# Multiple solutions for a Neumann system involving subquadratic nonlinearities 

Alexandru Kristály ${ }^{\text {a,* }}$, Dušan Repovš ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Economics, Babeş-Bolyai University, Str. Teodor Mihali, nr. 58-60, 400591 Cluj-Napoca, Romania<br>${ }^{\text {b }}$ Faculty of Mathematics and Physics, and Faculty of Education, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

## A R TICLE INFO

## Article history:

Received 27 August 2010
Accepted 3 November 2010

## Keywords:

Neumann system
Subquadratic
Nonexistence
Multiplicity

## A B S TRACT

In this paper, we consider the model semilinear Neumann system

$$
\begin{cases}-\Delta u+a(x) u=\lambda c(x) F_{u}(u, v) & \text { in } \Omega \\ -\Delta v+b(x) v=\lambda c(x) F_{v}(u, v) & \text { in } \Omega \\ \frac{\partial u}{\partial v}=\frac{\partial v}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a smooth open bounded domain, $v$ denotes the outward unit normal to $\partial \Omega, \lambda \geq 0$ is a parameter, $a, b, c \in L_{+}^{\infty}(\Omega) \backslash\{0\}$, and $F \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right) \backslash\{0\}$ is a nonnegative function which is subquadratic at infinity. Two nearby numbers are determined in explicit forms, $\underline{\lambda}$ and $\bar{\lambda}$ with $0<\underline{\lambda} \leq \bar{\lambda}$, such that for every $0 \leq \lambda<\underline{\lambda}$, system $\left(N_{\lambda}\right)$ has only the trivial pair of solution, while for every $\lambda>\bar{\lambda}$, system $\left(N_{\lambda}\right)$ has at least two distinct nonzero pairs of solutions.
© 2010 Elsevier Ltd. All rights reserved.

## 1. Introduction

Let us consider the quasilinear Neumann system

$$
\begin{cases}-\Delta_{p} u+a(x)|u|^{p-2} u=\lambda c(x) F_{u}(u, v) & \text { in } \Omega \\ -\Delta_{q} v+b(x)|v|^{q-2} v=\lambda c(x) F_{v}(u, v) & \text { in } \Omega \\ \frac{\partial u}{\partial v}=\frac{\partial v}{\partial v}=0 & \text { on } \partial \Omega\end{cases}
$$

$$
\left(N_{\lambda}^{p, q}\right)
$$

where $p, q>1 ; \Omega \subset \mathbb{R}^{N}$ is a smooth open bounded domain; $v$ denotes the outward unit normal to $\partial \Omega ; a, b, c \in L^{\infty}(\Omega)$ are some functions; $\lambda \geq 0$ is a parameter; and $F_{u}$ and $F_{v}$ denote the partial derivatives of $F \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ with respect to the first and second variables, respectively.

Recently, problem $\left(N_{\lambda}^{p, q}\right)$ has been considered by several authors. For instance, under suitable assumptions on $a, b, c$ and $F$, El Manouni and Kbiri Alaoui [1] proved the existence of an interval $A \subset(0, \infty)$ such that $\left(N_{\lambda}^{p, q}\right)$ has at least three solutions whenever $\lambda \in A$ and $p, q>N$. Lisei and Varga [2] also established the existence of at least three solutions for the system $\left(N_{\lambda}^{p, q}\right)$ with nonhomogeneous and nonsmooth Neumann boundary conditions. Di Falco [3] proved the existence of infinitely many solutions for $\left(N_{\lambda}^{p, q}\right)$ when the nonlinear function $F$ has a suitable oscillatory behavior. Systems similar to ( $N_{\lambda}^{p, q}$ ) with the Dirichlet boundary conditions were also considered by Afrouzi and Heidarkhani [4,5], Boccardo and de Figueiredo [6], Heidarkhani and Tian [7], and Li and Tang [8]; see also references therein.

[^0]The aim of the present paper is to describe a new phenomenon for Neumann systems when the nonlinear term has a subquadratic growth. In order to avoid technicalities, instead of the quasilinear system $\left(N_{\lambda}^{p, q}\right)$, we shall consider the semilinear problem

$$
\begin{cases}-\Delta u+a(x) u=\lambda c(x) F_{u}(u, v) & \text { in } \Omega \\ -\Delta v+b(x) v=\lambda c(x) F_{v}(u, v) & \text { in } \Omega \\ \frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

We assume that the nonlinear term $F \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ satisfies the following properties:
$\left(\mathbf{F}_{+}\right) F(s, t) \geq 0$ for every $(s, t) \in \mathbb{R}^{2}, F(0,0)=0$, and $F \not \equiv 0$;
$\left(\mathbf{F}_{0}\right) \lim _{(s, t) \rightarrow(0,0)} \frac{F_{s}(s, t)}{|s|+|t|}=\lim _{(s, t) \rightarrow(0,0)} \frac{F_{t}(s, t)}{|s|+|t|}=0$;
$\left(\mathbf{F}_{\infty}\right) \lim _{|s|+|t| \rightarrow \infty} \frac{\frac{F_{s}(s, t)}{|s|+|t|}}{}=\lim _{|s|+|t| \rightarrow \infty} \frac{F_{t}(s, t)}{|s|+|t|}=0$.
Example 1.1. A typical nonlinearity which fulfils hypotheses $\left(\mathbf{F}_{+}\right),\left(\mathbf{F}_{0}\right)$ and $\left(\mathbf{F}_{\infty}\right)$ is $F(s, t)=\ln \left(1+s^{2} t^{2}\right)$.
We also introduce the set

$$
\Pi_{+}(\Omega)=\left\{a \in L^{\infty}(\Omega): \operatorname{essinf}_{\Omega} a>0\right\}
$$

For $a, b, c \in \Pi_{+}(\Omega)$ and for $F \in C^{1}\left(\mathbb{R}^{2}, R\right)$ which fulfils the hypotheses $\left(\mathbf{F}_{+}\right),\left(\mathbf{F}_{0}\right)$ and $\left(\mathbf{F}_{\infty}\right)$, we define the numbers

$$
s_{F}=2\|c\|_{L^{1}} \max _{(s, t) \neq(0,0)} \frac{F(s, t)}{\|a\|_{L^{1}} s^{2}+\|b\|_{L^{1}} t^{2}}, \quad \text { and } \quad S_{F}=\max _{(s, t) \neq(0,0)} \frac{\left|s F_{s}(s, t)+t F_{t}(s, t)\right|}{\|c / a\|_{L^{\infty}}^{-1} s^{2}+\|c / b\|_{L^{\infty}}^{-1} t^{2}}
$$

Note that these numbers are finite, positive and $S_{F} \geq S_{F}$, see Proposition 2.1 (here and in what follows, $\|\cdot\|_{L^{p}}$ denotes the usual norm of the Lebesgue space $L^{p}(\Omega), p \in[1, \infty]$ ). Our main result reads as follows.

Theorem 1.1. Let $F \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ be a function which satisfies $\left(\mathbf{F}_{+}\right),\left(\mathbf{F}_{0}\right)$ and $\left(\mathbf{F}_{\infty}\right)$, and $a, b, c \in \Pi_{+}(\Omega)$. Then, the following statements hold.
(i) For every $0 \leq \lambda<S_{F}^{-1}$, system $\left(N_{\lambda}\right)$ has only the trivial pair of solution.
(ii) For every $\lambda>s_{F}^{-1}$, system $\left(N_{\lambda}\right)$ has at least two distinct, nontrivial pairs of solutions $\left(u_{\lambda}^{i}, v_{\lambda}^{i}\right) \in H^{1}(\Omega)^{2}, i \in\{1,2\}$.

Remark 1.1. (a) A natural question arises which is still open: how many solutions exist for $\left(N_{\lambda}\right)$ when $\lambda \in\left[S_{F}^{-1}, s_{F}^{-1}\right]$ ? Numerical experiments show that $S_{F}$ and $S_{F}$ are usually not far from each other, although their origins are independent. For instance, if $a=b=c$, and $F$ is from Example 1.1, we have $s_{F} \approx 0.8046$ and $S_{F}=1$.
(b) Assumptions $\left(\mathbf{F}_{+}\right),\left(\mathbf{F}_{0}\right)$ and $\left(\mathbf{F}_{\infty}\right)$ imply that there exists $c>0$ such that

$$
\begin{equation*}
0 \leq F(s, t) \leq c\left(s^{2}+t^{2}\right) \quad \text { for all }(s, t) \in \mathbb{R}^{2} \tag{1.1}
\end{equation*}
$$

i.e., $F$ has a subquadratic growth. Consequently, Theorem 1.1 completes the results of several papers, where $F$ fulfils the Ambrosetti-Rabinowitz condition, i.e., there exist $\theta>2$ and $r>0$ such that

$$
\begin{equation*}
0<\theta F(s, t) \leq s F_{s}(s, t)+t F_{t}(s, t) \quad \text { for all }|s|,|t| \geq r \tag{1.2}
\end{equation*}
$$

Indeed, (1.2) implies that for some $C_{1}, C_{2}>0$, one has $F(s, t) \geq C_{1}\left(|s|^{\theta}+|t|^{\theta}\right)$ for all $|s|,|t|>C_{2}$.
The next section contains some auxiliary notions and results, while in Section 3 we prove Theorem 1.1. First, a direct calculation proves (i), while a very recent three critical points result of Ricceri [9] provides the proof of (ii).

## 2. Preliminaries

A solution for $\left(N_{\lambda}\right)$ is a pair $(u, v) \in H^{1}(\Omega)^{2}$ such that

$$
\begin{cases}\int_{\Omega}(\nabla u \nabla \phi+a(x) u \phi) \mathrm{d} x=\lambda \int_{\Omega} c(x) F_{u}(u, v) \phi \mathrm{d} x & \text { for all } \phi \in H^{1}(\Omega)  \tag{2.1}\\ \int_{\Omega}(\nabla v \nabla \psi+b(x) v \psi) \mathrm{d} x=\lambda \int_{\Omega} c(x) F_{v}(u, v) \psi \mathrm{d} x & \text { for all } \psi \in H^{1}(\Omega) .\end{cases}
$$

Let $a, b, c \in \Pi_{+}(\Omega)$. We associate to the system $\left(N_{\lambda}\right)$ the energy functional $I_{\lambda}: H^{1}(\Omega)^{2} \rightarrow \mathbb{R}$ defined by

$$
I_{\lambda}(u, v)=\frac{1}{2}\left(\|u\|_{a}^{2}+\|v\|_{b}^{2}\right)-\lambda \mathcal{F}(u, v)
$$

where

$$
\|u\|_{a}=\left(\int_{\Omega}|\nabla u|^{2}+a(x) u^{2}\right)^{1 / 2} ; \quad\|v\|_{b}=\left(\int_{\Omega}|\nabla v|^{2}+b(x) v^{2}\right)^{1 / 2}
$$

and

$$
\mathcal{F}(u, v)=\int_{\Omega} c(x) F(u, v)
$$

It is clear that $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ are equivalent to the usual norm on $H^{1}(\Omega)$. Note that if $F \in C^{1}\left(\mathbb{R}^{2}, R\right)$ verifies the hypotheses $\left(\mathbf{F}_{0}\right)$ and $\left(\mathbf{F}_{\infty}\right)$ (see also relation (1.1)), the functional $I_{\lambda}$ is well defined, of class $C^{1}$ on $H^{1}(\Omega)^{2}$ and its critical points are exactly the solutions for $\left(N_{\lambda}\right)$. Since $F_{s}(0,0)=F_{t}(0,0)=0$ from $\left(\mathbf{F}_{0}\right),(0,0)$ is a solution of $\left(N_{\lambda}\right)$ for every $\lambda \geq 0$.

In order to prove Theorem 1.1(ii), we must find critical points for $I_{\lambda}$. In order to do this, we recall the following Ricceritype three critical point theorem. First, we need the following notion: if $X$ is a Banach space, we denote by $\mathcal{W}_{X}$ the class of those functionals $E: X \rightarrow \mathbb{R}$ that possess the property that if $\left\{u_{n}\right\}$ is a sequence in $X$ converging weakly to $u \in X$ and $\lim _{\inf _{n}} E\left(u_{n}\right) \leq E(u)$ then $\left\{u_{n}\right\}$ has a subsequence strongly converging to $u$.

Theorem 2.1 ([9, Theorem 2]). Let $X$ be a separable and reflexive real Banach space, let $E_{1}: X \rightarrow \mathbb{R}$ be a coercive, sequentially weakly lower semicontinuous $C^{1}$ functional belonging to $W_{X}$, bounded on each bounded subset of $X$ and whose derivative admits a continuous inverse on $X^{*}$, and $E_{2}: X \rightarrow \mathbb{R}$ a $C^{1}$ functional with a compact derivative. Assume that $E_{1}$ has a strict local minimum $u_{0}$ with $E_{1}\left(u_{0}\right)=E_{2}\left(u_{0}\right)=0$. Setting the numbers

$$
\begin{align*}
& \tau=\max \left\{0, \limsup _{\|u\| \rightarrow \infty} \frac{E_{2}(u)}{E_{1}(u)}, \limsup _{u \rightarrow u_{0}} \frac{E_{2}(u)}{E_{1}(u)}\right\},  \tag{2.2}\\
& \chi=\sup _{E_{1}(u)>0} \frac{E_{2}(u)}{E_{1}(u)}, \tag{2.3}
\end{align*}
$$

assume that $\tau<\chi$.
Then, for each compact interval $[a, b] \subset(1 / \chi, 1 / \tau)$ (with the conventions $1 / 0=\infty$ and $1 / \infty=0$ ) there exists $\kappa>0$ with the following property: for every $\lambda \in[a, b]$ and every $C^{1}$ functional $E_{3}: X \rightarrow \mathbb{R}$ with a compact derivative, there exists $\delta>0$ such that for each $\theta \in[0, \delta]$, the equation

$$
E_{1}^{\prime}(u)-\lambda E_{2}^{\prime}(u)-\theta E_{3}^{\prime}(u)=0
$$

admits at least three solutions in $X$ having norm less than $\kappa$.
We conclude this section with an observation which involves the constants $S_{F}$ and $S_{F}$.
Proposition 2.1. Let $F \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ be a function which satisfies $\left(\mathbf{F}_{+}\right)$, $\left(\mathbf{F}_{0}\right)$ and $\left(\mathbf{F}_{\infty}\right)$, and $a, b, c \in \Pi_{+}(\Omega)$. Then the numbers $s_{F}$ and $S_{F}$ are finite, positive and $S_{F} \geq s_{F}$.

Proof. It follows from $\left(\mathbf{F}_{0}\right)$ and $\left(\mathbf{F}_{\infty}\right)$ and from the continuity of the functions $(s, t) \mapsto \frac{F_{s}(s, t)}{|s|+|t|},(s, t) \mapsto \frac{F_{t}(s, t)}{|s|+|t|}$ away from $(0,0)$, that there exists $M>0$ such that

$$
\left|F_{s}(s, t)\right| \leq M(|s|+|t|) \quad \text { and } \quad\left|F_{t}(s, t)\right| \leq M(|s|+|t|) \quad \text { for all }(s, t) \in \mathbb{R}^{2}
$$

Consequently, a standard mean value theorem together with ( $\mathbf{F}_{+}$) implies that

$$
\begin{equation*}
0 \leq F(s, t) \leq 2 M\left(s^{2}+t^{2}\right) \quad \text { for all }(s, t) \in \mathbb{R}^{2} . \tag{2.4}
\end{equation*}
$$

We now prove that

$$
\begin{equation*}
\lim _{(s, t) \rightarrow(0,0)} \frac{F(s, t)}{s^{2}+t^{2}}=0 \quad \text { and } \quad \lim _{|s|+|t| \rightarrow \infty} \frac{F(s, t)}{s^{2}+t^{2}}=0 \tag{2.5}
\end{equation*}
$$

From $\left(\mathbf{F}_{0}\right)$ and $\left(\mathbf{F}_{\infty}\right)$, for every $\varepsilon>0$, there exists $\delta_{\varepsilon} \in(0,1)$ such that for every $(s, t) \in \mathbb{R}^{2}$ with $|s|+|t| \in$ $\left(0, \delta_{\varepsilon}\right) \cup\left(\delta_{\varepsilon}^{-1}, \infty\right)$, one has

$$
\begin{equation*}
\frac{\left|F_{s}(s, t)\right|}{|s|+|t|}<\frac{\varepsilon}{4} \quad \text { and } \quad \frac{\left|F_{t}(s, t)\right|}{|s|+|t|}<\frac{\varepsilon}{4} . \tag{2.6}
\end{equation*}
$$

From (2.6) and the mean value theorem, for every $(s, t) \in \mathbb{R}^{2}$ with $|s|+|t| \in\left(0, \delta_{\varepsilon}\right)$, we have

$$
\begin{aligned}
F(s, t) & =F(s, t)-F(0, t)+F(0, t)-F(0,0) \\
& \leq \frac{\varepsilon}{2}\left(s^{2}+t^{2}\right)
\end{aligned}
$$

which gives the first limit in (2.5). Now, for every $(s, t) \in \mathbb{R}^{2}$ with $|s|+|t|>\delta_{\varepsilon}^{-1} \max \{1, \sqrt{8 M / \varepsilon}\}$, by using (2.4) and (2.6), we have

$$
\begin{aligned}
F(s, t) & =F(s, t)-F\left(\frac{\delta_{\varepsilon}^{-1}}{|s|+|t|} s, t\right)+F\left(\frac{\delta_{\varepsilon}^{-1}}{|s|+|t|} s, t\right)-F\left(\frac{\delta_{\varepsilon}^{-1}}{|s|+|t|} s, \frac{\delta_{\varepsilon}^{-1}}{|s|+|t|} t\right)+F\left(\frac{\delta_{\varepsilon}^{-1}}{|s|+|t|} s, \frac{\delta_{\varepsilon}^{-1}}{|s|+|t|} t\right) \\
& \leq \frac{\varepsilon}{4}(|s|+|t|)^{2}+2 M \delta_{\varepsilon}^{-2} \\
& \leq \varepsilon\left(s^{2}+t^{2}\right)
\end{aligned}
$$

which leads us to the second limit in (2.5).
The facts above show that the numbers $s_{F}$ and $S_{F}$ are finite. Moreover, $s_{F}>0$. We now prove that $S_{F} \geq s_{F}$. To do this, let $\left(s_{0}, t_{0}\right) \in \mathbb{R}^{2} \backslash\{(0,0)\}$ be a maximum point of the function $(s, t) \mapsto \frac{F(s, t)}{\|a\|_{L^{1}} s^{2}+\|b\|_{L^{1}} t^{2}}$. In particular, its partial derivatives vanishes at $\left(s_{0}, t_{0}\right)$, yielding

$$
\begin{aligned}
& F_{s}\left(s_{0}, t_{0}\right)\left(\|a\|_{L^{1}} s_{0}^{2}+\|b\|_{L^{1}} t_{0}^{2}\right)=2\|a\|_{L^{1}} s_{0} F\left(s_{0}, t_{0}\right) \\
& F_{t}\left(s_{0}, t_{0}\right)\left(\|a\|_{L^{1}} s_{0}^{2}+\|b\|_{L^{1}} t_{0}^{2}\right)=2\|b\|_{L^{1}} t_{0} F\left(s_{0}, t_{0}\right)
\end{aligned}
$$

From the two relations above, we obtain

$$
s_{0} F_{s}\left(s_{0}, t_{0}\right)+t_{0} F_{t}\left(s_{0}, t_{0}\right)=2 F\left(s_{0}, t_{0}\right)
$$

On the other hand, since $a, b, c \in \Pi_{+}(\Omega)$, we have

$$
\|c\|_{L^{1}}=\int_{\Omega} c(x) \mathrm{d} x=\int_{\Omega} \frac{c(x)}{a(x)} a(x) \mathrm{d} x \leq\left\|\frac{c}{a}\right\|_{L^{\infty}} \int_{\Omega} a(x) \mathrm{d} x=\left\|\frac{c}{a}\right\|_{L^{\infty}}\|a\|_{L^{1}},
$$

thus $\|c / a\|_{L^{\infty}}^{-1} \leq\|a\|_{L^{1}} /\|c\|_{L^{1}}$ and in a similar way $\|c / b\|_{L^{\infty}}^{-1} \leq\|b\|_{L^{1}} /\|c\|_{L^{1}}$. Combining these inequalities with the above argument, we conclude that $S_{F} \geq s_{F}$.

## 3. Proof of Theorem 1.1

In this section we assume that the assumptions of Theorem 1.1 are fulfilled.
Proof of Theorem 1.1(i). Let $(u, v) \in H^{1}(\Omega)^{2}$ be a solution of $\left(N_{\lambda}\right)$. Choosing $\phi=u$ and $\psi=v$ in (2.1), we obtain

$$
\begin{aligned}
\|u\|_{a}^{2}+\|v\|_{b}^{2} & =\int_{\Omega}\left(|\nabla u|^{2}+a(x) u^{2}+|\nabla v|^{2}+b(x) v^{2}\right) \\
& =\lambda \int_{\Omega} c(x)\left(F_{u}(u, v) u+F_{v}(u, v) v\right) \\
& \leq \lambda S_{F} \int_{\Omega} c(x)\left(\|c / a\|_{L^{\infty}}^{-1} u^{2}+\|c / b\|_{L^{\infty}}^{-1} v^{2}\right) \\
& \leq \lambda S_{F} \int_{\Omega}\left(a(x) u^{2}+b(x) v^{2}\right) \\
& \leq \lambda S_{F}\left(\|u\|_{a}^{2}+\|v\|_{b}^{2}\right)
\end{aligned}
$$

Now, if $0 \leq \lambda<S_{F}^{-1}$, we necessarily have $(u, v)=(0,0)$, which concludes the proof.
Proof of Theorem 1.1(ii). In Theorem 2.1, we choose $X=H^{1}(\Omega)^{2}$ endowed with the norm $\|(u, v)\|=\sqrt{\|u\|_{a}^{2}+\|v\|_{b}^{2}}$, and $E_{1}, E_{2}: H^{1}(\Omega)^{2} \rightarrow \mathbb{R}$ defined by

$$
E_{1}(u, v)=\frac{1}{2}\|(u, v)\|^{2} \quad \text { and } \quad E_{2}(u, v)=\mathcal{F}(u, v)
$$

It is clear that both $E_{1}$ and $E_{2}$ are $C^{1}$ functionals and $I_{\lambda}=E_{1}-\lambda E_{2}$. It is also a standard fact that $E_{1}$ is a coercive, sequentially weakly lower semicontinuous functional which belongs to $\mathcal{W}_{H^{1}(\Omega)^{2}}$, bounded on each bounded subset of $H^{1}(\Omega)^{2}$, and its derivative admits a continuous inverse on $\left(H^{1}(\Omega)^{2}\right)^{*}$. Moreover, $E_{2}$ has a compact derivative since $H^{1}(\Omega) \hookrightarrow L^{p}(\Omega)$ is a compact embedding for every $p \in\left(2,2^{*}\right)$.

Now, we prove that the functional $(u, v) \mapsto \frac{E_{2}(u, v)}{E_{1}(u, v)}$ has similar properties as the function $(s, t) \mapsto \frac{F(s, t)}{s^{2}+t^{2}}$. More precisely, we shall prove that

$$
\begin{equation*}
\lim _{\|(u, v)\| \rightarrow 0} \frac{E_{2}(u)}{E_{1}(u)}=\lim _{\|(u, v)\| \rightarrow \infty} \frac{E_{2}(u)}{E_{1}(u)}=0 . \tag{3.1}
\end{equation*}
$$

First, relation (2.5) implies that for every $\varepsilon>0$ there exists $\delta_{\varepsilon} \in(0,1)$ such that for every $(s, t) \in \mathbb{R}^{2}$ with $|s|+|t| \in$ $\left(0, \delta_{\varepsilon}\right) \cup\left(\delta_{\varepsilon}^{-1}, \infty\right)$, one has

$$
\begin{equation*}
0 \leq \frac{F(s, t)}{s^{2}+t^{2}}<\frac{\varepsilon}{4 \max \left\{\|c / a\|_{L^{\infty}},\|c / b\|_{L^{\infty}}\right\}} \tag{3.2}
\end{equation*}
$$

Fix $p \in\left(2,2^{*}\right)$. Note that the continuous function $(s, t) \mapsto \frac{F(s, t)}{|s|^{p}+|t|^{p}}$ is bounded on the set $\left\{(s, t) \in \mathbb{R}^{2}:|s|+|t| \in\left[\delta_{\varepsilon}, \delta_{\varepsilon}^{-1}\right]\right\}$. Therefore, for some $m_{\varepsilon}>0$, we have in particular

$$
0 \leq F(s, t) \leq \frac{\varepsilon}{4 \max \left\{\|c / a\|_{L^{\infty}},\|c / b\|_{L^{\infty}}\right\}}\left(s^{2}+t^{2}\right)+m_{\varepsilon}\left(|s|^{p}+|t|^{p}\right) \quad \text { for all }(s, t) \in \mathbb{R}^{2}
$$

Therefore, for each $(u, v) \in H^{1}(\Omega)^{2}$, we get

$$
\begin{aligned}
0 \leq E_{2}(u, v) & =\int_{\Omega} c(x) F(u, v) \\
& \leq \int_{\Omega} c(x)\left[\frac{\varepsilon}{4 \max \left\{\|c / a\|_{L^{\infty}},\|c / b\|_{L^{\infty}}\right\}}\left(u^{2}+v^{2}\right)+m_{\varepsilon}\left(|u|^{p}+|v|^{p}\right)\right] \\
& \leq \int_{\Omega}\left[\frac{\varepsilon}{4}\left(a(x) u^{2}+b(x) v^{2}\right)+m_{\varepsilon} c(x)\left(|u|^{p}+|v|^{p}\right)\right] \\
& \leq \frac{\varepsilon}{4}\|(u, v)\|^{2}+m_{\varepsilon}\|c\|_{L^{\infty}} S_{p}^{p}\left(\|u\|_{a}^{p}+\|v\|_{b}^{p}\right) \\
& \leq \frac{\varepsilon}{4}\|(u, v)\|^{2}+m_{\varepsilon}\|c\|_{L^{\infty}} S_{p}^{p}\|(u, v)\|^{p},
\end{aligned}
$$

where $S_{l}>0$ is the best constant in the inequality $\|u\|_{L^{l}} \leq S_{l} \min \left\{\|u\|_{a},\|u\|_{b}\right\}$ for every $u \in H^{1}(\Omega), l \in\left(1,2^{*}\right)$ (we used the fact that the function $\alpha \mapsto\left(s^{\alpha}+t^{\alpha}\right)^{\frac{1}{\alpha}}$ is decreasing, $\left.s, t \geq 0\right)$. Consequently, for every $(u, v) \neq(0,0)$, we obtain

$$
0 \leq \frac{E_{2}(u, v)}{E_{1}(u, v)} \leq \frac{\varepsilon}{2}+2 m_{\varepsilon}\|c\|_{L^{\infty}} S_{p}^{p}\|(u, v)\|^{p-2}
$$

Since $p>2$ and $\varepsilon>0$ is arbitrarily small when $(u, v) \rightarrow 0$, we obtain the first limit from (3.1).
Now, we fix $r \in(1,2)$. The continuous function $(s, t) \mapsto \frac{F(s, t)}{\left|s r^{r}+|t|^{\text {r }}\right.}$ is bounded on the set $\left\{(s, t) \in \mathbb{R}^{2}:|s|+|t| \in\left[\delta_{\varepsilon}, \delta_{\varepsilon}^{-1}\right]\right\}$, where $\delta_{\varepsilon} \in(0,1)$ is from (3.2). Combining this fact with (3.2), one can find a number $M_{\varepsilon}>0$ such that

$$
0 \leq F(s, t) \leq \frac{\varepsilon}{4 \max \left\{\|c / a\|_{L^{\infty}},\|c / b\|_{L^{\infty}}\right\}}\left(s^{2}+t^{2}\right)+M_{\varepsilon}\left(|s|^{r}+|t|^{r}\right) \quad \text { for all }(s, t) \in \mathbb{R}^{2}
$$

The Hölder inequality and a similar calculation as above show that

$$
0 \leq E_{2}(u, v) \leq \frac{\varepsilon}{4}\|(u, v)\|^{2}+2^{1-\frac{r}{2}} M_{\varepsilon}\|c\|_{L^{\infty}} S_{r}^{r}\|(u, v)\|^{r} .
$$

For every $(u, v) \neq(0,0)$, we have

$$
0 \leq \frac{E_{2}(u, v)}{E_{1}(u, v)} \leq \frac{\varepsilon}{2}+2^{2-\frac{r}{2}} M_{\varepsilon}\|c\|_{L^{\infty}} S_{r}^{r}\|(u, v)\|^{r-2}
$$

Due to the arbitrariness of $\varepsilon>0$ and $r \in(1,2)$, by letting the limit $\|(u, v)\| \rightarrow \infty$, we obtain the second relation from (3.1).

Note that $E_{1}$ has a strict global minimum $\left(u_{0}, v_{0}\right)=(0,0)$, and $E_{1}(0,0)=E_{2}(0,0)=0$. The definition of the number $\tau$ in Theorem 2.1, see (2.2), and the limits in (3.1) imply that $\tau=0$. Furthermore, since $H^{1}(\Omega)$ contains the constant functions on $\Omega$, keeping the notation from (2.3), we obtain

$$
\chi=\sup _{E_{1}(u, v)>0} \frac{E_{2}(u, v)}{E_{1}(u, v)} \geq 2\|c\|_{L^{1}} \max _{(s, t) \neq(0,0)} \frac{F(s, t)}{\|a\|_{L^{1}} s^{2}+\|b\|_{L^{1}} t^{2}}=s_{F}
$$

Therefore, applying Theorem 2.1 (with $E_{3} \equiv 0$ ), we obtain, in particular, for every $\lambda \in\left(s_{F}^{-1}, \infty\right)$, the equation $I_{\lambda}^{\prime}(u, v) \equiv$ $E_{1}^{\prime}(u, v)-\lambda E_{2}^{\prime}(u, v)=0$ admits at least three distinct pairs of solutions in $H^{1}(\Omega)^{2}$. Due to condition $\left(\mathbf{F}_{0}\right)$, system $\left(N_{\lambda}\right)$ has the solution $(0,0)$. Therefore, for every $\lambda>s_{F}^{-1}$, the system $\left(N_{\lambda}\right)$ has at least two distinct, nontrivial pairs of solutions, which concludes the proof.

Remark 3.1. The conclusion of Theorem 2.1 gives a much more precise information about the Neumann system $\left(N_{\lambda}\right)$; namely, one can see that $\left(N_{\lambda}\right)$ is stable with respect to small perturbations. To be more precise, let us consider the perturbed
system

$$
\begin{cases}-\Delta u+a(x) u=\lambda c(x) F_{u}(u, v)+\mu d(x) G_{u}(u, v) & \text { in } \Omega, \\ -\Delta v+b(x) v=\lambda c(x) F_{v}(u, v)+\mu d(x) G_{v}(u, v) & \text { in } \Omega, \\ \frac{\partial u}{\partial n}=\frac{\partial v}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

$$
\left(N_{\lambda, \mu}\right)
$$

where $\mu \in \mathbb{R}, d \in L^{\infty}(\Omega)$, and $G \in C^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ is a function such that for some $c>0$ and $1<p<2^{*}-1$,

$$
\max \left\{\left|G_{s}(s, t)\right|,\left|G_{t}(s, t)\right|\right\} \leq c\left(1+|s|^{p}+|t|^{p}\right) \quad \text { for all }(s, t) \in \mathbb{R}^{2}
$$

One can prove in a standard manner that $E_{3}: H^{1}(\Omega)^{2} \rightarrow \mathbb{R}$ defined by

$$
E_{3}(u, v)=\int_{\Omega} d(x) G(u, v) \mathrm{d} x
$$

is of class $C^{1}$ and it has a compact derivative. Thus, we may apply Theorem 2.1 in its generality to show that for small enough values of $\mu$ system ( $N_{\lambda, \mu}$ ) still has three distinct pairs of solutions.

## Acknowledgements

The research of A. Kristály was supported by the CNCSIS grant PCCE-55/2008 "Sisteme diferenţiale în analiza neliniară şi aplicaţii", by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, and by the Slovenian Research Agency grants P1-0292-0101 and J1-2057-0101.

## References

[1] S. El Manouni, M. Kbiri Alaoui, A result on elliptic systems with Neumann conditions via Ricceri's three critical points theorem, Nonlinear Analysis 71 (2009) 2343-2348.
[2] H. Lisei, Cs. Varga, Multiple solutions for gradient elliptic systems with nonsmooth boundary conditions, Mediterranean Journal of Mathematics (in press) (doi:10.1007/s00009-010-0052-1).
[3] A.G. Di Falco, Infinitely many solutions to the Neumann problem for quasilinear elliptic systems, Matematiche (Catania) 58 (2003) 117-130.
[4] G.A. Afrouzi, S. Heidarkhani, Multiplicity theorems for a class of Dirichlet quasilinear elliptic systems involving the ( $p_{1}, \ldots, p_{n}$ )-Laplacian, Nonlinear Analysis 73 (2010) 2594-2602.
[5] G.A. Afrouzi, S. Heidarkhani, Existence of three solutions for a class of Dirichlet quasilinear elliptic systems involving the ( $p_{1}, \ldots, p_{n}$ )-Laplacian, Nonlinear Analysis 70 (2009) 135-143.
[6] L. Boccardo, G. de Figueiredo, Some remarks on a system of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations and Applications 9 (2002) 309-323.
[7] S. Heidarkhani, Y. Tian, Multiplicity results for a class of gradient systems depending on two parameters, Nonlinear Analysis 73 (2010) $547-554$.
[8] C. Li, C.-L. Tang, Three solutions for a class of quasilinear elliptic systems involving the ( $p, q$ )-Laplacian, Nonlinear Analysis 69 (2008) $3322-3329$.
[9] B. Ricceri, A further three critical points theorem, Nonlinear Analysis 71 (2009) 4151-4157.


[^0]:    * Corresponding author.

    E-mail address: alexandrukristaly@yahoo.com (A. Kristály).

