Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Multiple solutions for a Neumann system involving subquadratic nonlinearities

Alexandru Kristály^{a,*}, Dušan Repovš^b

^a Department of Economics, Babeş-Bolyai University, Str. Teodor Mihali, nr. 58-60, 400591 Cluj-Napoca, Romania
^b Faculty of Mathematics and Physics, and Faculty of Education, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

ARTICLE INFO

Article history: Received 27 August 2010 Accepted 3 November 2010

Keywords: Neumann system Subquadratic Nonexistence Multiplicity

ABSTRACT

In this paper, we consider the model semilinear Neumann system

 $\begin{cases} -\Delta u + a(x)u = \lambda c(x)F_u(u, v) & \text{in } \Omega, \\ -\Delta v + b(x)v = \lambda c(x)F_v(u, v) & \text{in } \Omega, \\ \frac{\partial u}{\partial v} = \frac{\partial v}{\partial v} = 0 & \text{on } \partial \Omega, \end{cases}$ (N_{\lambda})

where $\Omega \subset \mathbb{R}^N$ is a smooth open bounded domain, ν denotes the outward unit normal to $\partial \Omega$, $\lambda \geq 0$ is a parameter, $a, b, c \in L^{\infty}_{+}(\Omega) \setminus \{0\}$, and $F \in C^1(\mathbb{R}^2, \mathbb{R}) \setminus \{0\}$ is a nonnegative function which is subquadratic at infinity. Two nearby numbers are determined in explicit forms, $\underline{\lambda}$ and $\overline{\lambda}$ with $0 < \underline{\lambda} \leq \overline{\lambda}$, such that for every $0 \leq \lambda < \underline{\lambda}$, system (N_{λ}) has only the trivial pair of solution, while for every $\lambda > \overline{\lambda}$, system (N_{λ}) has at least two distinct nonzero pairs of solutions.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Let us consider the quasilinear Neumann system

$$\begin{cases} -\Delta_p u + a(x)|u|^{p-2}u = \lambda c(x)F_u(u, v) & \text{in }\Omega, \\ -\Delta_q v + b(x)|v|^{q-2}v = \lambda c(x)F_v(u, v) & \text{in }\Omega, \\ \frac{\partial u}{\partial u} = \frac{\partial v}{\partial u} = 0 & \text{on }\partial\Omega, \end{cases}$$

$$(N_{\lambda}^{p,q})$$

where p, q > 1; $\Omega \subset \mathbb{R}^N$ is a smooth open bounded domain; ν denotes the outward unit normal to $\partial \Omega$; $a, b, c \in L^{\infty}(\Omega)$ are some functions; $\lambda \ge 0$ is a parameter; and F_u and F_v denote the partial derivatives of $F \in C^1(\mathbb{R}^2, \mathbb{R})$ with respect to the first and second variables, respectively.

Recently, problem $(N_{\lambda}^{p,q})$ has been considered by several authors. For instance, under suitable assumptions on a, b, c and F, El Manouni and Kbiri Alaoui [1] proved the existence of an interval $A \subset (0, \infty)$ such that $(N_{\lambda}^{p,q})$ has at least three solutions whenever $\lambda \in A$ and p, q > N. Lisei and Varga [2] also established the existence of at least three solutions for the system $(N_{\lambda}^{p,q})$ with nonhomogeneous and nonsmooth Neumann boundary conditions. Di Falco [3] proved the existence of infinitely many solutions for $(N_{\lambda}^{p,q})$ when the nonlinear function F has a suitable oscillatory behavior. Systems similar to $(N_{\lambda}^{p,q})$ with the Dirichlet boundary conditions were also considered by Afrouzi and Heidarkhani [4,5], Boccardo and de Figueiredo [6], Heidarkhani and Tian [7], and Li and Tang [8]; see also references therein.

* Corresponding author. E-mail address: alexandrukristaly@yahoo.com (A. Kristály).

 $^{0362\}text{-}546X/\$$ – see front matter S 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2010.11.018

The aim of the present paper is to describe a new phenomenon for Neumann systems when the nonlinear term has a subquadratic growth. In order to avoid technicalities, instead of the quasilinear system $(N_{\lambda}^{p,q})$, we shall consider the semilinear problem

$$\begin{cases} -\Delta u + a(x)u = \lambda c(x)F_u(u, v) & \text{in }\Omega, \\ -\Delta v + b(x)v = \lambda c(x)F_v(u, v) & \text{in }\Omega, \\ \frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0 & \text{on }\partial\Omega. \end{cases}$$
(N_{\lambda})

We assume that the nonlinear term $F \in C^1(\mathbb{R}^2, \mathbb{R})$ satisfies the following properties:

 (\mathbf{F}_{\perp}) F(s, t) > 0 for every $(s, t) \in \mathbb{R}^2$, F(0, 0) = 0, and $F \neq 0$; $\begin{array}{l} (\mathbf{F}_{+}) \ \lim_{|s|+|t|\to\infty} \frac{F_{s}(s,t)}{|s|+|t|} = \lim_{|s|+|t|\to\infty} \frac{F_{t}(s,t)}{|s|+|t|} = 0; \\ (\mathbf{F}_{\infty}) \ \lim_{|s|+|t|\to\infty} \frac{F_{s}(s,t)}{|s|+|t|} = \lim_{|s|+|t|\to\infty} \frac{F_{t}(s,t)}{|s|+|t|} = 0. \end{array}$

Example 1.1. A typical nonlinearity which fulfils hypotheses (\mathbf{F}_+), (\mathbf{F}_0) and (\mathbf{F}_∞) is $F(s, t) = \ln(1 + s^2 t^2)$.

We also introduce the set

$$\Pi_+(\Omega) = \{ a \in L^\infty(\Omega) : \operatorname{essinf}_\Omega a > 0 \}.$$

For $a, b, c \in \Pi_+(\Omega)$ and for $F \in C^1(\mathbb{R}^2, R)$ which fulfils the hypotheses (\mathbf{F}_+) , (\mathbf{F}_0) and (\mathbf{F}_∞) , we define the numbers

$$s_F = 2\|c\|_{L^1} \max_{(s,t)\neq(0,0)} \frac{F(s,t)}{\|a\|_{L^1} s^2 + \|b\|_{L^1} t^2}, \text{ and } S_F = \max_{(s,t)\neq(0,0)} \frac{|sF_s(s,t) + tF_t(s,t)|}{\|c/a\|_{L^\infty}^{-1} s^2 + \|c/b\|_{L^\infty}^{-1} t^2}.$$

Note that these numbers are finite, positive and $S_F \ge s_F$, see Proposition 2.1 (here and in what follows, $\|\cdot\|_{L^p}$ denotes the usual norm of the Lebesgue space $L^p(\Omega)$, $p \in [1, \infty]$. Our main result reads as follows.

Theorem 1.1. Let $F \in C^1(\mathbb{R}^2, \mathbb{R})$ be a function which satisfies (\mathbf{F}_+) , (\mathbf{F}_0) and (\mathbf{F}_∞) , and $a, b, c \in \Pi_+(\Omega)$. Then, the following statements hold.

(i) For every $0 \le \lambda < S_F^{-1}$, system (N_{λ}) has only the trivial pair of solution. (ii) For every $\lambda > s_F^{-1}$, system (N_{λ}) has at least two distinct, nontrivial pairs of solutions $(u_{\lambda}^i, v_{\lambda}^i) \in H^1(\Omega)^2$, $i \in \{1, 2\}$.

Remark 1.1. (a) A natural question arises which is still open: how many solutions exist for (N_{λ}) when $\lambda \in [S_{r}^{-1}, S_{r}^{-1}]$? Numerical experiments show that s_F and S_F are usually not far from each other, although their origins are independent. For instance, if a = b = c, and *F* is from Example 1.1, we have $s_F \approx 0.8046$ and $S_F = 1$.

(b) Assumptions (\mathbf{F}_+), (\mathbf{F}_0) and (\mathbf{F}_∞) imply that there exists c > 0 such that

$$0 \le F(s,t) \le c(s^2 + t^2) \quad \text{for all } (s,t) \in \mathbb{R}^2, \tag{1.1}$$

i.e., F has a subguadratic growth. Consequently, Theorem 1.1 completes the results of several papers, where F fulfils the Ambrosetti–Rabinowitz condition, i.e., there exist $\theta > 2$ and r > 0 such that

$$0 < \theta F(s,t) \le sF_s(s,t) + tF_t(s,t) \quad \text{for all } |s|, |t| \ge r.$$

$$(1.2)$$

Indeed, (1.2) implies that for some $C_1, C_2 > 0$, one has $F(s, t) > C_1(|s|^{\theta} + |t|^{\theta})$ for all $|s|, |t| > C_2$.

The next section contains some auxiliary notions and results, while in Section 3 we prove Theorem 1.1. First, a direct calculation proves (i), while a very recent three critical points result of Ricceri [9] provides the proof of (ii).

2. Preliminaries

A solution for (N_{λ}) is a pair $(u, v) \in H^{1}(\Omega)^{2}$ such that

$$\begin{cases} \int_{\Omega} (\nabla u \nabla \phi + a(x)u\phi) dx = \lambda \int_{\Omega} c(x)F_u(u, v)\phi dx & \text{ for all } \phi \in H^1(\Omega), \\ \int_{\Omega} (\nabla v \nabla \psi + b(x)v\psi) dx = \lambda \int_{\Omega} c(x)F_v(u, v)\psi dx & \text{ for all } \psi \in H^1(\Omega). \end{cases}$$

$$(2.1)$$

Let $a, b, c \in \Pi_+(\Omega)$. We associate to the system (N_λ) the energy functional $I_\lambda : H^1(\Omega)^2 \to \mathbb{R}$ defined by

$$I_{\lambda}(u, v) = \frac{1}{2}(\|u\|_{a}^{2} + \|v\|_{b}^{2}) - \lambda \mathcal{F}(u, v)$$

where

$$||u||_a = \left(\int_{\Omega} |\nabla u|^2 + a(x)u^2\right)^{1/2}; \qquad ||v||_b = \left(\int_{\Omega} |\nabla v|^2 + b(x)v^2\right)^{1/2},$$

and

$$\mathcal{F}(u, v) = \int_{\Omega} c(x) F(u, v).$$

It is clear that $\|\cdot\|_a$ and $\|\cdot\|_b$ are equivalent to the usual norm on $H^1(\Omega)$. Note that if $F \in C^1(\mathbb{R}^2, \mathbb{R})$ verifies the hypotheses (\mathbf{F}_0) and (\mathbf{F}_∞) (see also relation (1.1)), the functional I_λ is well defined, of class C^1 on $H^1(\Omega)^2$ and its critical points are exactly the solutions for (N_λ) . Since $F_s(0, 0) = F_t(0, 0) = 0$ from (\mathbf{F}_0) , (0, 0) is a solution of (N_λ) for every $\lambda \ge 0$.

In order to prove Theorem 1.1(ii), we must find critical points for I_{λ} . In order to do this, we recall the following Ricceritype three critical point theorem. First, we need the following notion: if *X* is a Banach space, we denote by W_X the class of those functionals $E : X \to \mathbb{R}$ that possess the property that if $\{u_n\}$ is a sequence in *X* converging weakly to $u \in X$ and $\liminf_n E(u_n) \leq E(u)$ then $\{u_n\}$ has a subsequence strongly converging to *u*.

Theorem 2.1 ([9, Theorem 2]). Let X be a separable and reflexive real Banach space, let $E_1 : X \to \mathbb{R}$ be a coercive, sequentially weakly lower semicontinuous C^1 functional belonging to W_X , bounded on each bounded subset of X and whose derivative admits a continuous inverse on X^* , and $E_2 : X \to \mathbb{R}$ a C^1 functional with a compact derivative. Assume that E_1 has a strict local minimum u_0 with $E_1(u_0) = E_2(u_0) = 0$. Setting the numbers

$$\tau = \max\left\{0, \limsup_{\|u\|\to\infty} \frac{E_2(u)}{E_1(u)}, \limsup_{u\to u_0} \frac{E_2(u)}{E_1(u)}\right\},\tag{2.2}$$

$$\chi = \sup_{E_1(u)>0} \frac{E_2(u)}{E_1(u)},$$
(2.3)

assume that $\tau < \chi$.

Then, for each compact interval $[a, b] \subset (1/\chi, 1/\tau)$ (with the conventions $1/0 = \infty$ and $1/\infty = 0$) there exists $\kappa > 0$ with the following property: for every $\lambda \in [a, b]$ and every C^1 functional $E_3 : X \to \mathbb{R}$ with a compact derivative, there exists $\delta > 0$ such that for each $\theta \in [0, \delta]$, the equation

$$E'_{1}(u) - \lambda E'_{2}(u) - \theta E'_{3}(u) = 0$$

admits at least three solutions in X having norm less than κ .

We conclude this section with an observation which involves the constants s_F and S_F .

Proposition 2.1. Let $F \in C^1(\mathbb{R}^2, \mathbb{R})$ be a function which satisfies (\mathbf{F}_+) , (\mathbf{F}_0) and (\mathbf{F}_∞) , and $a, b, c \in \Pi_+(\Omega)$. Then the numbers s_F and S_F are finite, positive and $S_F \ge s_F$.

Proof. It follows from (\mathbf{F}_0) and (\mathbf{F}_∞) and from the continuity of the functions $(s, t) \mapsto \frac{F_s(s,t)}{|s|+|t|}$, $(s, t) \mapsto \frac{F_t(s,t)}{|s|+|t|}$ away from (0, 0), that there exists M > 0 such that

$$|F_s(s,t)| \le M(|s|+|t|)$$
 and $|F_t(s,t)| \le M(|s|+|t|)$ for all $(s,t) \in \mathbb{R}^2$.

Consequently, a standard mean value theorem together with (\mathbf{F}_{+}) implies that

$$0 \le F(s,t) \le 2M(s^2 + t^2) \quad \text{for all } (s,t) \in \mathbb{R}^2.$$
(2.4)

We now prove that

$$\lim_{(s,t)\to(0,0)} \frac{F(s,t)}{s^2+t^2} = 0 \quad \text{and} \quad \lim_{|s|+|t|\to\infty} \frac{F(s,t)}{s^2+t^2} = 0.$$
(2.5)

From (**F**₀) and (**F**_{∞}), for every $\varepsilon > 0$, there exists $\delta_{\varepsilon} \in (0, 1)$ such that for every $(s, t) \in \mathbb{R}^2$ with $|s| + |t| \in (0, \delta_{\varepsilon}) \cup (\delta_{\varepsilon}^{-1}, \infty)$, one has

$$\frac{|F_s(s,t)|}{|s|+|t|} < \frac{\varepsilon}{4} \quad \text{and} \quad \frac{|F_t(s,t)|}{|s|+|t|} < \frac{\varepsilon}{4}.$$
(2.6)

From (2.6) and the mean value theorem, for every $(s, t) \in \mathbb{R}^2$ with $|s| + |t| \in (0, \delta_{\varepsilon})$, we have

$$F(s,t) = F(s,t) - F(0,t) + F(0,t) - F(0,0)$$

$$\leq \frac{\varepsilon}{2}(s^{2} + t^{2})$$

which gives the first limit in (2.5). Now, for every $(s, t) \in \mathbb{R}^2$ with $|s| + |t| > \delta_{\varepsilon}^{-1} \max\{1, \sqrt{8M/\varepsilon}\}$, by using (2.4) and (2.6), we have

$$\begin{aligned} F(s,t) &= F(s,t) - F\left(\frac{\delta_{\varepsilon}^{-1}}{|s|+|t|}s,t\right) + F\left(\frac{\delta_{\varepsilon}^{-1}}{|s|+|t|}s,t\right) - F\left(\frac{\delta_{\varepsilon}^{-1}}{|s|+|t|}s,\frac{\delta_{\varepsilon}^{-1}}{|s|+|t|}t\right) + F\left(\frac{\delta_{\varepsilon}^{-1}}{|s|+|t|}s,\frac{\delta_{\varepsilon}^{-1}}{|s|+|t|}t\right) \\ &\leq \frac{\varepsilon}{4}(|s|+|t|)^2 + 2M\delta_{\varepsilon}^{-2} \\ &\leq \varepsilon(s^2+t^2), \end{aligned}$$

which leads us to the second limit in (2.5).

The facts above show that the numbers s_F and S_F are finite. Moreover, $s_F > 0$. We now prove that $S_F \ge s_F$. To do this, let $(s_0, t_0) \in \mathbb{R}^2 \setminus \{(0, 0)\}$ be a maximum point of the function $(s, t) \mapsto \frac{F(s, t)}{\|a\|_{L^1} s^2 + \|b\|_{L^1} t^2}$. In particular, its partial derivatives vanishes at (s_0, t_0) , yielding

$$F_{s}(s_{0}, t_{0})(\|a\|_{L^{1}}s_{0}^{2} + \|b\|_{L^{1}}t_{0}^{2}) = 2\|a\|_{L^{1}}s_{0}F(s_{0}, t_{0});$$

$$F_{s}(s_{0}, t_{0})(\|a\|_{L^{1}}s_{0}^{2} + \|b\|_{L^{1}}t_{0}^{2}) = 2\|b\|_{L^{1}}s_{0}F(s_{0}, t_{0});$$

$$F_t(s_0, t_0)(\|a\|_{L^1}s_0^2 + \|b\|_{L^1}t_0^2) = 2\|b\|_{L^1}t_0F(s_0, t_0).$$

From the two relations above, we obtain

$$s_0F_s(s_0, t_0) + t_0F_t(s_0, t_0) = 2F(s_0, t_0).$$

On the other hand, since $a, b, c \in \Pi_+(\Omega)$, we have

$$\|c\|_{L^1} = \int_{\Omega} c(x) \mathrm{d}x = \int_{\Omega} \frac{c(x)}{a(x)} a(x) \mathrm{d}x \le \left\|\frac{c}{a}\right\|_{L^{\infty}} \int_{\Omega} a(x) \mathrm{d}x = \left\|\frac{c}{a}\right\|_{L^{\infty}} \|a\|_{L^1},$$

thus $\|c/a\|_{L^{\infty}}^{-1} \le \|a\|_{L^1} \|c\|_{L^1}$ and in a similar way $\|c/b\|_{L^{\infty}}^{-1} \le \|b\|_{L^1} \|c\|_{L^1}$. Combining these inequalities with the above argument, we conclude that $S_F \ge s_F$. \Box

3. Proof of Theorem 1.1

In this section we assume that the assumptions of Theorem 1.1 are fulfilled.

Proof of Theorem 1.1(i). Let $(u, v) \in H^1(\Omega)^2$ be a solution of (N_λ) . Choosing $\phi = u$ and $\psi = v$ in (2.1), we obtain

$$\begin{split} \|u\|_{a}^{2} + \|v\|_{b}^{2} &= \int_{\Omega} (|\nabla u|^{2} + a(x)u^{2} + |\nabla v|^{2} + b(x)v^{2}) \\ &= \lambda \int_{\Omega} c(x)(F_{u}(u, v)u + F_{v}(u, v)v) \\ &\leq \lambda S_{F} \int_{\Omega} c(x)(\|c/a\|_{L^{\infty}}^{-1}u^{2} + \|c/b\|_{L^{\infty}}^{-1}v^{2}) \\ &\leq \lambda S_{F} \int_{\Omega} (a(x)u^{2} + b(x)v^{2}) \\ &\leq \lambda S_{F} (\|u\|_{a}^{2} + \|v\|_{b}^{2}). \end{split}$$

Now, if $0 \le \lambda < S_F^{-1}$, we necessarily have (u, v) = (0, 0), which concludes the proof. \Box

Proof of Theorem 1.1(ii). In Theorem 2.1, we choose $X = H^1(\Omega)^2$ endowed with the norm $||(u, v)|| = \sqrt{||u||_a^2 + ||v||_b^2}$, and $E_1, E_2 : H^1(\Omega)^2 \to \mathbb{R}$ defined by

$$E_1(u, v) = \frac{1}{2} ||(u, v)||^2$$
 and $E_2(u, v) = \mathcal{F}(u, v).$

It is clear that both E_1 and E_2 are C^1 functionals and $I_{\lambda} = E_1 - \lambda E_2$. It is also a standard fact that E_1 is a coercive, sequentially weakly lower semicontinuous functional which belongs to $W_{H^1(\Omega)^2}$, bounded on each bounded subset of $H^1(\Omega)^2$, and its derivative admits a continuous inverse on $(H^1(\Omega)^2)^*$. Moreover, E_2 has a compact derivative since $H^1(\Omega) \hookrightarrow L^p(\Omega)$ is a compact embedding for every $p \in (2, 2^*)$.

Now, we prove that the functional $(u, v) \mapsto \frac{E_2(u,v)}{E_1(u,v)}$ has similar properties as the function $(s, t) \mapsto \frac{F(s,t)}{s^2+t^2}$. More precisely, we shall prove that

$$\lim_{\|(u,v)\|\to 0} \frac{E_2(u)}{E_1(u)} = \lim_{\|(u,v)\|\to\infty} \frac{E_2(u)}{E_1(u)} = 0.$$
(3.1)

First, relation (2.5) implies that for every $\varepsilon > 0$ there exists $\delta_{\varepsilon} \in (0, 1)$ such that for every $(s, t) \in \mathbb{R}^2$ with $|s| + |t| \in (0, \delta_{\varepsilon}) \cup (\delta_{\varepsilon}^{-1}, \infty)$, one has

$$0 \le \frac{F(s,t)}{s^2 + t^2} < \frac{\varepsilon}{4 \max\{\|c/a\|_{L^{\infty}}, \|c/b\|_{L^{\infty}}\}}.$$
(3.2)

Fix $p \in (2, 2^*)$. Note that the continuous function $(s, t) \mapsto \frac{F(s,t)}{|s|^p + |t|^p}$ is bounded on the set $\{(s, t) \in \mathbb{R}^2 : |s| + |t| \in [\delta_{\varepsilon}, \delta_{\varepsilon}^{-1}]\}$. Therefore, for some $m_{\varepsilon} > 0$, we have in particular

$$0 \le F(s,t) \le \frac{\varepsilon}{4 \max\{\|c/a\|_{L^{\infty}}, \|c/b\|_{L^{\infty}}\}} (s^2 + t^2) + m_{\varepsilon}(|s|^p + |t|^p) \quad \text{for all } (s,t) \in \mathbb{R}^2.$$

Therefore, for each $(u, v) \in H^1(\Omega)^2$, we get

$$\begin{split} 0 &\leq E_{2}(u, v) = \int_{\Omega} c(x) F(u, v) \\ &\leq \int_{\Omega} c(x) \left[\frac{\varepsilon}{4 \max\{\|c/a\|_{L^{\infty}}, \|c/b\|_{L^{\infty}}\}} (u^{2} + v^{2}) + m_{\varepsilon}(|u|^{p} + |v|^{p}) \right] \\ &\leq \int_{\Omega} \left[\frac{\varepsilon}{4} (a(x)u^{2} + b(x)v^{2}) + m_{\varepsilon}c(x)(|u|^{p} + |v|^{p}) \right] \\ &\leq \frac{\varepsilon}{4} \|(u, v)\|^{2} + m_{\varepsilon}\|c\|_{L^{\infty}} S_{p}^{p}(\|u\|_{a}^{p} + \|v\|_{b}^{p}) \\ &\leq \frac{\varepsilon}{4} \|(u, v)\|^{2} + m_{\varepsilon}\|c\|_{L^{\infty}} S_{p}^{p}\|(u, v)\|^{p}, \end{split}$$

where $S_l > 0$ is the best constant in the inequality $||u||_{L^l} \le S_l \min\{||u||_a, ||u||_b\}$ for every $u \in H^1(\Omega)$, $l \in (1, 2^*)$ (we used the fact that the function $\alpha \mapsto (s^{\alpha} + t^{\alpha})^{\frac{1}{\alpha}}$ is decreasing, $s, t \ge 0$). Consequently, for every $(u, v) \ne (0, 0)$, we obtain

$$0 \leq \frac{E_2(u,v)}{E_1(u,v)} \leq \frac{\varepsilon}{2} + 2m_{\varepsilon} \|c\|_{L^{\infty}} S_p^p \|(u,v)\|^{p-2}$$

Since p > 2 and $\varepsilon > 0$ is arbitrarily small when $(u, v) \rightarrow 0$, we obtain the first limit from (3.1).

Now, we fix $r \in (1, 2)$. The continuous function $(s, t) \mapsto \frac{F(s, t)}{|s|^r + |t|^r}$ is bounded on the set $\{(s, t) \in \mathbb{R}^2 : |s| + |t| \in [\delta_{\varepsilon}, \delta_{\varepsilon}^{-1}]\}$, where $\delta_{\varepsilon} \in (0, 1)$ is from (3.2). Combining this fact with (3.2), one can find a number $M_{\varepsilon} > 0$ such that

$$0 \le F(s,t) \le \frac{\varepsilon}{4 \max\{\|c/a\|_{L^{\infty}}, \|c/b\|_{L^{\infty}}\}} (s^2 + t^2) + M_{\varepsilon}(|s|^r + |t|^r) \quad \text{for all } (s,t) \in \mathbb{R}^2.$$

The Hölder inequality and a similar calculation as above show that

$$0 \le E_2(u, v) \le \frac{\varepsilon}{4} \|(u, v)\|^2 + 2^{1-\frac{r}{2}} M_{\varepsilon} \|c\|_{L^{\infty}} S_r^r \|(u, v)\|^r$$

For every $(u, v) \neq (0, 0)$, we have

$$0 \le \frac{E_2(u, v)}{E_1(u, v)} \le \frac{\varepsilon}{2} + 2^{2-\frac{r}{2}} M_{\varepsilon} \|c\|_{L^{\infty}} S_r^r \|(u, v)\|^{r-2}$$

Due to the arbitrariness of $\varepsilon > 0$ and $r \in (1, 2)$, by letting the limit $||(u, v)|| \to \infty$, we obtain the second relation from (3.1).

Note that E_1 has a strict global minimum $(u_0, v_0) = (0, 0)$, and $E_1(0, 0) = E_2(0, 0) = 0$. The definition of the number τ in Theorem 2.1, see (2.2), and the limits in (3.1) imply that $\tau = 0$. Furthermore, since $H^1(\Omega)$ contains the constant functions on Ω , keeping the notation from (2.3), we obtain

$$\chi = \sup_{E_1(u,v)>0} \frac{E_2(u,v)}{E_1(u,v)} \ge 2 \|c\|_{L^1} \max_{(s,t)\neq(0,0)} \frac{F(s,t)}{\|a\|_{L^1}s^2 + \|b\|_{L^1}t^2} = s_F.$$

Therefore, applying Theorem 2.1 (with $E_3 \equiv 0$), we obtain, in particular, for every $\lambda \in (s_F^{-1}, \infty)$, the equation $I'_{\lambda}(u, v) \equiv E'_1(u, v) - \lambda E'_2(u, v) = 0$ admits at least three distinct pairs of solutions in $H^1(\Omega)^2$. Due to condition (**F**₀), system (N_{λ}) has the solution (0, 0). Therefore, for every $\lambda > s_F^{-1}$, the system (N_{λ}) has at least two distinct, nontrivial pairs of solutions, which concludes the proof. \Box

Remark 3.1. The conclusion of Theorem 2.1 gives a much more precise information about the Neumann system (N_{λ}) ; namely, one can see that (N_{λ}) is stable with respect to small perturbations. To be more precise, let us consider the perturbed

system

$$\begin{aligned} & \left[-\Delta u + a(x)u = \lambda c(x)F_u(u, v) + \mu d(x)G_u(u, v) & \text{in } \Omega, \\ & -\Delta v + b(x)v = \lambda c(x)F_v(u, v) + \mu d(x)G_v(u, v) & \text{in } \Omega, \\ & \frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0 & \text{on } \partial\Omega \end{aligned}$$
 (N_{\lambda,\mu)}

where $\mu \in \mathbb{R}$, $d \in L^{\infty}(\Omega)$, and $G \in C^{1}(\mathbb{R}^{2}, \mathbb{R})$ is a function such that for some c > 0 and 1 ,

$$\max\{|G_s(s,t)|, |G_t(s,t)|\} \le c(1+|s|^p+|t|^p) \text{ for all } (s,t) \in \mathbb{R}^2.$$

One can prove in a standard manner that $E_3 : H^1(\Omega)^2 \to \mathbb{R}$ defined by

$$E_3(u, v) = \int_{\Omega} d(x)G(u, v)dx,$$

is of class C^1 and it has a compact derivative. Thus, we may apply Theorem 2.1 in its generality to show that for small enough values of μ system $(N_{\lambda,\mu})$ still has three distinct pairs of solutions.

Acknowledgements

The research of A. Kristály was supported by the CNCSIS grant PCCE-55/2008 "Sisteme diferențiale în analiza neliniară și aplicații", by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, and by the Slovenian Research Agency grants P1-0292-0101 and J1-2057-0101.

References

- S. El Manouni, M. Kbiri Alaoui, A result on elliptic systems with Neumann conditions via Ricceri's three critical points theorem, Nonlinear Analysis 71 (2009) 2343–2348.
- [2] H. Lisei, Cs. Varga, Multiple solutions for gradient elliptic systems with nonsmooth boundary conditions, Mediterranean Journal of Mathematics (in press) (doi:10.1007/s00009-010-0052-1).
- [3] A.G. Di Falco, Infinitely many solutions to the Neumann problem for quasilinear elliptic systems, Matematiche (Catania) 58 (2003) 117–130.
- [4] G.A. Afrouzi, S. Heidarkhani, Multiplicity theorems for a class of Dirichlet quasilinear elliptic systems involving the (p_1, \ldots, p_n) -Laplacian, Nonlinear Analysis 73 (2010) 2594–2602.
- [5] G.A. Afrouzi, S. Heidarkhani, Existence of three solutions for a class of Dirichlet quasilinear elliptic systems involving the (p₁,..., p_n)-Laplacian, Nonlinear Analysis 70 (2009) 135–143.
- [6] L. Boccardo, G. de Figueiredo, Some remarks on a system of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations and Applications 9 (2002) 309–323.
- [7] S. Heidarkhani, Y. Tian, Multiplicity results for a class of gradient systems depending on two parameters, Nonlinear Analysis 73 (2010) 547–554.
- [8] C. Li, C.-L. Tang, Three solutions for a class of quasilinear elliptic systems involving the (p, q)-Laplacian, Nonlinear Analysis 69 (2008) 3322–3329.
- [9] B. Ricceri, A further three critical points theorem, Nonlinear Analysis 71 (2009) 4151–4157.

2132