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function which is subquadratic at infinity. Two nearby numbers are determined in explicit
forms, A and A with 0 < A < A, such that for every 0 < A < A, system (N, ) has only the
trivial pair of solution, while for every A > A, system (N, ) has at least two distinct nonzero
pairs of solutions.
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1. Introduction

Let us consider the quasilinear Neumann system

—Apu + a®)|ulP?u = Ac(X)Fy(u, v) in £,

—Aqu +bX)|v|"*v = Ac(X)F,(u, v) in £,

u v

— =—=0 on ds2,

av av
where p, ¢ > 1; 2 C RV is a smooth open bounded domain; v denotes the outward unit normal to 3£2; a, b, c € L®(£2)
are some functions; A > 0 is a parameter; and F, and F, denote the partial derivatives of F € C'(R?, R) with respect to the
first and second variables, respectively.

Recently, problem (Nf’q) has been considered by several authors. For instance, under suitable assumptions on a, b, ¢ and

F, El Manouni and Kbiri Alaoui [ 1] proved the existence of an interval A C (0, co) such that (Nf’q) has at least three solutions
whenever A € Aand p, ¢ > N. Lisei and Varga [2] also established the existence of at least three solutions for the system
(NﬁJ ‘%) with nonhomogeneous and nonsmooth Neumann boundary conditions. Di Falco [3] proved the existence of infinitely
many solutions for (N}'?) when the nonlinear function F has a suitable oscillatory behavior. Systems similar to (N}'?) with
the Dirichlet boundary conditions were also considered by Afrouzi and Heidarkhani [4,5], Boccardo and de Figueiredo [6],
Heidarkhani and Tian [7], and Li and Tang [8]; see also references therein.
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The aim of the present paper is to describe a new phenomenon for Neumann systems when the nonlinear term has
a subquadratic growth. In order to avoid technicalities, instead of the quasilinear system (Nf'q), we shall consider the
semilinear problem

—Au 4+ aX)u = Ac(x)F,(u,v) in £2,

—Av+ b(x)v = Ac(x)F,(u, v) in £2, N
du v (N»)

I = I =0 onaf2.
We assume that the nonlinear term F € C!(R?, R) satisfies the following properties:
(Fy) F(s,t) > Oforevery (s, t) € R, F(0,0) = 0,and F = 0;
(Fo) lims ) (0,0) IS\(HtI lims 1) (0,0) IS\H[)I =0;

Fe(s.t) _
(Foo) hmlsH\rI%OO |s\+\r| hm"'*‘t'”oo [sl+1e] =0

Example 1.1. A typical nonlinearity which fulfils hypotheses (F..), (Fo) and (F.) is F(s, t) = In(1 + s?t2).
We also introduce the set
. (2) = {a € L*°(£) : essinfoa > 0}.
Fora, b, c € 1. (R2) and for F € C'(R?, R) which fulfils the hypotheses (F,.), (Fy) and (F,), we define the numbers

F(s, t) ISFs(s, t) + tF(s, t)]
sF=2|cll;7 max T and S = max — -
.0#0,0) [lall;1s? 4 ||bllat 6:0#0.0) [[c/alljco5? + llc/bll oo t?
Note that these numbers are finite, positive and Sg > s, see Proposition 2.1 (here and in what follows, || - ||;» denotes the

usual norm of the Lebesgue space I”(£2), p € [1, oo]). Our main result reads as follows.

Theorem 1.1. Let F € C'(R?, R) be a function which satisfies (F..), (Fo) and (Fs.), and a, b, ¢ € IT,(£2). Then, the following
statements hold.

(i) Forevery 0 < A < Sz, system (N;) has only the trivial pair of solution.
(ii) Forevery A > sF_l, system (N;,) has at least two distinct, nontrivial pairs of solutions (uﬂ\, vi) e H'(2)%,ie (1,2}

Remark 1.1. (a) A natural question arises which is still open: how many solutions exist for (N;) when A € [S; ', SF_]]?
Numerical experiments show that sr and Sr are usually not far from each other, although their origins are independent. For
instance, ifa = b = ¢, and F is from Example 1.1, we have s ~ 0.8046 and Sy = 1.

(b) Assumptions (F.), (Fo) and (F,) imply that there exists ¢ > 0 such that

0 <F(s,t) <c(s>+t%) forall (s, t) € R?, (1.1)

i.e., F has a subquadratic growth. Consequently, Theorem 1.1 completes the results of several papers, where F fulfils the
Ambrosetti-Rabinowitz condition, i.e., there exist & > 2 and r > 0 such that

0 < OF(s, t) < sFs(s, t) + tFi (s, t) forall|s|, |t] >T. (1.2)
Indeed, (1.2) implies that for some C;, C; > 0, one has F(s, t) > C;(|s| + |t|?) for all ||, |t| > C,.

The next section contains some auxiliary notions and results, while in Section 3 we prove Theorem 1.1. First, a direct
calculation proves (i), while a very recent three critical points result of Ricceri [9] provides the proof of (ii).

2. Preliminaries

A solution for (N, ) is a pair (u, v) € H'(£2)? such that

f (VuVe + a(x)ug)dx = A/ c(X)Fy(u, v)pdx  forallgp € H (),
2 Q (2.1)

f (VoVy + bx)v)dx = A/ c(x)F,(u, v)¥dx forally € H(£2).
Q Q2

Leta, b, c € IT,(£2). We associate to the system (N, ) the energy functional I, : H'(£2)? — R defined by

1
L(u,v) = 5(||U||§ + llvllp) — AF (u, v),



A. Kristdly, D. Repovs / Nonlinear Analysis 74 (2011) 2127-2132 2129

1/2 1/2
||u||a=(/ |Vu|2+a<x>u2) : ||v||b=(/ |Vv|2+b<x)v2) ,
2 2

Fu,v) = / c(X)F(u, v).
2

where

and

Itis clear that || - ||, and || - || are equivalent to the usual norm on H'(£2). Note that if F € C'(R?, R) verifies the hypotheses
(Fo) and (Fs) (see also relation (1.1)), the functional I, is well defined, of class C' on H'(£§2)? and its critical points are
exactly the solutions for (N ). Since F;(0, 0) = F;(0, 0) = 0 from (Fy), (0, 0) is a solution of (N, ) for every A > 0.

In order to prove Theorem 1.1(ii), we must find critical points for I;. In order to do this, we recall the following Ricceri-
type three critical point theorem. First, we need the following notion: if X is a Banach space, we denote by Wy the class
of those functionals E : X — R that possess the property that if {u,} is a sequence in X converging weakly to u € X and
liminf, E(u,) < E(u) then {u,} has a subsequence strongly converging to u.

Theorem 2.1 ([9, Theorem 2]). Let X be a separable and reflexive real Banach space, let E; : X — R be a coercive, sequentially
weakly lower semicontinuous C! functional belonging to ‘Wx, bounded on each bounded subset of X and whose derivative admits
a continuous inverse on X*, and E, : X — R a C! functional with a compact derivative. Assume that E; has a strict local minimum
ug with E1(ug) = E>(ug) = 0. Setting the numbers

. Ey(u) .. E>(u)
T = max 40, lim sup , lim sup , (2.2)
lul—»oo E1(U)  u—uy E1(u)
Ex(u)
X = , (2.3)
E1(u)>0 El (U)

assume that T < ¥.

Then, for each compact interval [a, b] C (1/x, 1/t) (with the conventions 1/0 = oo and 1/00 = 0) there exists k > 0 with
the following property: for every A € [a, b] and every C! functional E3 : X — R with a compact derivative, there exists § > 0
such that for each 6 € [0, 8], the equation

Ej(u) — AE5(u) — OE;(u) =0
admits at least three solutions in X having norm less than k.

We conclude this section with an observation which involves the constants sg and Sg.

Proposition 2.1. Let F € C'(R?, R) be a function which satisfies (F..), (Fo) and (Fs,), and a, b, ¢ € IT,(£2). Then the numbers
sp and Sg are finite, positive and Sg > sf.

Proof. It follows from (Fy) and (F) and from the continuity of the functions (s, t) — \Fssl(-ls—lt[)\ (s,t) — \Fstl(j—ltt)\ away from
(0, 0), that there exists M > 0 such that

|Fo(s, )] < M(Is| + [t]) and |F(s, £)] < M(|s| + [t]) forall (s, t) € R?.
Consequently, a standard mean value theorem together with (F, ) implies that

0 <F(s,t) <2M(s* +t%) forall (s, t) € R%, (2.4)
We now prove that

F(s, t . F(s, t
im oL =0 and lim .0 =0 (2.5)
.0)—>(0,0) $2 4 t2 Is|+t|—~oc0 §2 4 2

From (Fp) and (Fy,), for every ¢ > 0, there exists §; € (0, 1) such that for every (s,t) € R? with |s| + |t| €
(0, 8,) U (8.1, 00), one has

Fi(s. t Fi(s. t
kGOl e 4 RGOl _& (2.6)
Is|+el 4 Is|+1tl 4

From (2.6) and the mean value theorem, for every (s, t) € R? with |s| + |t| € (0, §,), we have
F(s,t) = F(s,t) — F(0,t) + F(0,t) — F(0, 0)

f(sz + 1)

2

IA
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which gives the first limit in (2.5). Now, for every (s, t) € R? with |s| + |t| > 8;1 max{1, ./8M/e}, by using (2.4) and (2.6),
we have

51 51 51 51 51 51
F(s,t):F(s,t)—F( £ s,t)—l—F( £ s,t)—F( £ g —°£ t>+F< £ g —°¢ t)
Is| + [¢] Is| + [¢] Is| + (e Is| + |t |+ [t]  Is| + [¢]

£ 24 oMs?
Z(|S| +[th” + .

IA

IA

e(s® + t2),

which leads us to the second limit in (2.5).
The facts above show that the numbers sg and S¢ are finite. Moreover, sy > 0. We now prove that S > sg. To do this,
let (s, to) € R? \ {(0, 0)} be a maximum point of the function (s, t) > Fis.0

Tl Il In particular, its partial derivatives
vanishes at (sg, tp), yielding

Fs(so. to)(llallisg + 1bll1t5) = 2llallyisoF (so. to);

F(so, to) (lall;asg + [Ibll165) = 21lbll;1 toF (o, to).
From the two relations above, we obtain

soFs(so, to) + toF¢ (So, to) = 2F (o, to).
On the other hand, since a, b, ¢ € 1, (§2), we have

el = / c(dx = f < | / acodx =[] iy,

2 2 1° Jo allje

a(x) a

thus ||c/a||L23; < |lallj/llcll;r and in a similar way ||C/b||,}l < |Ibll;1/llcll;1. Combining these inequalities with the above
argument, we conclude that S > sp. O

3. Proof of Theorem 1.1

In this section we assume that the assumptions of Theorem 1.1 are fulfilled.

Proof of Theorem 1.1(i). Let (u, v) € H'(£2)? be a solution of (N, ). Choosing ¢ = u and ¥ = v in (2.1), we obtain

l[ullg + vl = / (IVul? + au? + | Vo|* + bx)v?)
2

= A/ c(x)(Fy(u, v)u + F,(u, v)v)
fo)

IA

ASF/ c®)(llc/all;u® + llc/bll;v?)
2

IA

ASE / (@a)u? + b(x)v?)
7

ASe(llullg + [[oll3)-

IA

Now, if0 < A < S;l, we necessarily have (u, v) = (0, 0), which concludes the proof. O

Proof of Theorem 1.1(ii). In Theorem 2.1, we choose X = H'(£2)? endowed with the norm || (u, v)|| = ,/ lull2 + ||v||i, and
E1,E; : H'(£2)> — R defined by

Ei(u,v) = %H(u, v)||2 and E,(u,v) = F(u, v).

It is clear that both E; and E, are C! functionals and I, = E; — AE,. Itis also a standard fact that E; is a coercive, sequentially
weakly lower semicontinuous functional which belongs to ‘Wy1 g2, bounded on each bounded subset of H'(£2)?, and its

derivative admits a continuous inverse on (H'(£2)?)*. Moreover, E, has a compact derivative since H(£2) — [P(£2) isa
compact embedding for every p € (2, 2%).

Now, we prove that the functional (u, v) —
we shall prove that

Ex(u) . Ey(u)
m = lim =
lw,v)ll—0 Eq (1) ll(w,v)l—>o00 Eq (1)

Ey (u,v)
Eq1(u,v)

F(s,t)
s24t2”

has similar properties as the function (s, t) —

More precisely,

(3.1)
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First, relation (2.5) implies that for every & > 0 there exists §; € (0, 1) such that for every (s, t) € R? with |s] + |t| €
(0, 8,) U (8,1, 00), one has

- F(s, t) €

< < . (3.2)
s2+t>  4max{[c/allie, llc/blli}

Fix p € (2, 2*). Note that the continuous function (s, t) Isﬁffr’lt[)‘p is bounded on the set {(s, t) € R? : |s| + |t] € [§,, 8;‘]}.
Therefore, for some m, > 0, we have in particular
e
0<FG,t) <
4max{|[c/alle, [lc/Dl|ro}

(s® 4+ t2) + my(Is]” + |t|P) forall (s, t) € R?.
Therefore, for each (u, v) € H'(£2)?, we get

0<E(u,v) = / c(x)F(u, v)
17}

- / c(x)[ ¢ (u2+v2>+mg(|u|"+|v|")]
o Y | Tmax(ic/alie, fe/ble)

IA

£
/ [Z(a()c)u2 + bx)v?) + mec(x)(Jul? + Ivl")]
2
f 2 p p p
< 4||(u, V)17 + me el Sy (llullg + [lvll,)
£
< le(u, V)1 + me|cllioSE I (1, v) 1,

where S; > 0 is the best constant in the inequality ||ul; < S;min{||u|lq, |[u]lp} for every u € H'(2),1 € (1, 2*) (we used
the fact that the function @ — (s* + t"‘)é is decreasing, s, t > 0). Consequently, for every (u, v) # (0, 0), we obtain

Ey(u, v) 3 )
< < — 4 2mg||c||=oSP || (u, v)||P=.
= ho =2 ellclioeSyll(u, V)i

Since p > 2 and € > 0 is arbitrarily small when (u, v) — 0, we obtain the first limit from (3.1).

Now, we fixr € (1, 2). The continuous function (s, t) > lsfr(ift)‘, is bounded on the set {(s, t) € R? : |s| 4+ |t] € [5,, 5;1]},

where §, € (0, 1) is from (3.2). Combining this fact with (3.2), one can find a number M, > 0 such that

&
{llc/allee, lc/bllre}

The Holder inequality and a similar calculation as above show that

(2 4+t + M. (Is|" + |t|") forall (s, t) € R%.

0<F(,t) =<
4 max

& _r
0 < Bp(u,v) =< Zll(u, VI? + 2" 2 M, |lclleeS] I (u, v)

For every (u, v) # (0, 0), we have

EZ(ua U) & 2L —
< < = + 22772 M,||c||poo ST (1, v)||" 2.
= ho =2 eIl Sy | (u, v) ]

Due to the arbitrariness of ¢ > 0 and r € (1, 2), by letting the limit ||(u, v)|| — oo, we obtain the second relation from
(3.1).

Note that E; has a strict global minimum (ug, vg) = (0, 0), and E;(0, 0) = E;(0, 0) = 0. The definition of the number t
in Theorem 2.1, see (2.2), and the limits in (3.1) imply that t = 0. Furthermore, since H'(£§2) contains the constant functions
on §2, keeping the notation from (2.3), we obtain

E>(u, v) F(s, t)

p >2cllp max ———— =
Erwv>0 E1(U, v) .0#0,0 |lall;1s? + [|b]|;1£2

X:

Therefore, applying Theorem 2.1 (with E3 = 0), we obtain, in particular, for every A € (sF_], 00), the equation I; (u, v) =
E}(u, v) — AE,(u, v) = 0 admits at least three distinct pairs of solutions in H'($2)2. Due to condition (Fo), system (N;) has

the solution (0, 0). Therefore, for every A > s;l, the system (N;,) has at least two distinct, nontrivial pairs of solutions, which
concludes the proof. O

Remark 3.1. The conclusion of Theorem 2.1 gives a much more precise information about the Neumann system (N;);
namely, one can see that (N; ) is stable with respect to small perturbations. To be more precise, let us consider the perturbed
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system
—Au+aX)u = Ac(x)F,(u, v) + nud(x)G,(u, v) in 2,
—Av + b(x)v = Ac(X)F,(u, v) + ud(x)G,(u, v) in $2,
du o (No.w)
— =—=0 on d0£2
on  dn

where 1 € R, d € L[®(£2),and G € C'(R?, R) is a function such that for somec > 0and 1 < p < 2* — 1,
max{|Gs(s, )|, [Ge(s, )]} < c(1+ Is” + [t[P) forall (s, t) € R?.

One can prove in a standard manner that E; : H'(§£2)?> — R defined by
Es(u,v) = / d(x)G(u, v)dx,
2

is of class C! and it has a compact derivative. Thus, we may apply Theorem 2.1 in its generality to show that for small enough
values of p system (N,_,,) still has three distinct pairs of solutions.

Acknowledgements

The research of A. Kristaly was supported by the CNCSIS grant PCCE-55/2008 “Sisteme diferentiale in analiza neliniara si
aplicatii”, by the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences, and by the Slovenian Research
Agency grants P1-0292-0101 and ]J1-2057-0101.

References

[1] S. El Manouni, M. Kbiri Alaoui, A result on elliptic systems with Neumann conditions via Ricceri’s three critical points theorem, Nonlinear Analysis 71
(2009) 2343-2348.

[2] H. Lisei, Cs. Varga, Multiple solutions for gradient elliptic systems with nonsmooth boundary conditions, Mediterranean Journal of Mathematics
(in press) (doi:10.1007/s00009-010-0052-1).

[3] A.G. Di Falco, Infinitely many solutions to the Neumann problem for quasilinear elliptic systems, Matematiche (Catania) 58 (2003) 117-130.

[4] G.A. Afrouzi, S. Heidarkhani, Multiplicity theorems for a class of Dirichlet quasilinear elliptic systems involving the (py, ..., py)-Laplacian, Nonlinear
Analysis 73 (2010) 2594-2602.
[5] G.A. Afrouzi, S. Heidarkhani, Existence of three solutions for a class of Dirichlet quasilinear elliptic systems involving the (p1, ..., p,)-Laplacian,

Nonlinear Analysis 70 (2009) 135-143.

[6] L. Boccardo, G. de Figueiredo, Some remarks on a system of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations and Applications 9
(2002) 309-323.

[7] S.Heidarkhani, Y. Tian, Multiplicity results for a class of gradient systems depending on two parameters, Nonlinear Analysis 73 (2010) 547-554.

[8] C.Li, C.-L. Tang, Three solutions for a class of quasilinear elliptic systems involving the (p, q)-Laplacian, Nonlinear Analysis 69 (2008) 3322-3329.

[9] B.Ricceri, A further three critical points theorem, Nonlinear Analysis 71 (2009) 4151-4157.


http://dx.doi.org/doi:10.1007/s00009-010-0052-1

	Multiple solutions for a Neumann system involving subquadratic nonlinearities
	Introduction
	Preliminaries
	Proof of Theorem 1.1
	Acknowledgements
	References


