )
YT R et Jigemsyzory ey 1€ n|u (S)Fds

Then, for the energy at infinity,

hmsu/ / d d :/ dK + K 2.3
o Ju Jan Ié nIN+PS nds HY -3)
and
- i ()% ()1
hmsu/ / dnd :/ dv+ Veo. 2.4
In addition,
2
Kj > Hg: v, "

and
P

o7

3. PROOF OF THEOREM 1.1

For the case of the critical exponent T = % and the Kirchhoff function M(-) satisfying condi-
tion (M), we use this section to prove the existence of an infinite number of solutions to problem

(1.1).

0 N .. .
Lemma 3.1. Let T = 7’1, 2 < p <%, and let condition (M) be satisfied. Suppose that the

nonlinearity f(&,t) is odd in t for fixed &, f(-,-) satisfies conditions (f\) and (f>), and the

potential function V satisfies conditions (Vi) and (V2). Then I, is bounded from below for

WH Ql/f’

QA‘ .
u>—n and 1, is even.
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Proof. By (f1), there exists Cyp > 0 satisfying
(&) < ple|P~" + Cogle|?™

and
F(E, 1) <[t|P+Colt|? forae. & c HY and all £ € R.

For every u € S;;, by condition (M), we have

Q Q;
pT ’I/t | k’u )| * _/ V4 o / q
ot 2 SN o [, [ g e = [ v [l

By the definition of HQ* and Lemma 2.1, for 7 = %, we have

Q
mo T )% u( )‘ p q
Lo = 2l — 5o [ andg ~Cyjull, - Ci Jul
20Q; Jun Juy In-1g1* g g
my U 0;/p p q
Z(Q_z_ZQ* Ho ")l — il i
-3 /p -0;/p
Since pu > 2PHQ’” > HQZ and 2 < p < g < Q%, we can deduce that > G/ _
‘Ll mo 2m0 p q A Q* le Q,’L

M; > 0. There exists a small constant & such that £,C; < M. By Young’s 1nequa11ty, we can
deduce that

Q*
Iy (u) > (M) — 1C)|ul| * — Cs.
Thus I, (1) > —C3. Moreover, since f(&,) is odd in ¢ for fixed &, we obtain that I, is even.
The proof of Lemma 3.1 is complete. U

Lemma 3.2. Under the assumptions of Lemma 3.1, I, satisfies (PS). condition for every | >
2I’H7Q7L/p
2
mo
Proof. Take {u,}, C Sy to be a (PS). sequence of the functional /;, that is,
Iy(up) = ¢, Iy(up) =0 asn— oo,

Then we claim that {u,}, is bounded in Su. In fact, from the proof of Lemma 3.1, we can
conclude that

Q*
c+o(l) > Iu(un) > (M, —(5‘1(;2)Hl/tn‘|',/L —C;.

Note that M; — &;C, > 0 when & small enough, so {u,}, is uniformly bounded in S,. This
means that there is a subsequence of {u,}, and u € S, satisfying

Up —u inS“andinLQi(]HIN),

u, = u ae.in HY, G.1)
9

4|92 20 — w9272y in L9 (HY)

as n — oo. By the Brézis-Lieb type inequality, we can obtain

05
o =, = a5, 52, + ().
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Therefore, we have

: (Jun(E)1% [n () 1% 210 (1) — [u(E)|% |ue(1)| % 2u(n)) (un (1) — u(n))
nlgl}o/HN/HN In-1EA dndg§
_ un (&) = u(E)|% |un(n) — u(n)|%

B /HN/HN In—1E[* ands+olh)

(3.2)
Now, we shall demonstrate that
lim [ (f(&,un) — f(&,u))(un —u)d§ = 0. (3.3)

n—oo JHN

Up to a subsequence, it follows by Lemma 2.2 that u, — u in LY(H") for y = p,q € [p,0}).
By (f1), we have

IFEN <[t +Cplt]9! ae. E€HY and foreverys€R.

By the Holder inequality, we see that

[ 8 ) = (&) = )
< [ (™ ™t =]+ Ca 7+ ™) =)
<l 5™ = +-C a4+ ™t =y

which implies that (3.3) holds.
Next, for every fixed u € Sy, we define the following linear function L(u)onS T

(L(u), @)
u(&)—u 2(uEY—u
[ [, MR =) (&) - pimazan -+ [ v 2upa

for every @ € S,.
Next, we show that L(u«) is bounded. In fact, it follows by the Holder inequality that

p—1
p

(L), @)] < lulf, Moy + (/HNV@M%) (/HNV(§)|v|Pd§>’1’

p-1
- P
< ([u1é’,p1+ ([ v@nmra) ) Il
and the following equality (3.4) holds, due to u, — uin Sy,

lim (L(u),u, —u) = 0. (3.4)

n—oo
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We begin to prove that ||u, — u||y, — 0 as n — co. Let us assume that, in general, lim,,_o ||, —
ul|y =d #0. Since {u,}, is a (PS). sequence, by (3.2), (3.3), and (3.4), we obtain that

o(1)

= (IL (), up — u) — (IL(u) Uy — ut)

= M (|[otn] 1) (L (utn) s 4 — ) — M ([[aa]| 2 ) (L), 1 — )

u Qk Uy 0,2 —|u % |u 22y u —u
[ Qe ) ) ) I ) ()~ 1
HY JHY n-'¢|
_ 1a(8) (&)1 s () — () %
= Ml ) L 0) = L)t —u) = [ [ g dnd&(S .

Let us consider each term on the right of the above formula separately. By the Brézis-Lieb type
inequality, we obtain
[t = u]§ p, = [un]§ = []§p, + 0(1)
and 1 1
V(E)? (un — )5 = V(&) Punl — |V (E) Pulf +0(1).
Thus, for M (||uy||%;), we have

M (|[unllir) = M(JJun — ullg + lullr) +o(1). (3.6)
For (L(uy,) — L(u),u, —u), we apply the following inequality (see Kichenassamy and Veron [9])
& —nl? <27(&[P 26— nPP?n)(E —n) forp>2, (3.7)

for every &,n € HY.
Next, we put (3.6) and (3.7) together into (3.5) to obtain the following estimate:

. —u 9 Uy, —u o
e, [, O ) )
= Mt =l ) ) — L) 0 — )

p (3.8)
> o+ e Ll
> 20 ity — = 50—
For convolution term [gv [gv |M"(é)_u(§)||§3|2”|,(1n)_u(n)Qi dndé&, by (2.2), one has
[ ) ) ) iy, g
HY JH In—'E* (3.9)

< w7 H P ]

Finally, we put (3.9) into (3.8), and arrive at

Ql/P

o, Mo Q;
o(l)+u~ IH H”n_”Hu)l > 2_pH”n_uHul-

Letting n — oo, one has

u'2rH, Ql/”in > mod%,
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which implies that d =0 or

2P 0 /p
< —H, ",
H= mo 0
This contradicts u > sz *Q’l/p, which implies that d = 0. Thus, u, — u in S, when u >
= Qfx /p. This completes the proof of Lemma 3.2. 0J

In order to prove Theorem 1.1 for problem (1.1) under critical conditions, we first review
some basic results on the Krasnoselskii genus (see Clark [4] and Rabinowitz [21]). Let Y be a
Banach space and Z, = {id, —id} the symmetric group. We set

Z={XCcY\{0}:X isclosed and X = —X}.
Definition 3.1. For any X € Z, the Krasnoselskii genus of X is defined as follows:
Y(X) = inf{m : there exists h € (C,H" \ {0}) and & is odd}.
We define y(X) = oo if such k does not exist, and we set y(0) = 0.

Lemma 3.3. Let Y = HY and denote the boundary of Q € HY by dQ, which is a symmetric
bounded open subset. Then y(dQ) =

We denote the unit sphere in HY by S¥~!. We deduce by Lemma 3.3 that y(S¥~!) = N. The
following result helps to prove the existence of an infinite number of solutions to problem (1.1).

Lemma 3.4. (see Clark [4]) Let I € C'(Y,R) satisfy the Palais-Smale condition. In addition,
we assume that:

(i) I is bounded from below and even;

(ii) there exists a compact set K € Z satisfying Y(K) =k and sup, g I(u) < I(0).

Then the critical value of I is less than 1(0), and I has at least k pairs of distinct critical points.

Proof of Theorem 1.1. Let ey, e3,- -, be a basis for S;,. For each k € N, k vectors ey,ep,- -+, e
generate Y, = span{ej, ez, - ,ex}, which is a subspace of Sy. Since, p < ¢1 < Q}‘L, we de-
duce that ¥; — L91(HY). Considering that all norms of finite-dimensional Banach spaces are
equivalent, we see that there is a positive C(k) that depends only on k and satisfies

ue| ! SC(k)/HN|u|q1d§ for every u € Y.

Under 7 = %, for every u € ¥, by conditions (M) and (f>), we can deduce that

AN
L RN 1 g ety

mp
I, (u) < —|lu

( 47"~ () )

Taking a sufficiently small constant R > 0 satisfying

ni *
G RO <)
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we obtain, for every r € (0,R) and u € A = {u € Yy : ||u||y = r}, the following equality

Iy (u) <t (’"—erHI —~ a1C(k)) < R% (’"—jRQi—% —aIC(k)> < 0=1,(0),
0 Q;

which implies that sup,,c I, (#) < 0. Note that A is a homeomorphism of S¥71, so y(A) = k by

Lemma 3.3. It can be deduced from Lemma 3.4 that I;; has at least k pairs of distinct critical

points. Since k is arbitrary, we have an infinite number of pairs of distinct critical points for /,,

in §;. The proof of Theorem 1.1 is complete. U
4. PROOF OF THEOREM 1.2

For the case of critical exponent T € (1, %’1 ) and the Kirchhoff function M(-) satisfying con-
dition (M), we prove in this section the existence and multiplicity of solutions to problem (1.1).

Lemma 4.1. Let 7 € (1, %) and suppose that the Kirchhoff function M(-) satisfies condition

(M). Assume that the nonlinearity f(-,-) satisfies condition (f3). If {un}n is a (PS). sequence
of the functional I,, then {uy}, is bounded in S,;.

Proof. Let {u,}, be a (PS). sequence. By conditions (M) and (f3)’, we have

¢+ 0(1)(1+ tall) = T ) — éu;i(un),m

v [ (Ll —F(é,un>) I
> (202

Since <’;i2 — %) > 0, we obtain that {u,}, is bounded in S,. This completes the proof of

Lemma 4.1. O

Lemma 4.2. Let T € (1, Q?jl) and suppose that the Kirchhoff function M(-) satisfies condition

(M). Assume that f(-,-) satisfies conditions (f1)'-(f3), and the potential function V satisfies
9

conditions (V1) and (V,). Then, for every 1> 0andall c € (0,p(mg ,uTHT ), Iy satisfies

the (PS). condition, where p = 5 — @ + ql—o(l —e)-

Proof. We need to divide the proof into two cases, due to the degenerate nature of problem
(1.1): either inf,ep ||ty ||y =1 > 0 or infyen ||up||p =1 =0.

Case It inf,ep ||un ||y =1 > 0. Since {u, }, is a (PS). sequence, we can deduce from Lemma
4.1 that {u,}, is bounded in S,. Next, by Lemma 2.3, up to a subsequence, there is a non-
negative function u € S, satisfying u, — uin Sy

/Han(é)—un(n)v’dn% [ &) =)y 3, (4.1)

€=V vE—qe T L
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and

o (1) % 0 . ju(m)|% 0] |
/HN e dn|un(S)[*+ — v = /N p= lwdmu( )| z+j§v,6xj (4.2)

in the sense of measure, where x; € HY and §, : is the Dirac mass at x;. In addition, we have

> HQ* -+ forevery j € J. (4.3)

Next, we prove that v; = 0 for every j € J. For this purpose, let §; be a singular point of
5—%)

the measures k and v, and we define ;e ; = y(>
hypotheses 0 < y(&) <1,

as a cut-off function. Moreover, the

y(&)=1 in B1(0),
y(£)=0 in HV\B2(0),
Vuy()| <2 inHY

hold, where y € C3 (H"). Now by the boundedness of {ye ju, } in W, we have (I (un), We,jitn)
— 0 as n — oo. Furthermore, we have

M({[uan]|12) (L (ttn) Ve, jttn)

o o 44
HN JHN

n- 1611
where
<L( ll/g]un)
“uf [ |; DY) dan + [ V&) s
(&) = un()|P > (un(&) — Up e,j(G) — Ve j
suf )] T2 08) e 6) i) g

Similarly to the proof of Xiang et al. [23, Lemma 2.3], we have

hmhmsup (//szv Ye,i(& - IIIEJN(PP)S) n(§)|pd§dn)p =0.

n—oo

It follows from the Holder inequality that

()~ ()17~ () = 1)t (1) (Ve ) ~ ()
(v] / T sain)

|t (€) — u( Jun (M) (W, () — We,i(M))” ’
<C£L%hi*f£p</ Jo i lérws “igan) / o g

<C11m11msup<//HZN (1) (Ve (5) — Ve, (n))I" dédn) =0.

nes [n—tE VP

hm limsup M ( ||Mn||ﬂ
—0 n—oco

(4.5)
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Thus, by (4.1), (4.3), and condition (M), we have

Mi’l )
tim lim sup M (||, £ ( //HZN| |n 1§|13|+,,lf” )dédn+/HNV(€)|un\pwe,jd€)

n—yoo
|un (S ()P e ;(S) ‘
>;1th£n_iljpmo( //szv |77 1€|N+ps d&dn

>11mm ( //szv ju(& ’Tl lg‘)l\‘,ifsgd(g)dﬁdn+ukj)r

= mo ()" > mo(Hg: vyt ).

(4.6)
Moreover, it follows from (4.2) that
Q,l 0; .
hmhmsup/ / ()] |Mn(i)| lllg”dnd&
£50 ;e JHN JHN |n 1§| @7
zlim/ / )| u(s )|Qi%’jdnd§+v-:v-
=0/ JHY n-1&[* S

and by Lemma 2.1, since W, = LY(H") is a compact embedding for every y € [1, Q3 ), we have

lim limsup/ JUn)Un W jdE = hm/ u)uye jdé =0. (4.8)
£—0 pooo
Now we put (4.5), (4.6), (4.7), and (4.8) into (4.4) and obtain

_p_ rT
£3

G\t Tyt 2
Vj > mO(uHinj’l) =moUu HQ}‘LVjA s
)
which implies that either v; =0 or v; > (mo/ﬂHT )T

Now we can prove the possible concentration of mass at infinity. Similarly to the above
argument, we define ¢g € C (HY) as a cut-off function. Moreover, the hypotheses 0 < ¢g < 1,

¢r(&) =0 in Bg(0),
Pr(E) =1 in HV\ B£(0),
Var(§)| <7 inHY
hold. Next, by Lemma 2.3, one has
”n - un p

and

()] %5 |10 (E)| & 20}
[ [, e O ot

Q o;
= lim limsup//HZN i (1) 2 () WR(n)dndé.

R n-1Ef

Voo = 11m lim sup
% p—oo

(4.10)
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p

In addition, one has k., > Ho: vg Since (1]

u
M ([t 2) (L ttn), RUn)

Q o)
_/HN/HN |l/tn | |/;7|?’;£|/’)L| A(pRundndé_"/]HIN‘]C(g,Lt,l)bt,l¢)lgcl§—|—()(1),

(), OrUy) — 0 as n — oo, we have

4.11)

where

W) du) =g [ [ S DL dan 1 [ v lunPona
[ 0 8) )OS~ 0

nTg

Similarly to the proof of Xiang et al. [23], one has

im0 ) o

It follows from the Holder inequality that

Up _un 2un — Uy Uy, —
Jim timsup () (1 | /H | ) 0E) ) 1) 0(6) =0 1

n—soo In- 1€’Nﬂ”

() — tn Jun (1 9r(n))I” ’
< € Jim limsup <//HZN = 15‘N+ps dédn //HZN In 1g|N+ps d&dn
Jun(n 9r(n))I”
<C11£30h£,rf£p<//}ﬂ2N ’Tl 1§|N+pv dédn g

For the first term on the right hand side of (4.11), we have by (2.3), (4.9), and condition (M)
that

Jim timsup (15 (10 | [ S E0E0 S gz« [ vl onat

(4.12)

n—yoo
[4n (&) — un(1)|79R(E)" o
2 i imsupmo (1 | [ PSS 1&|N+ps ddn
d d > d >
(H/{éeHN:|€>2R}/HN In— 1§\N+ps Sdn Mol K, K+ Keo) > molt " K.

(4.13)

For the second term on the right hand side of (4.11), since (f;)" and S, < LY(H") is a compact
embedding for every y € [1,Q7 ), it is easy to obtain that

lim limsup [ f(&,u,)u,Ppdx = hm / u)uprdé = 0. (4.14)
R—oo pseo JHN

Now we put (4.10), (4.12), (4.13), and (4.14) into (4.11) to obtain that
I’

P
o5
Voo > mo(,uHlevoo )= n’lo‘LLTHQ* po
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2
which implies that either ve, = 0 or veo > (mo,uTHé* ) 97" In the sequel, we prove that v; >
)
(mo,u’Héi)Qr”’ and ve, > (mO[.LTHéi)QA"’T is impossible. Indeed, if v; > (mo/.LTHéX)QA‘PT,
by Lemma 2.3 and (4.3), we would have

c=lim I (u,) — i(Iu(un) Up)

n—oo

0 (8) = un(1) 17 )
- (pT C]o)( //HZN In- 1§’N+ps d&dn
1 ()19 ()
dnd
<QO 2Ql>/HN/HN In- 15‘1 nd§
mo_mY e (L1
> (5e- ) o+ (5 2Q1)V’
0 o

1 1 1 ml) e — A
> —— o+ —(1——) ) (mop"Hp: )" = p(mou"Hp: ) 477",
(Tp o7 o)) g )% = plmon )

%
where p = p Q* + (1 — ) which contradicts ¢ € (0, p(mou"H,:. )Qfl’f” ). This means
that v; = 0 for every j € J Slmllarly, Voo = 0. Thus, it follows (2.4) that

n—eo JHN JHN |n 1e§|7L 1 Y JEN |71 1§|x nas.

Invoking the Brézis-Lieb Lemma, we obtain
_ Q; _ 0;
oo Ji Jia 1N

Finally, we prove that u, — uin S,. Take {u, }, C S, to be a (PS). sequence of the functional
I, and define

(L(u)
)|p2 . B )
_“//Hm bl |(n(5]>§|N+;1z))<<P(é) (P(n))dédw/HNV(é)mV st

for every ¢ € S;,. Then, we have
o(1) = (I (un) — I, (), un — u)
= M(||utn | ) (L (ot ), 1n — ) = M({Juel[ 1) (L 2t) 1t — )

(letn (€)% |t ()| 9220 (1) — u(E)| % |ue(1) |2 2u(0)) (un (1) — u())
_/JHIN/HN n-1E|* dnd§

)~ £(E ) ).
(4.16)
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For the fourth term on the right hand side of (4.16), similarly to (3.3), we have

lim [ (F(E ) — F(E,10)) (4 — u)AE = 0. (.17)

n—eo JIN

For the third term on the right hand side of (4.16), it follows from (3.1) and (4.15) that

(&) [ un(1)| % 2t (11) — (&) %4 u(m)| % ~2u(1)) (un (1) — u(n))
hm/HN/HN In—1E[*

(4.18)
Now we put (4.17) and (4.18) into (4.16) to obtain
(1) =M ([lunl}r) ((L(utn) , tn — ) — (L)t — 1a)) + M (||t || 1) (L0t) 4 — 1)
— M(J[un[|) (L)t — ).

Since u, — u and {u, }, is bounded in S, we can deduce that limy e M (||u||5 ) (L (1), up —u) =
0. Hence
r}gl}oM(””nHﬂ)((L(”n)a Up — ”) - <L(“)a”n - ”>) =0.

Since infep ||un||y =1 > 0, we have

o(1) = ((L(un), un — ) — (L(u),un —u))

= tfitn =ttt =)+ [ VEN a2t 20 (0, — ) (4.19)
=B + By,
where
B = il =ttty = 1), By = /H VEN " = )y — ),
and

()P~ (u(§) —u(n))(9(§) — o(n))
(w915 //szv In—TE[N+Ps dgdn.

Thus this gives us By > 0. We invoke some elementary inequalities (see, e.g., Kichenassamy and

Veron [9]): For every p > 1, there exist positive constants C; = C(p,n) >0and C; =C(p,n) >0
such that

- < {Cl(léll"zé—Inlp‘zm(é—n) ifp>2,
T\ Gl(EP2E— Il E - mE(EP+ ) F ifl<p<2
for every &, 1 € R. Thus, B, > 0. It follows by (4.19) that By = B, = o(1). For p > 2, one has
Uy, — Uy —(u —u p
O i G ST T RTL D
<Ciu ((un,un—u>€p— <u,un—u>€p) =o(1)

(4.20)

and
i —ullf <C1 [ VIEN |l 2t = |l 2) (4~ ) = (1)
which implies that ||, — u||, = o(1). For 1 < p < 2, we utilize the following inequality:
(a+b)’ <a*+b°, foreverya,b>0,se(0,1).
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From (4.20), B} = o(1), and the Holder inequality, we obtain

Uy, — Uy —(u(g)—u p
ity = [ [ LS _E) ) g,

P p(2-p) p2-p)
< CZ.u ((un,un - u>£p - <u7un - u>fv),p) ? ([un]»V,PZ + [M]SJ?z )

< CZN (<un7un - u>sp,p - <u7un - u>spp) = 0<1)
Similarly to (4.20) and B, = o(1), one has
2—
i =l <€ | VAl )1 = 0] (i + ) "

<G (/HNV@)(WMPZW— P ~2u) (uy —u)) g o(1),

which implies ||u, — ul|y = o(1).

Case II: inf,en || up||w = I = 0. If 0 is an accumulation point of the sequence {u, },, then there
is a subsequence of {u, }, that converges strongly to u = 0, so we reach the desired result. If 0
is an isolated point of the sequence {u, },, then there is a subsequence, still denoted by {u, },
satisfying inf,en ||[un||w = I > 0, which was considered in Case I. This completes the proof of
Lemma 4.2. 0

Under assumptions M(-), V(-), and f(-,-), we can now prove that the function has the moun-

tain pass geometry.

Lemma 4.3. Let T € ( _31) and suppose that the Kirchhoff function M(-) satisfies condition

1
(M). Assume that f(-,-) satzsﬁes condition (f1), and the potential function V(&) satisfies con-
ditions (V1) and (V2). Then, for every i > 0, there exist o, > 0 satisfying I, (u) > 0 for
u € Bs\ {0}, and I, (1) > o for every u € Sy, with ||ul|y = o, where B¢ ={u € Sy, : |Jul|y < o}.

Proof. By condition (f1)’, there exists C¢ > 0 (for every € > 0) satisfying
F(E,1) <e|t|™ +Celt|]9 forae. & € HNand all 1 € R.
For any u € Wy, by condition (M), we have

)|
pT ’ |u )‘ d d / p /
—& ul*?dé —C. ulfdég.
)= B e [ [ RS anaz e [ g -c [ iva
By takmg € € (0, 2’;126) and applying the definition of HQ}’ we have
myg v M 0;/p T
Iu(”)Z—pT““Hﬁ le Ho " |lu |8 — CellulliF — CCellull%
mo u Q;L/P Q- q—1p p
> (Y _
> (2 o ot I e )l

Here, we used the fractional Sobolev embedding |u|, < Clu||, and |u|, < C||u||, in the last
inequality.
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Next, we define

(1) = 2”;0 gQ HQAQA/PIQ;L—TP CCet?~"P  for every t > 0.
P A

Since Q3 > tp and g > 7Tp, it is clear that lim,_,+ g(z) = 2’"7‘;) Pick o = ||u||, small enough
such that

-1
2 _Qi /p Qi —1p 7 my
Mo CCeo?™ P < —|
20; 9% et 22p
and hence I, (u) > g(0)o*” = a. The proof of Lemma 4.3 is thus complete. O

Lemma 4.4. Let T € (1, %) and suppose that Kirchhoff function M(-) satisfies condition (M).
Assume that f(-,-) satisfies condition (f1)’, and the potential function V (&) satisfies conditions
(Vi) and (V2). Then, for every > 0, there exists e € Sy, with |le||y > o satisfying I,,(e) <0,
where © is given by Lemma 4.3.

Proof. By condition (f»)’, we know that F (€,7) > 0 for a.e. £ € HV. Choose a function ug € Sy,
satisfying

_ Juo (11)|% o (§) |+
|uol|w =1 and 20, /HN/HN R dndé& > 0.

By condition (M) and F(&,t) > 0 for a.e. & € HY, one has

it o ()] % 0 (£) 1%
fy(omy) < ™ ol ZQA/HN/HN g e,

Since 2Q3 > Tp, there exists ¢ > 1 large enough satisfying ||tuo ||, > ¢ and I, (tup) < 0. Taking
e = tup, the proof of Lemma 4.4 is complete. 0J

Note that function I, does not satisfy the (PS). condition for every ¢ > 0. Therefore, we can
find a special finite-dimensional subspace to construct sufficiently small minimax levels.

Next, we obtain by assumption (V1) that there is § € H" satisfying V(&) = ming v V (§) =
0. In general, we set §y = 0. By conditions (M) and (f>)’, for u € S, one has

m M e gy [
o) < Sl g [ o e o [l

mq pT / q
< —\ully —a ul2dé.
<Pl —ao [ " dg

We define the function J,, : §;; — R as follows:

J = - 2dg.
u(”) pTHuH“ ao HN|M| é

Thus, I, (1) < Ju(u), and we only need to construct small minimax levels of Jy (u). For any
0 < x <1, we choose &, € C (HN) with |84, = 1 and supp8, C B, (0) satisfying [5,]{ , < x.
In the sequel, we make a scaling argument. Letting

%
ew =8 7% 7E),
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we have suppey C B «:  (0). Thus, for u € (0,1), 7> land 7 >0,
0(03 —p)

u x

l.T
Jy(tey) = —1Ile pr—atqz/ ey|?d
alte) =" llelf —an® [ leulds

TQA

* T
o 18, (&) — 8, (m) *TQ&
05 -7 0(0% —1p)
< [ (L B s v o

TQ)L

—_antd q _ Q1P
aot Z/HN!foI 245} — %W, (15,).

We define ¥, € Cy(Sy, HY) as follows:
TQ?L T
0(Q; —p) p — 92
Pul pf(//w R dgan + [ V% ) d&) ao [ ulde
for every u € S,. It is clear that
W, (to
max ¥y ()

* )
29 q—7Tp

— 6 0
N P B <//HZN| %|n 1§|1\Q’C+(ps dédn—|—/ erp)§)|5x|pd€>

q2Tp(q2a0) q2

Due to condition (M), we know that V(0) =0 and V € (H",R), so there is a constant Ay > 0
satisfying

TQ}L
0< V(‘uQ(Q’i*TP)g) < i’
6%
for every |&] <ry and 0 < u < A,. Since [8,]%, < x. we have
o Tqp
max¥®, (15,) < — 2P __ ()@,
=0 q2tp(qaag)
therefore
q2 _ /L-p 4y QTQA,T
max (1) < )R, @21y
t

q27p(g2a0) 27
for every u € (0,Ay]. To be more precise, we state the following lemma.

Lemma 4.5. Under conditions of Lemma 4.3, there exists a constant A > 0 satisfying the fol-
lowing hypotheses: for every fix i € (0,A), there exists ey, € Sy, with |ley||y > o satisfying
Iy(ey) <0and

TQ7L

max I (tey) < pp ™,
t€l0,1]

where p = ]p 25* + L (1—,,'"7(1)).
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Proof. Let ) be small enough such that

g2 —1Tp ks
5 (20)277 < p.
q27p(q2a0) 7
For all t > 11, take A = Ay and choose #; > 0 satisfying ||ey ||y > o and I, (tey) < 0. Letting
ey = t1ey, we obtain the desired result immediately. This completes the proof of Lemma 4.5.
0

Forany me N, 1 <i# j <m, select functions &, € Cy (H") satisfying suppd}, N supps = 0,
|8xlq, = 1, and [8y]5, < x. There is r} > 0 satisfying supp5)"( CBy(0)fori=1,2,---,m

__"%
ey = 6%(:“ Q(Q}‘Lffp)é)

and
1 2
E}, = span{e“,e“, e

Note thatu =}/ | ¢' e € E™_ . so we obtain

wx

un(§) —un(m)I” , ARG
/ /Hw e g = Yl [ ”yn—lé\N+w dsdn

[ v@nras =Y [ v,

mI%ju(E)I% 120 e ()19 e}, (£)[%
zQA/HN/HN R 2912” O e T T

/HNF(é,u)dé = i]/HNF(s,c"e;)dz;

Thus I, (u) = Y7 1Iu(ceu) and

rQ’;L
. s .
Iu(c'ey) < p=2"Wy(c'ey).
Take B = max |8} |5, i =1,2,---,m and for every |x| < r} and p < Ay, there exists Ay, > 0

‘EQ/1
satisfying V (u"@ " &) < £ From (4.21), we derive that

=

q—1Tp - QTQA‘L'
< 5 (2x) 2P A
q2Tp(qaag) 27

for every i € (0,An ). Thus, we have the following lemma.

Lemma 4.6. Under the conditions of Lemma 4.3, for every m € N, there exists A, > 0 satisfying

the following hypothesis: for every uw € (0,Ay), there exists an m-dimensional subspace Ej
satisfying
Tle
max [, (u) < ppu . (4.22)

m
uckEy
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Proof. Let ) small enough to satisfy

q2—1Tp s
5= (20)27 <p
q2Tp(qaao) 2~
and choose Ej/ = E |, . Then, we can obtain the desired result immediately. This completes the
proof of Lemma 4.6. U

Proof of Theorem 1.2. Apply Lemma 4.5 for every u > 0, consider the function /,,. Let u* = A,
and define for every u < p* the min-max value c* = infjcr, max,c( 1 Zu (h(t)), where

Ty = {heC([0,1),W,): h(0) =0 and h(1) = &y}

TQ;{
By Lemma 4.3 and Lemma 4.5, one has a < ¢y, < p/,tle_”’. By Lemma 4.2, we know that
I, satisfies the (PS)., condition, and we can deduce that there is u; € Sy, satisfying I, (u1) —
Cu, I"L(ul) — 0. Therefore, u; is a solution of (2.1). Since u; is a critical point of ,;, we have

‘L'Qi 1
qu/r”’ > I,u('fll) :Iu(ul) — —<I‘{l(u1),u1>

o) 0;
mo mi\ e L[ [ )i @)
> (7™M n dndé | |
- (Tp QO)HL“H“ (6]0 205 Juv Juv In—1g* nds

which yields inequalities (1.3) and (1.4). This completes the proof of Theorem 1.2 (1).
Next, we are going to prove Theorem 1.2 (ii). We define

I'={yeC(Sy,Syu): yis an odd homeomorphism},
and for every B € Y, we define
i(B) = miny(y ﬂ dBs),

yel’
where 6 > 0 is a constant defined in Lemma 4.3. Therefore, i(B) is a version of the Benci
pseudo-index Benci [2]. Let
c¢;= inf supl, j=12,---'m
a i(B)<jueB wl),

It is clear that ¢; < ¢y < -+ < ¢y In the sequel, we are to going prove that ¢; > o and ¢, <
SUPye I, (u), where o > 0 is the constant defined in Lemma 4.3. For all B € Y, it follows from
Benci [2, Theorem 1.4] that i(B) > 1, so we can deduce that y(B(\dB¢) > 1. This implies that
B(dBs # 0. By Lemma 4.3, one has I, (1) > o for every ||u||y, = o. Thus sup,cgly(u) > o
and c¢; > o. Considering that the Krasnoselskii genus satisfies the dimension property Benci
[2], we obtain

Y(EY) ﬂ&Bg) =dim(E}/) = m, foreveryy € T,
which implies that i(£})') = m. Hence, ¢, < SUP, e Iy (u). By (4.22), one has
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where p > 0 is a constant defined in Lemma 4.2. As can be seen from Lemma 4.2 that 1, (u)
%
satisfies the (PS). condition at all levels ¢ € (0, p(mouTHéi)le ~"7). Finally, by using the gen-

eral critical point theory, we obtain that all ¢; of 1 < j < m are critical values of Iu(u). Since
I, (u) is even, one sees that I, (1) has at least m pairs of critical points. Therefore, I, (1) has at
least m pairs of critical points as the solutions of problem (1.1). The proof of Theorem 1.2 is
thus complete. (|
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