
Fractional Calculus and Applied Analysis (2022) 25:2532–2553
https://doi.org/10.1007/s13540-022-00105-4

ORIG INAL PAPER

Mixed order elliptic problems driven by a singularity, a
Choquard type term and a discontinuous power
nonlinearity with critical variable exponents

Jiabin Zuo1,2 · Debajyoti Choudhuri3 · Dušan D. Repovš4,5

Received: 14 July 2022 / Revised: 30 October 2022 / Accepted: 2 November 2022 /
Published online: 17 November 2022
© Diogenes Co. Ltd 2022

Abstract
We prove the existence of solutions for the following critical Choquard type problem
with a variable-order fractional Laplacian and a variable singular exponent

a(−Δ)s(·)u + b(−Δ)u = λ|u|−γ (x)−1u +
(∫

Ω

F(y, u(y))

|x − y|μ(x,y)
dy

)
f (x, u)

+ ηH(u − α)|u|r(x)−2u, in Ω,

u = 0, in RN \ Ω.

where a(−Δ)s(·) + b(−Δ) is a mixed operator with variable order s(·) : R
2N →

(0, 1), a, b ≥ 0 with a + b > 0, H is the Heaviside function (i.e., H(t) = 0 if
t ≤ 0, H(t) = 1 if t > 0), Ω ⊂ R

N is a bounded domain, N ≥ 2, λ > 0,
0 < γ − = inf

x∈Ω̄
{γ (x)} ≤ γ (x) ≤ γ + = sup

x∈Ω̄

{γ (x)} < 1, μ is a continuous variable

B Dušan D. Repovš
dusan.repovs@guest.arnes.si

Jiabin Zuo
zuojiabin88@163.com

Debajyoti Choudhuri
dc.iit12@gmail.com

1 College of Mathematics, Changchun Normal University, Changchun 130032, China

2 School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006,
China

3 Department of Mathematics, National Institute of Technology Rourkela, Rourkela, Odisha
769008, India

4 Faculty of Education and Faculty of Mathematics and Physics, University of Ljubljana,
1000 Ljubljana, Slovenia

5 Institute of Mathematics, Physics and Mechanics, 1000 Ljubljana, Slovenia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13540-022-00105-4&domain=pdf
http://orcid.org/0000-0002-5858-063X
http://orcid.org/0000-0001-8744-9350
http://orcid.org/0000-0002-6643-1271


Mixed order elliptic problems driven by various kinds of singularities 2533

parameter, and F is the primitive function of a suitable f . The variable exponent r(x)
can be equal to the critical exponent 2∗

s (x) = 2N
N−2s̄(x) with s̄(x) = s(x, x) for some

x ∈ Ω̄, and η is a positive parameter.We also show that as α → 0+, the corresponding
solution converges to a solution for the above problem with α = 0.

Keywords Choquard type · Variable-order fractional operator · Mixed operator ·
Variable singular exponent · Discontinuous power nonlinearity

Mathematics Subject Classification 35R11 · 35J75 · 35J60 · 46E35.

1 Introduction

In this paper, we shall consider the following mixed order elliptic problem

a(−Δ)s(·)u + b(−Δ)u = λ|u|−γ (x)−1u +
(∫

Ω

F(y, u(y))

|x − y|μ(x,y)
dy

)
f (x, u)

+ ηH(u − α)|u|r(x)−2u, in Ω,

u = 0, in RN \ Ω.

(1.1)

Here, (−Δ)s(·) is the fractional Laplacian of a variable order s(·) which is defined as
follows.

(−Δ)s(·)u(x) = CN ,s(·) lim
ε→0

∫
RN \Bε (x)

(u(x) − u(y))

|x − y|N+2s(x,y)
dy, x ∈ R

N

and −Δ = −∑N
i=1

∂2

∂x2i
is the well-known Laplace operator.

We suppose that s(·) : R
2N → (0, 1) is a uniformly continuous function and

μ(·) : R2N → (0, N ) is a continuous function that satisfy the following hypotheses

(H1) : 0 < s− ≤ s+ < 1, 0 < μ− < μ+ < N and 2s+ < N ;
(H2) : s(·), μ(·) are symmetric, i.e.

s(x, y) = s(y, x), μ(x, y) = μ(y, x), (x, y) ∈ R
2N .

We assume that f : Ω̄ ×R → R
+ ∪ {0} is a continuous odd function with respect

to the second variable that satisfies the following hypotheses

(F1) : there exist c1 > 0 and τ ∈ C+(Ω̄) ∩ M with 2 < τ− < 2∗
s
−

and 2 < τ+ < 2∗
s
+ such that 0 ≤ f (x, t) ≤ c1|t |τ(x)−1,

for any (x, t) ∈ Ω × R,where

M = {τ ∈ C+(Ω̄) : 2 ≤ τ(x)β− ≤ τ(x)β+ < 2∗
s (x) for all x ∈ R

N }
with β ∈ C+(R2N ) such that

2

β(x, y)
+ μ(x, y)

N
= 2
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2534 J. Zuo et al.

for any (x, y) ∈ R
2N , and

1 < 2∗
s
− = inf

x∈Ω̄
{2∗

s (x)} ≤ 2∗
s (x) ≤ 2∗

s
+ = sup

x∈Ω̄

{2∗
s (x)};

(F2) : there exists θ > 2 such that

0 < θF(x, t) ≤ 2t f (x, t), for any t ∈ R \ {0} and for any x ∈ Ω.

Remark 1 We shall sometimes denote the Choquard type of term

∫
Ω

F(y, u(y))

|x − y|μ(x,y)
dy

by F ∗ 1
|x |μ(·) .

In recent years, the problem of combining local and nonlocal Laplacian operators
has attracted a huge amount of attention due to theoretical and practical applications,
such as in plasma physics (see [8]) and population dynamics (see [20]). Another key
reason as to why the study of such equations holds importance is due to the fact that
many of the free boundary problems studied in mathematical physics are formulated
in this form. Some of them are the surface problem, the obstacle problem, and the
Elenbaas equation (see [12–14]). Interested readers may also refer to [3].

Biagi et al. [6] considered the corresponding Sobolev inequality, detecting the opti-
mal constant for a critical local and nonlocal problem, furthermore, they proved an
existence (and nonexistence) result of the corresponding subcritical perturbation prob-
lem. Hu and Yang [30] investigated a mixed order problem and proved a bifurcation
and multiplicity result. Arora and Rădulescu [4] studied an elliptic problem involv-
ing both local-nonlocal operators and proved the existence (or nonexistence) of weak
solution to it. Cassani et al. [10] analyzed spectral properties, established the valid-
ity of the maximum principle, showed related properties of weak solutions of mixed
local-nonlocal elliptic equations. In particular, thismakes the problemmore interesting
when the order of nonlocal operator can be variable, and to the best of our knowledge
the first fractional variable-order problem can be traced back to the work of Lorenzo
and Hartley [32]. Since the fractional problem of variable order can better describe
the temperature change of the object in the process of nonlinear diffusion, we shall
focus on a class of problems with the fractional variable-order Laplace operator (see
[37, 38, 40]).

The starting point for the study of singular problems was the pioneering work of
Crandall [17].We also refer to themonograph byGhergu andRădulescu [27]. At a time
when scholars were concerned about nonlinearities with constant exponent, fewworks
also involved variable singular exponent case. For instance, Garain et al. [26] proved
the existence of one solution and two solutions for a quasilinear variable singular
exponent fractional elliptic problems when the parameters are in a suitable range.
Ghosh et al. [28] proved the existence of infinite number of small energy solutions by
using the symmetric mountain pass lemma for the elliptic PDEs of variable exponent
with a singular nonlinearity. Interested readers can also refer to Chammem et al. [11].

The Choquard type problem is a hot topic which many mathematical scholars have
begun paying close attention to recently. It becomes more interesting when combined
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Mixed order elliptic problems driven by various kinds of singularities 2535

with the variable exponents. Alves et al. [1] established a kind of Hardy-Littlewood-
Sobolev inequality with variable exponents, which usually is used to estimate the
convolution term in a problem.With the help of Nehari manifoldmethods, Li and Tang
[31] obtained the existence of positive ground state solution for a class of stationary
Choquard equations with variable exponent growth. By using variational methods,
Zuo et al. [42] and Biswas et al. [7] proved the existence and multiplicity of solutions
for a (p(.)&q(.)) Choquard problem with nonstandard growth.

In practical problems, some functional models are not always continuous, and it
is necessary to consider non-smooth functions on a bounded domain, Figueiredo et
al. [25] studied a critical p&q elliptic problem with discontinuous nonlinearities and
obtained the existence of positive solutions. Yuan-Yu [41] also considered a class
of discontinuous problems to which they obtained the existence of definite sign and
sign-changing solutions. Moreover, Xiang-Zhang [39] dealt with a class of critical p-
Kirchhoff type problems with a discontinuous nonlinearity in the whole spaceRN and
proved the existence and multiplicity of solutions. Albuquerque et al. [18] discussed a
a coupled elliptic system with a discontinuous nonlinearity and showed the existence
and behavior of positive solutions. For more information on non-smooth analysis, one
can also see Alves-Yuan [2], dos Santos-Tavares [23], dos Santos-Figueiredo [22],
Saoudi et al. [36].

Inspired by all of the above, we are going to consider a critical problem involving
the mixed operator, variable singularity exponents, the convolution term and the dis-
continuity term simultaneously. To this end, we need to overcome the difficulty posed
by each part. Here are the main results of this article

Theorem 1 Let (H1)−(H2) and (F1)−(F2) hold for functions s,μ and f . Then there
exist α′, λ′ > 0 such that for every α ∈ (0, α′), λ ∈ (0, λ′), problem (1.1) admits at
least one nontrivial weak solution, say uα . Furthermore, |{x ∈ Ω : uα(x) > α}| > 0,
where | · |, when considered for a set, denotes the Lebesgue measure.

Theorem 2 Let uα be a weak solution to problem (1.1). Then for any sequence (αi ) ⊂
(0, α0) with αi → 0+, there exists a subsequence such that uαi → u0 in Z, where u0
is a nontrivial weak solution to the following problem

a(−Δ)s(·)u + b(−Δ)u =λ|u|−γ (x)−1u +
(∫

Ω

F(y, u(y))

|x − y|μ(x,y)
dy

)
f (x, u)

+ ηH(u)|u|r(x)−2u, in Ω,

u =0, in RN \ Ω.

which we shall denote by (P0).

The paper is organized as follows. In Section 2, we introduce some basic workspace
and properties and crucial technical lemmas. In Section 3, we construct cut-off func-
tions, auxiliary results, and verify all conditions of the non-smooth critical point theory.
In Section 4, we prove the main results. In Section 5, we explain some more details.
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2536 J. Zuo et al.

2 Preliminaries

Let X be a space which is defined as follows

X = {
u : RN → R : u is measurable, u|Ω ∈ L2(Ω),

u(x) − u(y)

|x − y| N+2s(x,y)
2

∈ L2(Q)
}

and is equipped with the Gagliardo norm

‖u‖X = ‖u‖2 +
(∫∫

Q

|u(x) − u(y)|2
|x − y|N+2s(x,y)

dydx

) 1
2

,

where

Ω ⊂ R
N , Q = R

2N \ ((RN \ Ω) × (RN \ Ω)).

Here, ‖u‖2 refers to the L2-norm of u.
We shall mostly use the subspace X0 of X which is defined as

X0 =
{
u ∈ X : u = 0 in RN \ Ω

}

with the norm

‖u‖s(·,·),2 =
(∫∫

Q

|u(x) − u(y)|2
|x − y|N+2s(x,y)

dydx

) 1
2

.

Then (X0, ‖ · ‖s(·,·),2) is a Hilbert space with respect to the norm ‖ · ‖s(·,·),2 induced
by the inner product

〈u, v〉 =
∫∫

Q

(u(x) − u(y))(v(x) − v(y))

|x − y|N+2s(x,y)
dxdy

for each u, v ∈ X0. The space X0 is also separable and reflexive, see Azroul et al. [5,
Lemma 2.3].

In order to study (1.1), we define a new workspace

Z =
{
u ∈ L2(Ω) : u = 0 a.e. in RN \ Ω, a‖u‖2s(·,·),2 + b‖u‖21,2 < ∞

}

with the norm:

‖u‖ = (a‖u‖2s(·,·),2 + b‖u‖21,2)
1
2 , (2.1)

where

‖u‖21,2 =
∫

Ω

|∇u|2dx .
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Mixed order elliptic problems driven by various kinds of singularities 2537

A standard approach from functional analysis guarantees the reflexivity of Banach
space Z .

Remark 2 We make some useful observations.

1. The spaces X , X0 ⊂ Ws(x),2(Ω), where

Ws(x),2(Ω) =
{
u ∈ L2(Ω) : u(x) − u(y)

|x − y| N+2s(x,y)
2

∈ L2(Ω)

}

is the usual fractional order Sobolev space, endowed with the Gagliardo norm

‖u‖Ws(·),2(Ω) = ‖u‖2 +
(∫∫

Ω×Ω

|u(x) − u(y)|2
|x − y|N+2s(x,y)

dydx

) 1
2

.

2. Due to the “boundary condition” that u = 0 inRN \Ω , the space X0 is equivalent
to Ws(x),2

0 (RN ).
3. The first order Sobolev space will be defined as

W 1,2
0 (Ω) =

{
u ∈ L2(Ω) : u|∂Ω = 0,

∫
Ω

|∇u|2dx < ∞
}

.

4. Any uniform constant appearing in an inequality will be denoted by the symbol
C with or without a prefix/suffix.

Recall that the Lebesgue space of variable exponent is defined as follows (see Papa-
georgiou et al. [35]).

L p(x)(Ω) =
{
u : Ω → R : u is measurable and

∫
Ω

|u(x)|p(x)dx < ∞
}

(2.2)

and it is equipped with the Luxemburg norm

‖u‖p(·) = inf

{
μ > 0 :

∫
Ω

∣∣∣∣u(x)

μ

∣∣∣∣
p(x)

dx < 1

}
.

Furthermore, we define the best Sobolev constants as follows:

S1 = inf
u∈X0\{0}

∫∫
Q

|u(x)−u(y)|2
|x−y|N+2s(x,y) dydx

‖u‖2r(·)
, (2.3)

S2 = inf
u∈W 1,2

0 (Ω)\{0}

∫
Ω

|∇u|2dx
‖u‖22∗

, (2.4)
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where 2∗ = 2N
N−2 . An important inequality which will be used consistently throughout

the paper is the Hölder inequality for the Lebesgue space of variable exponent, see
Fan-Zhao [24, Theorem 1.3].

Finally, the modular function is defined to be the mapping ρ : Lq(x)(Ω) → R

which is defined as

ρq(x)(u) :=
∫

Ω

|u|q(x)dx .

For some important properties of this modular function, we refer the reader to [35].

3 Auxiliary results

We define

Jα(t) =
∫ t

0
jα(s)ds = 1

r(x)
H(t − α)(tr(x) − αr(x))

to be the primitive of

jα(t) = H(t − α)|t |r(x)−2t, g(x, t) =
(
F ∗ 1

|x |μ(·)

)
f (x, t), F(x, t) =

∫ t

0
f (x, s)ds.

We call u ∈ Z a weak solution to problem (1.1) if for every ϕ ∈ Z , we have

a
∫∫

Q

(u(x) − u(y))

|x − y|N+2s(x,y)
(ϕ(x) − ϕ(y))dxdy + b

∫
Ω

∇u · ∇ϕdx

= λ

∫
Ω

|u|−γ (x)−1uϕdx +
∫

Ω

g(x, u)ϕdx + η

∫
Ω

jα(u)ϕdx . (3.1)

Clearly, the weak solution for equation (1.1) is a critical point of the following func-
tional

I (u) =a

2

∫∫
Q

|u(x) − u(y)|2
|x − y|N+2s(x,y)

dxdy + b

2

∫
Ω

|∇u|2dx − λ

∫
Ω

|u|1−γ (x)

1 − γ (x)
dx

− 1

2

∫
Ω

(
F ∗ 1

|x |μ(·)

)
F(x, u)dx − η

∫
Ω

Jα(u)dx

=1

2
‖u‖2 − λ

∫
Ω

|u|1−γ (x)

1 − γ (x)
dx − 1

2

∫
Ω

(
F ∗ 1

|x |μ(·)

)
F(x, u)dx

− η

∫
Ω

Jα(u)dx .

(3.2)

However, the functional I is not even differentiable, owing to the existence of the
singular term and discontinuous nonlinear term. Therefore, we replace the original
functional I with the cut-off functional Ī .
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Mixed order elliptic problems driven by various kinds of singularities 2539

3.1 Cut-off functional

To overcome the nondifferentiability of the functional I due to the singular term, we
define the following cut-off function

φ(x, t) =
{

|t |−γ (x)−1t, if |t | > uλ(x)

uλ(x)
−γ (x), if |t | ≤ uλ(x).

Here, uλ refers to the solution of the singular problem as in Theorem 5 (see Section 5).
We get the well-defined cut-off problem:

a(−Δ)s(·)u − bΔu = λφ(x, t) +
(
F ∗ 1

|x |μ(·)

)
f (x, u)

+ ηH(u − α)|u|r(x)−2u in Ω,

u = 0 in RN \ Ω.

(3.3)

We say that ũ ∈ Z is a weak solution for equation (3.3) if we have

a
∫∫

Q

(ũ(x) − ũ(y))

|x − y|N+2s(x,y)
(ϕ(x) − ϕ(y))dxdy + b

∫
Ω

∇ũ · ∇ϕdx

= λ

∫
Ω

φ(x, ũ)ϕdx +
∫

Ω

(∫
Ω

F(y, ũ(y))

|x − y|μ(x,y)
dy

)
f (x, ũ)ϕdx + η

∫
Ω

jα(ũ)ϕdx

for any ϕ ∈ Z . Consequently, we shall define the energy functional

Ī (u) =a

2

∫∫
Q

|u(x) − u(y)|2
|x − y|N+2s(x,y)

dxdy + b

2

∫
Ω

|∇u|2dx − λ

∫
Ω

Φ(x, u)dx

− 1

2

∫
Ω

(∫
Ω

F(y, u(y))

|x − y|μ(x,y)
dy

)
F(x, u)dx − η

∫
Ω

Jα(u)dx,

(3.4)

where Φ is the primitive of the function φ, i.e. Φ(x, t) = ∫ t
0 φ(x, s)ds.

Remark 3 If u0 is a global minimizer of I , then clearly I (u0) = I (|u0|). Trivially, we
have I (u0) ≤ I (|u0|). Furthermore, using

∫∫
Q

||u(x)| − |u(y)||2
|x − y|N+2s(x,y)

dxdy ≤
∫∫

Q

|u(x) − u(y)|2
|x − y|N+2s(x,y)

dxdy,

−
∫

Ω

H(|u| − α)|u|r(x)dx ≤ −
∫

Ω

H(u − α)|u|r(x)dx,

and the property of F that it is even, we have I (u0) ≥ I (|u0|). Hence, we seek for
a minimizer of the functional I which is nonnegative. Furthermore, the solution is
positive a.e. in Ω due to singular terms.
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Remark 4 We note that the weak solution of new problem (3.3) with u > uλ is also a
weak solution to original problem (1.1). Refer to the proof of Theorem 5 in Section 5.

3.2 Definitions from convex analysis

Let us now see a few definitions that are very important in the analysis of functionals
that are nondifferentiable but locally Lipschitz continuous (see [23, Section 2]).

Definition 1 (see [23, Section 2]) Let J be a locally Lipschitz continuous functional.
The directional derivative of J at u in the direction of z ∈ V is defined by

J̃ (u; z) = lim
h→0

sup
ξ↓0

J (u + h + ξ z) − J (u + h)

ξ
.

From dos Santos-Tavares [23] we know that J̃ (u; ·) is convex and continuous. The
subdifferential of J̃ (u; ·) at w ∈ V is defined to be the following set:

∂ J̃ (u;w) = {υ ∈ V ∗ : J̃ (u; z) ≥ J̃ (u;w) + 〈υ, z − w〉, z ∈ V }.
Here, 〈·, ·〉 denotes the duality pair between V and V ∗ (the dual space of V ). The
generalized gradient (see [23]) of J at u is defined as

∂ J (u) = {υ ∈ V ∗ : 〈υ, z〉 ≤ J̃ (u; z), z ∈ V },
which is convex and weak∗- compact by [14]. Clearly, ∂ J (u) is nonempty and is the
subdifferential of J̃ (u; 0) as J̃ (u; 0) = 0. Then by [14], the function

ΛJ (u) = min{‖υ‖V ∗ : υ ∈ ∂ J (u)} (3.5)

exists and is lower semi-continuous.
A function ū is said to be a critical point of J if 0 ∈ ∂ J (ū), whereas c ∈ R is said

to be a critical value of J if J (ū) = c for a critical point ū ∈ V . If J is a C1 functional
then ∂ J (u) = {J ′(u)}.
Remark 5 Define

Īη(u) =
∫

Ω

Jα(u)dx,

and

E0(u) = ‖u‖2
2

−
∫

Ω

Φ(x, u)dx −
∫

Ω

(
F ∗ 1

|x |μ(·)

)
F(x, u)dx .

Then

∂ Ī (w) ⊂ {E ′
0(w)} − ∂ Īη(w) for all w ∈ Z . (3.6)
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Remark 6 We shall be interested in solutions that are greater than α > 0. We shall
show that {u > α} is of positive Lebesgue measure for a small range of α.

Next, consider the energy functional

I(u) =1

2
‖u‖2 − λ

∫
Ω

(u+)1−γ (x)

1 − γ (x)
dx − 1

2

∫
Ω

(
F ∗ 1

|x |μ(·)

)
F(x, u+)dx

− η

∫
Ω

Jα(u+)dx .

A critical point of I is clearly a weak solution of (1.1). Therefore we have

0 =a
∫∫

Q

(u(x) − u(y))

|x − y|N+2s(x,y)
(ϕ(x) − ϕ(y))dxdy + b

∫
Ω

∇u · ∇ϕdx

− λ

∫
Ω

(u+)−γ (x)ϕdx − 1

2

∫
Ω

(
F ∗ 1

|x |μ(·)

)
f (x, u+)ϕdx − η

∫
Ω

jα(u+)ϕdx .

On testing with ϕ = u−, we get that the Lebesgue measure of the set {u < 0} is zero.
Thus without loss of generality we may assume that u > 0 a.e. in Ω .

We recall some properties of the functionals Īη in the following lemma, the proof
of which follows from the argument in dos Santos-Figueiredo [21, Lemma 3.1].

Lemma 1 Īη : Lr(x)(Ω) → R is a locally Lipschitz functional such that ∂ Īη(u) ⊂
[ f

α
(u(x)), f α(u(x))] a.e. in Ω and

[ f
α
(u), f α(u)] =

⎧⎨
⎩

{0}, ifu < α

[0, ur(x)−1], if u = α

{ur(x)−1}, if u > α.

(3.7)

3.3 Themountain pass theorem

An essential result which will be required henceforth is the Mountain Pass Theorem
for a locally Lipschitz nondifferentiable functional due to Grossinho-Tersian [29] and
Rădulescu [34].

The following theorem gives an energy level, below which the (PS)c condition is
satisfied by the functional Ī .

Theorem 3 The functional Ī satisfies the (PS)c-condition for

c <

(
1

2
− 1

κ

)
S1

V
V−2 −

(
1

2
− 1

κ

)− 1−δ
1+δ

(
λ

1 − γ +C(Ω, N )

) 2
1+δ = c∗

where c∗ > 0 for any λ ∈ (0, λ′), λ′ being sufficiently small, where V is a constant
and 2 < κ < r− < 2∗

s
−.
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2542 J. Zuo et al.

Proof We first choose those sequences that will be sufficient to prove this lemma. We
shall discard it if {ui } ⊂ X0 is an eventually zero sequence. Assume that {ui } ⊂ X0 is
a sequence with infinitely many terms equal to 0. Then we can choose a subsequence
of {ui } that is nonzero. Let this sequence {ui } be such that

Ī (ui ) → c and Λ Ī (ui ) → 0 (3.8)

as i → ∞. Let {vi } ⊂ Z ′ be such that Λ Ī (ui ) = ‖vi‖Z ′ , where Z ′ is the dual space
of Z . By Remark 5, there exists ηi ∈ ∂ Īη(ui ) satisfying the following

〈vi , ϕ〉 =a
∫∫

Q

(u(x) − ui (y))

|x − y|N+2s(x,y)
(ϕ(x) − ϕ(y))dxdy + b

∫
Ω

∇ui · ∇ϕdx

− λ

∫
Ω

φ(x, ui )ϕdx −
∫

Ω

(∫
Ω

F(y, ui (y))

|x − y|μ(x,y)
dy

)
f (x, ui )ϕdx − 〈ηi , ϕ〉.

For 2 < κ < r− < 2∗
s
− and κ < θ , consider

Ī (ui ) − 1

κ
〈ui , ui 〉

=
(
1

2
− 1

κ

)
‖ui‖2 + λ

κ

∫
Ω

φ(x, ui )uidx

− λ

∫
Ω

Φ(x, ui )dx − 1

2

∫
Ω

(∫
Ω

F(y, ui (y))

|x − y|μ(x,y)
dy

)
F(x, ui )dx

+ 1

κ

∫
Ω

(∫
Ω

F(y, ui (y))

|x − y|μ(x,y)
dy

)
f (x, ui )uidx − η

∫
Ω

Jα(ui )dx + η

κ
〈ηi , ui 〉

≥
(
1

2
− 1

κ

)
‖ui‖2 + λ

(
1

κ
− 1

1 − γ −

)∫
Ω

ψ(x, ui )dx

+
(

θ

2κ
− 1

2

) ∫
Ω

(∫
Ω

F(y, ui (y))

|x − y|μ(x,y)
dy

)
F(x, ui )dx

+ η

(
1

κ
− 1

r−

) ∫
Ω∩{ui>α}

|ui |r(x)dx + η

κ
〈ηi , ui 〉 + η

r+ αV |{ui = α}|

≥
(
1

2
− 1

κ

)
‖ui‖2 − λ

1 − γ +C(Ω, N )‖ui‖1−δ

+ η

(
1

κ
− 1

r−

) ∫
Ω∩{ui>α}

|ui |r(x)dx .

Here,

ψ(x, ui ) =
{

|ui |1−γ (x), if ui > uλ

uiu
−γ (x)
λ , if ui ≤ uλ

123



Mixed order elliptic problems driven by various kinds of singularities 2543

and

V =
{
r−, ‖w‖r(·) < 1

r+, ‖w‖r(·) > 1.
(3.9)

Define

δ =
⎧⎨
⎩

γ +, ‖w1−γ (x)‖ 1
1−γ (x)

< 1

γ −, ‖w1−γ (x)‖ 1
1−γ (x)

> 1.
(3.10)

Furthermore,

Ī (ui ) − 1

κ
〈vi , ui 〉 ≤ | Ī (ui )| + 1

κ
‖vi‖Z ′ ‖ui‖ ≤ c + 1 + ‖ui‖ + oi (1). (3.11)

Finally, we have

c + 1 + ‖ui‖ + oi (1) ≥ Ī (ui ) − 1

κ
〈vi , ui 〉

≥
(
1

2
− 1

κ

)
‖ui‖2 − λ

1 − γ +C(Ω, N )‖ui‖1−δ

+ η

(
1

κ
− 1

r−

) ∫
Ω

H(ui − α)|ui |r(x)dx .

(3.12)

This implies the boundedness of the sequence {ui } in Z . Thus up to a subsequence,
still denoted by the notation of the sequence, the following holds

ui⇀u in Z , ui (x) → u(x) a.e. in Ω, ηi
∗
⇀ D in Lr(x)′(Ω) as i → ∞,(3.13)

and ‖ui − u‖2 → L as i → ∞ (3.14)

where r(x)′ = r(x)
r(x)−1 is the conjugate of r(x). If L = 0, then ui → u and we have

nothing to prove. Therefore, let L > 0. From (3.13) we have

∫
Ω

|ui |r(x)−1χ{ui>α− 1
n }ϕdx →

∫
Ω

|u|r(x)−1χ{u>α}ϕdx for all ϕ ∈ Lr(x)(Ω),

Here, χ denotes the indicator function. Invoking the Brezis-Lieb Lemma [9] we have

‖ui‖2 = ‖ui − u‖2 + ‖u‖2 + oi (1), (3.15)∫
Ω

|uiχ{ui>α− 1
n }|r(x)dx =

∫
Ω

|uiχ{ui>α− 1
n } − uχ{u>α}|r(x)dx

+
∫

Ω

|uχ{u>α}|r(x)dx + oi (1). (3.16)
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The embedding result Ws(·),2(Ω) ↪→ Lq(·)(Ω), proved in [43, Theorem 3.1], guar-
antees that ui → u in Lq(x)(Ω), where N > 2s(x, y) for (x, y) ∈ Ω̄ × Ω̄ and there
exists ε = ε(x) > 0 such that

sup
y∈Ωx,ε

{q(y)} ≤ 2N

N − 2 inf
(y,z)∈Ωx,ε×Ωx,ε

{s(y, z)} , (3.17)

where Ωz,ε = Bε(z)
⋂

Ω, for z ∈ Ω . Also, the following always holds

∫
Ω

φ(x, ui )dx ≤
∫

Ω

u−γ (x)
i dx .

Thus it follows that

∣∣∣∣
∫

Ω

φ(x, ui )(ui − u)dx

∣∣∣∣ ≤ oi (1). (3.18)

Consider now

oi (1) = 〈ui , ui − u〉
= a

∫∫
Q

(ui (x) − ui (y))

|x − y|N+2s(x,y)
((ui − u)(x) − (ui − u)(y))dxdy

+ b
∫

Ω

∇ui · ∇(ui − u)dx − λ

∫
Ω

φ(x, ui )(ui − u)dx

−
∫

Ω

(∫
Ω

F(y, ui (y))

|x − y|μ(x,y)
dy

)
f (x, ui )(ui − u)dx − 〈ηi , ui − u〉

= ‖ui‖2 −
∫∫

Q

(ui (x) − ui (y))

|x − y|N+2s(x,y)
(u(x) − u(y))dxdy

− λ

∫
Ω

φ(x, ui )(ui − u)dx

−
∫

Ω

(∫
Ω

F(y, ui (y))

|x − y|μ(x,y)
dy

)
f (x, ui )(ui − u)dx − 〈ηi , ui − u〉

= ‖ui − u‖2 −
∫

Ω

|ui |r(x)−1(ui − u)χ{ui>α− 1
n }dx + oi (1)

(invoking (3.13), (3.15))

= ‖ui − u‖2 −
∫

Ω

|ui |r(x)χ{ui>α− 1
n }dx +

∫
Ω

|u|r(x)χ{u>α}dx

+ oi (1)

= ‖ui − u‖2 −
∫

Ω

|uiχ{ui>α− 1
n } − uχ{u>α}|r(x)dx + oi (1)

≥ ‖ui − u‖2 − ‖uiχ{ui>α− 1
n } − uχ{u>α}‖Vr(·) + oi (1).
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Therefore

S1 ≤ ‖ui−u‖2
‖uiχ{ui>α− 1

n }−uχ{u>α}‖2r(·)
≤ L

V−2
V + oi (1). (3.19)

Thus L > S1
V

V−2 + oi (1). It now follows from (3.12) that

c ≥
(
1

2
− 1

κ

)
‖ui‖2 − λ

1 − γ +C(Ω, N )‖ui‖1−δ

≥
(
1

2
− 1

κ

)
(L + ‖u‖2) − λ

1 − γ +C(Ω, N )‖ui‖1−δ

≥
(
1

2
− 1

κ

)
(L + ‖u‖2) −

(
1

2
− 1

κ

)
‖u‖2

−
(
1

2
− 1

κ

)− 1−δ
1+δ

(
λ

1 − γ +C(Ω, N )

) 2
1+δ

≥
(
1

2
− 1

κ

)
S1

V
V−2 −

(
1

2
− 1

κ

)− 1−δ
1+δ

(
λ

1 − γ +C(Ω, N )

) 2
1+δ + oi (1)

= c∗ + oi (1)

with c∗ > 0 for a small range of λ, say λ ∈ (0, λ′). This leads to a contradiction to the
assumption that c < c∗. Therefore L = 0 and hence ui → u in Z as i → ∞. ��

The next lemma will guarantee the verification of the hypotheses of the Mountain
Pass Theorem for nondifferentiable functionals.

Lemma 2 Let (H1)−(H2) and (F1)−(F2) hold. Then there exists r1 > 0,λ0 = λ0(r1),
r2 > 0, m0 > 0, σ ∈ Z such that for every α > 0 and λ ∈ (0, λ0) the following holds

1. sup
m∈[0,m0]

Ī (mσ) < c∗;

2. Ī (v) ≥ r2 for every v ∈ ∂Br1(0) ∩ Z, where r1, r2 are independent of α,and
∂Br1(0) = {v ∈ Z : ‖v‖ = r1};

3. Ī (m0σ) < 0 for ‖m0σ‖ > r1.

Proof Let σ ∈ Z be fixed with σ > 0 in Ω and ‖σ‖ = 1. Now for sufficiently small
m0 > 0 and λ ∈ (0, λ′′) for sufficiently small λ′′, we have

Ī (mσ) ≤ 1

2
m2

0 − λ

1 − γ −

∫
Ω

m1−γ (x)
0 σ 1−γ (x)dx < 0 and

1

2
m2

0 < c∗ (3.20)

for everym ∈ [0,m0], thus proving properties 1 and 3. Furthermore, by the embedding
result in [43, Theorem 3.1],

Ī (u) ≥ 1

2
‖u‖2 − λC1‖u‖1−δ − C2‖u‖2A − ηC3‖u‖V (3.21)
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where

A =
{

τ−, ‖v‖β+τ(·) < 1

τ+, ‖v‖β+τ(·) > 1.
(3.22)

Here, we have used the Hardy-Littlewood-Sobolev inequality for variable exponent
given in [1, Proposition 2.4] and the conditions in (F1), to estimate the Choquard term.
Define

m̃(t) = t1+δ − 2C2t
2A−1+δ − 2ηC3t

V−1+δ − 2λC1.

This function achieves a maximum, say, at t = r1 > 0, i.e. max
t∈[0,1]{m̃(t)} = m̃(r1) > 0.

We let

λ′′′ = 1

2C1
m̃(r1) and λ0 = min{λ′, λ′′, λ′′′},

where λ′ is obtained from Theorem 3. Then for any u ∈ Z such that ‖u‖ = r1 and for
any λ ∈ (0, λ0), we have

Ī (u) ≥ 1

2
r1−δ
1 m̃(r1) = r2.

Thus for λ ∈ (0, λ0), property 2 holds. ��

4 Proof of themain results

This section is devoted to the proofs of the main results stated in Theorems 1 and 2.

4.1 Proof of Theorem 1

Let m0, σ , r1, r2, λ′ be as given in Lemma 2. We further denote

cα = inf
ζ∈Γ

max
t∈[0,1] Ī (ζ(t)) and Γ = {ζ ∈ C([0, 1]; Z) : ζ(0) = 0, ζ(1) = m0σ }.

Since Ī fulfills the conditions of the theorem (as proved in Lemma 2), the existence of
a (PS)cα sequence {wi } ⊂ Z , such that |wi | > uλ a.e. in Ω , is guaranteed that obeys
Ī (wi ) = cα + oi (1) and Λ Ī (wi ) = oi (1). The properties given in Lemma 2 imply

r2 ≤ cα < c∗ =
(
1

2
− 1

κ

)
S1

V
V−2 −

(
1

2
− 1

κ

)− 1−δ
1+δ

(
λ

1 − γ +C(Ω, N )

) 2
1+δ

(4.1)

for all α > 0. Thus, by [43, Theorem 3.1] there exists wα ∈ Z such that, up to a
subsequence which is still denoted by the notation of the sequence, wi → wα in Z
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as n → ∞. This establishes Ī (wα) = cα and 0 ∈ ∂ Ī (wα). Further, by (3.6) and
Lemma 1, we have

a
∫∫

Q

(wα(x) − wα(y))

|x − y|N+2s(x,y)
(ϕ(x) − ϕ(y))dxdy + b

∫
Ω

∇wα · ∇ϕdx

= λ

∫
Ω

Φ(x, wα)ϕdx +
∫

Ω

(
F(y, u)

|x − y|μ(x,y)

)
dy

∫
Ω

f (x, u)ϕdx + η

∫
Ω

jαϕdx,

for every ϕ ∈ Z , where fα(x) ∈ [ f
α
(wα(x)), f α(wα(x))] a.e. in Ω . Clearly |wα| ≥

uλ > 0 a.e. in Ω . Therefore, wα is a nontrivial weak solution of (3.3).
We now claim is that the Lebesgue measure of the set {x ∈ Ω : wα(x) > α} is

positive. Suppose to the contrary, that |{x ∈ Ω : wα(x) > α}| = 0. Then we have
wα ≤ α a.e. in Ω . Therefore, from the weak formulation of the problem (3.3) and on
testing with ϕ = wα we get

2r2 ≤ ‖wα‖2 = λ

∫
Ω

φ(x, wα)wαdx +
∫

Ω

∫
Ω

(
F(y, wα)

|x − y|μ(x,y)
dy

)
f (x, wα)wαdx

+
∫

Ω

jαwαdx

≤ λα1−δ|Ω| + C

τ− |Ω| 1
τ+ α2 + αV |Ω|. (4.2)

This is impossible since r2 is independent of α. Thus there exists a small α, say α′,
such that for all α ∈ (0, α′) we have |{x ∈ Ω : wα(x) > α}| > 0. ��

Since by Theorem 1 we have proved the existence of a nontrivial solution to (1.1)
it will now be interesting to investigate the nature of this obtained solution under the
limit α → 0+.
Theorem 4 Let r2 be as in Lemma 2 and cα, c0 be as in the proof of Theorem 1. Then
lim

α→0+cα = c0 ≥ r2.

Proof Let Ī0 : Z → R be the associated functional to the problem (1.1) for α = 0
which is defined as follows.

Ī0(u) = 1

2
‖u‖2 − λ

∫
Ω

|u|1−γ (x)

1 − γ (x)
dx −

∫
Ω

∫
Ω

(
F(y, u)

|x − y|μ(x,y)
dy

)
F(x, u)dx

−
∫

Ω

H(u)
|u|r(x)
r(x)

dx for all u ∈ Z . (4.3)

Define

c0 = inf
ξ∈Γ

max
t∈[0,1] Ī0(ξ(t)) (4.4)

where

Γ = {ξ ∈ C([0, 1]; Z) : ξ(0) = 0, ξ(1) = m0σ }.
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The notations m0, σ are as in Theorem 2. Since

Jα(t) =
∫ t

0
H(t − α)tr(x)−1dt = χ{t>α}

1

r(x)
(|t |r(x) − αr(x)),

this implies that

∣∣∣∣
∫

Ω

1

r(x)
|u|r(x)dx −

∫
Ω

Jα(u)dx

∣∣∣∣
=

∣∣∣∣∣
∫

Ω

|u|r(x)
r(x)

χ{u≤α}dx +
∫

Ω

αr(x)

r(x)
χ{u>α}dx

∣∣∣∣∣ ≤ 2αV

r− . (4.5)

Clearly, Ī0(u) ≤ Ī (u) for all u ∈ Z . Thus c0 ≤ cα for any α > 0. From (4.5) we
establish that

Ī (u) = Ī0(u) + oα(1) for all u ∈ Z . (4.6)

This further gives

Ī (ξ(t)) = Ī0(ξ(t)) + oα(1) for all ξ ∈ Γ , t ∈ [0, 1] (4.7)

and thus cα = c0 + oα(1). So from (4.7) and using the properties proved in Lemma 2
we conclude from the Mountain Pass Theorem that lim

α→0+cα = c0. ��

4.2 Proof of Theorem 2

Let wα ∈ Z be a weak solution of (1.1). So,

a
∫∫

Q

(wα(x) − wα(y))

|x − y|N+2s(x,y)
(ϕ(x) − ϕ(y))dxdy + b

∫
Ω

∇wα · ∇ϕdx (4.8)

= λ

∫
Ω

|wα|−γ (x)−1wαϕdx +
∫

Ω

∫
Ω

(
F(y, wα)

|x − y|μ(x,y)
dy

)
f (x, wα)ϕdx

+ η

∫
Ω

jαϕdx (4.9)

for all ϕ ∈ Z . Consider a (PS)c sequence, say (wi ), such that wi → wα for a
subsequence in Z as i → ∞. Therefore the following holds.

cα + 1 + ‖wi‖ + o(1) ≥
(
1

2
− 1

κ

)
‖wα‖2 − λ

(
1

1 − γ + − 1

κ

)
C(Ω, N )‖wi‖1−δ.

Thus,

cα + 1 + ‖wα‖ ≥
(
1

2
− 1

κ

)
‖wα‖2 − λ

(
1

1 − γ + − 1

κ

)
C(Ω, N )‖wα‖1−δ
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for all α > 0. This implies that wα is uniformly bounded in Z .
Let {αi } be a sequence such that αi → 0+. Therefore, there exists up to a sub-

sequence, w0 such that wαi ⇀w0 in Z . From the embedding result in [43, Theorem
3.1] we have wαi → w0 in Lq(x)(Ω). Hence, wαi (x) → w0(x) a.e. in Ω . Also,
jαi (wαi ) → |w0|r(x)−1w0. Thus

∫∫
Q

(w0(x) − w0(y))

|x − y|N+2s(x,y)
(ϕ(x) − ϕ(y))dxdy = λ

∫
Ω

|w0|−γ (x)−1w0ϕdx

+
∫

Ω

∫
Ω

(
F(y, w0)

|x − y|μ(x,y)
dy

)
f (x, w0)ϕdx + η

∫
Ω

|w0|r(x)−2w0ϕdx for all ϕ ∈ Z .

In the above equation, Remark 7 in Section 5 has been used to pass the limit in the
singular term. Furthermore, using (4.1), we obtain

r2 ≤ Ī (wαi ) = cαi

< c∗ =
(
1

2
− 1

κ

)
S1

V
V−2 −

(
1

2
− 1

κ

)− 1−δ
1+δ

(
λ

1 − γ +C(Ω, N )

) 2
1+δ

(4.10)

for all n ∈ N. From the inequality (4.5) we have

cαi = Ī (uαi ) = Ī0(uαi ) + oαi (1). (4.11)

Thus by (4.6)-(4.10) we see that

wαi → w0, in Z as αi → 0+. (4.12)

So c0 = Ī0(w0) ≥ r2 > 0. This completes the proof. ��

5 Appendix

In this section we shall prove the existence of a solution to the singular problem.

Theorem 5 For any λ ∈ (0, λ0) there exists a positive weak solution uλ to

a(−Δ)s(·)u + b(−Δ)u = λ|u|−γ (x)−1u, in Ω

u = 0, in RN \ Ω.
(5.1)

such that uλ < u a.e. in Ω, where u is a solution to (1.1).

Proof Wefirst prove the existence of uλ.We observe that the functional Īsing associated
to (5.1) can be defined as follows:

Īsing(u) =a

2

∫∫
Q

|u(x) − u(y)|2
|x − y|N+2s(x,y)

dxdy + b

2

∫
Ω

|∇u|2dx − λ

∫
Ω

|u|1−γ (x)dx

(5.2)
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for u ∈ Z . The rest of the proof follows the argument in the proof of Choudhuri-
Repovš [16, Lemma A.2].

��
Remark 7 We claim that

lim
αi→0+

∫
Ω

ϕ

v
γ (x)
αi

=
∫

Ω

ϕ

(v+
0 )γ (x)

< ∞ for all ϕ ∈ Z , (5.3)

where vαi is a positive weak solution to (1.1) with α = αi as obtained in Theorem 1
and u0 is the uniform limit of the sequence (uαi ), up to a subsequence, in Ω obtained
by [43, Theorem 3.1].

Proof of the claim We first denote

Sαi = {x ∈ Ω : vαi (x) = 0}.

As v
−γ (x)
αi ϕ ∈ L1(Ω) for every ϕ ∈ Z , the Lebesgue measure of Sαi (denoted in

short as |Sαi |) is zero, i.e. |Sαi | = 0. Due to the sub-additive property of the Lebesgue
measure implies, we have that |⋃ Sαi | = 0.

Let |D| < ε such that for x ∈ Ω \ D, v0(x) = 0. We can construct the set D by
the Egorov Theorem. Therefore if we are able prove that

|Tαi | = |{x ∈ Ω \ D : vαi (x) → 0 as αi → 0+}| = 0,

then (5.3) gets proven. We define

Tδ,αi = {
x ∈ Ω \ D : |vαi (x)| < δ

}
.

Apparently, for a fixed αi , by the uniform convergence, |Tδ,αi | → 0 as δ → 0+.
Furthermore, we have

⋃
δ,αi∈R+

Tδ,αi =
⋃
δ

⋂
δ≤αi

Tδ,αi .

Thus for a fixed αi ,
∣∣∣∣∣∣
⋂
δ≤αi

Tδ,αi

∣∣∣∣∣∣ = lim
δ→0+Tδ,αi = 0.

Hence,
∣∣∣∣∣∣

⋃
δ,αi∈R+

Tδ,αi

∣∣∣∣∣∣ = 0

and so |Tαi | = 0. ��
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Conclusions

We have analyzed the elliptic problem driven by a singularity, a Choquard term and
a discontinuous power nonlinerity and have proved the existence of a solution. In
the process we have derived an embedding result and have proved the existence of a
positive global minimizer of the associated singular problem. We have also proved
that as α → 0+, the corresponding limiting solutions also converge to a solution of
the above problem when α = 0. In the future, we also plan to extend the problem with
a Kirchhoff type operator.
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