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Abstract. In this paper, our aim is to study the following critical
Choquard equation on the Heisenberg group:−∆Hu = µ|u|q−2u+

∫
Ω

|u(η)|Q
∗
λ

|η−1ξ|λ dη|u|Q
∗
λ−2u in Ω,

u = 0 on ∂Ω,

where Ω ⊂ HN is a smooth bounded domain, ∆H is the Kohn-Laplacian
on the Heisenberg group HN , 1 < q < 2 or 2 < q < Q∗

λ, µ > 0,
0 < λ < Q = 2N + 2, and Q∗

λ = 2Q−λ
Q−2

is the critical exponent. Using

the concentration compactness principle and the critical point theory,
we prove that the above problem has the least two positive solutions for
1 < q < 2 in the case of low perturbations (small values of µ), and has
a nontrivial solution for 2 < q < Q∗

λ in the case of high perturbations
(large values of µ). Moreover, for 1 < q < 2, we also show that there is
a positive ground state solution, and for 2 < q < Q∗

λ, there are at least
n pairs of nontrivial weak solutions.
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1. Introduction and main results

In this paper, our aim is to study the existence of solutions for the following
critical Choquard equation on the Heisenberg group:−∆Hu = µ|u|q−2u+

∫
Ω

|u(η)|Q∗
λ

|η−1ξ|λ
dη|u|Q∗

λ−2u in Ω,

u = 0 on ∂Ω,

(1.1)

where Ω ⊂ HN is a smooth bounded domain, ∆H is the Kohn-Laplacian on
the Heisenberg group HN , 1 < q < 2 or 2 < q < Q∗

λ, µ > 0, 0 < λ < Q =

2N + 2, and Q∗
λ = 2Q−λ

Q−2 is the critical exponent.

The study of this problem was mainly inspired by two aspects. On the one
hand, in the Euclidean case, more and more mathematicians are beginning
to pay attention to the Choquard equation. As is well known, Fröhlich [12]
and Pekar [24] established the following Choquard equation

−∆u+ u =
( 1

|x|
∗ |u|2

)
u in R3,

for the first time in their pioneering work of the modeling of quantum po-
laron. Such problems are often referred to as the nonlinear Schrödinger-
Newton equation. Many authors began to study these problems by using
variational methods. For example, Lions [19] obtained the existence of an
infinite number of radially symmetric solutions in H1(RN ). Ackermann [1]
proved the existence of an infinite number of geometrically different weak
solutions for a general case was established. Moroz and Van Schaftingen
[22, 23] obtained the properties of the ground state solutions, and also
proved that these solutions decay asymptotically at infinity. Recently, more
and more mathematicians have shown a strong interest in studying critical
Choquard type equations. Brézis and Lieb [7] originally addressed the criti-
cal problem in his seminal paper, which dealt with the Laplacian equations.
Liang et al. [17] proved the multiplicity results of the Choquard-Kirchhoff
type equations with Hardy-Littlewood-Sobolev critical exponents. More re-
sults about Choquard equations are available in [18, 31, 35, 37].

On the other hand, the study of nonlinear partial differential equations
on the Heisenberg group has brought about widespread attention of many
researchers. One of the reasons to study such equations is due to their
many significant applications. Over the last few decades, many scholars have
paid close attention to Heisenberg group’s geometric analysis because of its
significant applications in quantum mechanics, partial differential equations
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and other fields. For example, Liang and Pucci [16] applied the Symmetric
Mountain Pass Theorem to considering a class of the the critical Kirchhoff-
Poisson systems on the Heisenberg group. Pucci and Temperini [29] proved
the existence of entire nontrivial solutions for the (p, q) critical systems on
the Heisenberg group by an application of variational methods. Pucci [26],
applied the Mountain Pass Theorem and the Ekeland variational principle to
prove the existence of nontrivial nonnegative solutions of the Schrödinger-
Hardy system on the Heisenberg group. For more fascinating results, see
[3, 6, 20, 21, 25, 26, 28, 30]. However, once we turn our attention to the
critical Choquard equation on the Heisenberg group, we immediately notice
that the literature is relatively sparse. Recently, Goel and Sreenadh [13] have
studied the following critical Choquard equation on the Heisenberg group: −∆Hu = au+

(∫
Ω

|u(η)|Q∗
λ

|η−1ξ|λ
)
|u|Q∗

λ−2u in Ω,

u = 0 on ∂Ω.

They applied the boot-strap method, iteration techniques, the linking theo-
rem, and the Mountain Pass Theorem to obtain the regularity of solutions
and nonexistence of solutions for this kind of problems.

Sun et al. [33] studied the following critical Choquard-Kirchhoff problem
on the Heisenberg group:

M(∥u∥2)(−∆Hu+ u) =

∫
HN

|u(η)|Q∗
λ

|η−1ξ|λ
dη|u|Q∗

λ−2u+ µf(ξ, u),

where f is a Carathéodory function, M is the Kirchhoff function, µ > 0
is a parameter, and Q∗

λ = 2Q−λ
Q−2 is the critical exponent in the sense of

Hardy-Littlewood-Sobolev inequality. A new version of the concentration-
compactness principle of the Choquard equation on the Heisenberg group
was established. Moreover, they also applied the Mountain Pass Theorem to
obtain the existence of nontrivial solutions for the above-mentioned problem
under non-degenerate and degenerate conditions.

Inspired by the above achievements, with the help of the concentration
compact principle and the critical point theory, we prove that problem (1.1)
has at least two positive solutions for 1 < q < 2 and µ small enough, and
this equation has a nontrivial solution for 2 < q < Q∗

λ and µ large enough.
Moreover, for 1 < q < 2, we also show that there is a positive ground state
solution for problem (1.1), and for 2 < q < Q∗

λ, there are at least n pairs of
nontrivial weak solutions.
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Before presenting the main results of this paper, we list some notions
about the Heisenberg group. Let HN be the Heisenberg group. If ξ =
(x, y, t) ∈ HN , then the definition of this group operation is

τξ(ξ
′) = ξ ◦ ξ′ = (x+ x′, y + y′, t+ t′ + 2(x′y − y′x)) for all ξ, ξ′ ∈ HN .

ξ−1 = −ξ is the inverse, and therefore (ξ ◦ ξ′)−1 = (ξ′)−1 ◦ ξ−1.
The definition of a natural group of dilations on HN is δs(ξ) = (sx, sy, s2t)

for all s > 0. Hence, δs(ξ0 ◦ ξ) = δs(ξ0) ◦ δs(ξ). It can be easily proved that
the Jacobian determinant of dilatations δs : HN → HN is constant and equal
to sQ for all ξ = (x, y, t) ∈ HN . The natural number Q = 2N + 2 is called

the homogeneous dimension of HN and the critical exponents is Q∗ := 2Q
Q−2 .

The Korányi norm is defined as follows

|ξ|H =
[
(x2 + y2)2 + t2

] 1
4 for all ξ ∈ HN ,

and is derived from an anisotropic dilation on the Heisenberg group. Hence,
the homogeneous degree of the Korányi norm is equal to 1, in terms of
dilations

δs : (x, y, t) 7→ (sx, sy, s2t) for all s > 0.

The set

BH(ξ0, r) = {ξ ∈ HN : dH(ξ0, ξ) < r}

denotes the Korányi open ball of radius r centered at ξ0. For the sake of
simplicity, we denote Br = Br(O), where O = (0, 0) is the natural origin of
HN .

The following vector fields

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, T =

∂

∂t
,

generate the real Lie algebra of left invariant vector fields for j = 1, · · · , n,
which forms a basis satisfying the Heisenberg regular commutation relation
on HN . This means that

[Xj , Yj ] = −4δjkT, [Yj , Yk] = [Xj , Xk] = [Yj , T ] = [Xj , T ] = 0.

The so-called horizontal vector field is just a vector field with the span of
[Xj , Yj ]

n
j=1. The Heisenberg gradient on HN is

∇H = (X1, X2, · · · , Xn, Y1, Y2, · · · , Yn),



The critical Choquard equation 157

and the Kohn Laplacian on HN is given by

∆H =
N∑
j=1

X2
j + Y 2

j

=
N∑
j=1

[ ∂2
∂x2j

+
∂2

∂y2j
+ 4yj

∂2

∂xj∂t
− 4xj

∂2

∂xj∂t
+ 4(x2j + y2j )

∂2

∂t2

]
.

The Haar measure is invariant under the left translations of the Heisenberg
group and is Q-homogeneous in terms of dilations. More precisely, it is
consistent with the (2n + 1)-dimensional Lebesgue measure. Hence, as is
shown in Leonardi and Masnou [15], the topological dimension 2N + 1 of
HN is strictly less than its Hausdorff dimension Q = 2N + 2. Next, |Ω|
denotes the (2N + 1) dimensional Lebesgue measure of any measurable set
Ω ⊆ HN . Therefore,

|δs(Ω)| = sQ|Ω|, d(δsξ) = sQdξ

and

|BH(ξ0, r)| = αQr
Q, where αQ = |BH(0, 1)|.

Now, we are ready to present our main results.

Theorem 1.1. Let Ω ⊂ HN be a smooth bounded domain and 1 < q < 2.
Then there exists µ∗ > 0 such that if µ ∈ (0, µ∗), then problem (1.1) has at
least two positive solutions. Moreover, problem (1.1) has a positive ground
state solution.

Theorem 1.2. Let Ω ⊂ HN be a smooth bounded domain and 2 < q < Q∗
λ.

Then there exists µ∗ > 0 such that if µ > µ∗, then problem (1.1) has a
nontrivial solution.

Theorem 1.3. Let Ω ⊂ HN be a smooth bounded domain and 2 < q < Q∗
λ.

Then there exists µ∗∗ > 0 such that if µ > µ∗∗, then problem (1.1) has at
least n pairs of nontrivial weak solutions.

The paper is organized as follows. In Section 2, we collect some notations
and known facts, and introduce some properties of the Folland-Stein space
S̊2
1(Ω). Moreover, a key estimate, i.e., Lemma 2.2, is introduced. In Section

3, we make use of the variational methods to prove some basic lemmas. Then
we demonstrate Theorem 1.1. To be more specific, in the first subsection,
Ekeland variational principle is used to prove the existence of the first posi-
tive solution, and in the second subsection, Mountain Pass Lemma is used to
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prove the existence of the second positive solution. Furthermore, in the third
subsection, we prove that problem (1.1) has a positive ground state solution.
In Section 4, we use the general Mountain Pass Theorem to accomplish the
proof of Theorem 1.2. Finally, in Section 5, we prove Theorem 1.3 by using
Krasnoselskii’s genus theory.

2. Preliminaries

In this section, we have collected some known facts which will be useful
in the sequel. Set Q = 2N + 2 and Q∗ = 2Q

Q−2 . Let ∥u∥pp =
∫
Ω |u|pdξ for all

u ∈ Lp(Ω), represent the usual Lp-norm. Following Folland and Stein [10],

we define the space S̊2
1(Ω) as the closure of C∞

0 (Ω) in S2
1(HN ). Then S̊2

1(Ω)
is a Hilbert space with respect to the norm

∥u∥2
S̊2
1(Ω)

=

∫
Ω
|∇Hu|2dξ.

For the sake of brevity, we shall denote ∥u∥ = ∥u∥2
S̊2
1(Ω)

. By [10], we know

that the Folland-Stein space is a Hilbert space and the embedding S̊2
1(Ω) ↪→

Lp(Ω) for all p ∈ [1, Q∗) is compact. However, it is only continuous if p = Q∗.
By Jerison and Lee [14], we have the following Best Sobolev constant

S = inf
u∈S̊2

1(Ω)

∫
Ω |∇Hu|2dξ( ∫
Ω |u|Q∗dξ

) 2
Q∗
. (2.1)

Proposition 2.1. (see Goel and Sreenadh [13]) Let r, s > 1 and 0 < λ < Q
with 1

r + λ
Q + 1

s = 2, g ∈ Lr(Ω), and d ∈ Ls(Ω). There is a sharp constant

C(t, r, λ,Q), independent of g, d, such that∫
Ω

∫
Ω

g(ξ)d(η)

|η−1ξ|λ
dηdξ ≤ C(t, r, λ,Q)|g|r|d|s. (2.2)

If r = s = 2Q
2Q−λ , then

C(t, r, λ,Q) = C(λ,Q) =
( πN+1

2N−1N !

)λ/QN !Γ((Q− λ)/2)

Γ2((2Q− λ)/2)
,

where Γ is the standard Gamma function.

From Goel and Sreenadh [13], we get∫
Ω

∫
Ω

|u(ξ)|Q∗
λ |u(η)|Q∗

λ

|η−1ξ|λ
dηdξ ≤ C(λ,Q)|u|2Q

∗
λ

Q∗
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and the best constant SHG is defined by

SHG = inf
u∈S̊2

1(Ω)\{0}

∫
Ω |∇Hu|2dξ( ∫

Ω

∫
Ω

|u(ξ)|Q
∗
λ |u(η)|Q

∗
λ

|η−1ξ|λ dηdξ
) 1

Q∗
λ

. (2.3)

Lemma 2.1. (see Goel and Sreenadh [13]) We obtain the best constant SHG

if and only if

u(ξ) = u(x, y, t) = CZ(δθ(a
−1ξ)),

where C > 0 is a fixed constant, θ ∈ (0,∞) are parameters, a ∈ HN and Z
is defined in [13, (1.6)]. Furthermore,

SHG = S(C(Q,λ))
−1
Q∗
λ ,

where S is the best constant defined in [13, (1.5)].

On the other hand, from the proof of [13, Lemma 2.1], we know that a
unique minimizer of SHG is the function

P (η) = S
(Q−λ)(2−Q)
4(Q−λ+2) C(Q,λ)

2−Q
2(Q−λ+2)Z(η)

and it satisfies the following:

−∆Hu =
(∫

HN

|u(η)|Q∗
λ

|η−1ξ|λ
dη

)
|u|Q∗

λ−2u in HN

and ∫
HN

|∇HP |2dξ =
∫
HN

∫
HN

|P (ξ)|Q∗
λ |P (η)|Q∗

λ

|η−1ξ|λ
dηdξ = S

2Q−λ
Q−λ+2

HG .

Furthermore, for γ > 0, the function Pγ is defined as follows

Pγ =
γ

Q−2
2 S

(Q−λ)(2−Q)
4(Q−2+λ) C(λ,Q)

2−Q
2(Q−λ+2)C

(γ4t2 + (1 + γ2|x|2 + γ2|y|2)2)(Q−2)/4
,

and satisfies∫
Ω
|∇HPγ |2dξ =

∫
Ω

∫
Ω

|Pγ(ξ)|Q
∗
λ |Pγ(η)|Q

∗
λ

|η−1ξ|λ
dηdξ = S

2Q−λ
Q−λ+2

HG

and ∫
Ω
|Pγ |Q

∗
dξ = S

Q
Q−λ+2C(λ,Q)

−Q
Q−λ+2 .
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More generally, we can suppose that 0 ∈ Ω and that there is r > 0 such
that B(0, 4r) ⊂ Ω ⊂ B(0, kr) for some k > 0. Choose ν ∈ C∞

c (Ω) such that
0 ≤ ν ≤ 1, |∇Hν| is bounded, and

ν(η) =

{
1, if η ∈ B(0, r),

0, if η ∈ Ω\B(0, 2r).
(2.4)

Then for the following function

υγ = νPγ ∈ S̊2
1(Ω), (2.5)

we have asymptotic estimates as follows.

Lemma 2.2. (see Goel and Sreenadh [13]) Let 0 < λ < Q. Then the
following holds:

(i) ∫
Ω
|υγ |2dξ ≥ C

{
γ−2 +O(γ−Q+2), Q > 4,

γ−2 log γ +O(γ−2), Q = 4.

(ii) ∫
Ω
|υγ |Q

∗
dξ = S

Q
Q−λ+2C(λ,Q)

−Q
Q−λ+2 +O(γ−Q).

(iii) ∫
Ω

∫
Ω

|υγ(ξ)|Q
∗
λ |υγ(η)|Q

∗
λ

|η−1ξ|λ
dηdξ ≤ S

2Q−λ
Q−λ+2

HG +O(γ−Q).

(iv) ∫
Ω

∫
Ω

|υγ(ξ)|Q
∗
λ |υγ(η)|Q

∗
λ

|η−1ξ|λ
dηdξ ≥ S

2Q−λ
Q−λ+2

HG −O(γ−
2Q−λ

2 ).

(v) ∫
Ω
|∇Hυγ |2dξ ≤ S

2Q−λ
Q−λ+2

HG +O(γ−min{ 2Q−λ
2

,Q−2}).

3. Low perturbations of problem (1.1)

We say that u ∈ S̊2
1(Ω) is a solution of problem (1.1) if∫

Ω
∇Hu∇Hvdξ − µ

∫
Ω
|u|q−2uvdξ −

∫
Ω

∫
Ω

|u(η)|Q∗
λ

|η−1ξ|λ
|u|Q∗

λ−2uvdηdξ = 0
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for any v ∈ S̊2
1(Ω). Furthermore, if u > 0, then we call u ∈ S̊2

1(Ω) a positive
solution to problem (1.1). In order to prove our results, it is necessary to

define the energy functional Iµ : S̊2
1(Ω) → R related to problem (1.1):

Iµ(u) =
1

2

∫
Ω
|∇Hu|2dξ −

µ

q

∫
Ω
|u|qdξ − 1

2Q∗
λ

∫
Ω

∫
Ω

|u(ξ)|Q∗
λ |u(η)|Q∗

λ

|η−1ξ|λ
dηdξ.

(3.1)

Then Iµ is C1 on S̊2
1(Ω) and its critical points are solutions of problem (1.1).

Indeed, let I ′µ(u) denote the derivative of Iµ at u, that is, for any u ∈ S̊2
1(Ω),

⟨I ′µ(u), v⟩ =
∫
Ω
∇Hu∇Hvdξ − µ

∫
Ω
|u|q−2uvdξ

−
∫
Ω

∫
Ω

|u(ξ)|Q∗
λ |u(η)|Q∗

λ−2u(η)v(η)

|η−1ξ|λ
dηdξ.

Then I ′µ(u) continuously maps S̊2
1(Ω) in the dual space of S̊2

1(Ω), which
can be shown by standard calculations. Therefore, we conclude that u is a
solution of problem (1.1) if and only if Iµ is C1 on S̊2

1(Ω) and I
′
µ(u) = 0.

3.1. The existence of a positive solution of problem (1.1).

Lemma 3.1. Let 1 < q < 2. Then for all

c <
(1
2
− 1

2Q∗
λ

)
S

Q∗
λ

Q∗
λ
−1

HG −Dµ
2

2−q , (3.2)

where

D =
(2Q∗

λ − q

2Q∗
λq

|Ω|
Q∗
λ−q

Q∗
λ S− q

2

) 2
2−q

( qQ∗
λ

Q∗
λ − 1

) q
2−q

,

Iµ satisfies the (PS)c condition.

Proof. Suppose that {un} ⊂ S̊2
1(Ω) satisfies

Iµ(un) → c, I ′µ(un) → 0 as n→ ∞, (3.3)

where c is taken from (3.2). It follows from the Young inequality that

1 + c+ o(∥un∥) ≥ Iµ(un)−
1

2Q∗
λ

I ′µ(un)un (3.4)

=
(1
2
− 1

2Q∗
λ

)
∥un∥2 − µ

(1
q
− 1

2Q∗
λ

)∫
Ω
|un|qdξ

≥
(1
2
− 1

2Q∗
λ

)
∥un∥2 − µ

(1
q
− 1

2Q∗
λ

)
S− q

2 |Ω|
Q∗
λ−q

Q∗
λ ∥un∥q.
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This means that {un} is bounded in S̊2
1(Ω) since 1 < q < 2. More generally,

let us assume that un ⇀ u weakly in S̊2
1(Ω) and un → u strongly in Lp(Ω)

with 1 ≤ p < Q∗. Applying the concentration compactness principle on the
Heisenberg group (see Sun et al. [33], Theorem 3.1), one has

|un|Q
∗
⇀ ζ ≥ |u|Q∗

+
∑
j∈J

ζjδξj ,

∥∇Hun|2 ⇀ dµ ≥ |∇Hu|2 +
∑
j∈J

µjδξj ,

(∫
Ω

|un(η)|Q
∗
λ

|η−1ξ|λ
dη

)
|un(ξ)|Q

∗
λ ⇀

(∫
Ω

|u(η)|Q∗
λ

|η−1ξ|λ
dη

)
|u(ξ)|Q∗

λ +
∑
j∈J

νjδξj ,

where J is at most countable index set, ξj ∈ Ω and δξj is the Dirac mass at
ξj . Furthermore, we have

ζj , µj , νj > 0, SHGν

1
Q∗
λ

j ≤ µj , ν
Q

2Q−λ

j ≤ C(Q,λ)
Q

2Q−λ ζj . (3.5)

Now, we claim that J = ∅. In fact, let us assume that the hypothesis µj ̸= 0
holds for some j ∈ J . Then for ε > 0 small enough, by Lemma 3.2 of
Capogna et al. [8], we can take the cut-off function ψε,j ∈ C∞

0 (BH(ξj , ε))
such that 0 ≤ ψε,j ≤ 1 and

ψε,j = 1 in BH(ξj ,
ε
2),

ψε,j = 0 in Ω\BH(ξj , ε),

|∇Hψε,j | ≤ 4
ε .

(3.6)

Now, by the boundedness of {ψε,jun} and (3.3), we have

lim
n→∞

I ′µ(un)[ψε,jun] = lim
n→∞

(∫
Ω
∇Hun∇Hψε,jundξ − µ

∫
Ω
uq−1
n ψε,jundξ

−
∫
Ω

∫
Ω

|un|Q
∗
λ |un(η)|Q

∗
λ−1ψε,jun(η)

|η−1ξ|λ
dηdξ

)
= 0,

which gives∫
Ω
|∇Hun|2ψε,jdξ +

∫
Ω
∇Hun∇Hψε,jundξ (3.7)

= µ

∫
Ω
uq−1
n ψε,jundξ +

∫
Ω

∫
Ω

|un(ξ)|Q
∗
λ |un(η)|Q

∗
λ−1ψε,jun(η)

|η−1ξ|λ
dηdξ + o(1),
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where o(1) → 0 as n→ ∞. From (3.6), we obtain∫
Ω
uq−1
n ψε,jundξ ≤ |BH(ξj , ε)|

Q∗
λ−q

Q∗
λ

(∫
BH(ξj ,ε)

|un|Q
∗
λdξ

) q
Q∗
λ

≤ |αQε
Q|

Q∗
λ−q

Q∗
λ S− q

2 ∥un∥q.
Thus, by the boundedness of {un}, we obtain that

lim
ε→0

lim
n→∞

∫
Ω
uq−1
n ψε,jundξ = 0. (3.8)

Furthermore, by (3.7) and the Hölder inequality, we have

lim
ε→0

lim
n→∞

∣∣∣ ∫
Ω
un∇Hun∇Hψε,jdξ

∣∣∣
≤ C lim

ε→0

(∫
BH(ξj ,ε)

|un|Q
∗
λdξ

) 1
Q∗
λ

(∫
BH(ξj ,ε)

|∇Hψε,j |Q
∗
λdξ

) 1
Q∗
λ = 0. (3.9)

Hence,

lim
ε→0

lim
n→∞

∫
Ω
|∇Hun|2ψε,j(ξ)dξ (3.10)

≥ lim
ε→0

(
µj +

∫
BH(ξj ,ε)

|∇Hu|2ψε,j(ξ)dξ
)
= µj

and

lim
ε→0

lim
n→∞

∫
Ω

∫
Ω

|un(ξ)|Q
∗
λ |un(η)|Q

∗
λψε,j(ξ)

|η−1ξ|λ
dηdξ (3.11)

= lim
ε→0

(
νj +

∫
BH(ξj ,ε)

∫
Ω

|u(ξ)|Q∗
λ |u(η)|Q∗

λψε,j(ξ)

|η−1ξ|λ
dηdξ

)
= νj .

So, from (3.7)-(3.11), we conclude that νj ≥ µj . Hence, it follows from (3.5)

that µj ≥ S

Q∗
λ

Q∗
λ
−1

HG .
Furthermore, according to (3.3) and the Young inequality, we obtain

c = lim
n→∞

{
Iµ(un)−

1

2Q∗
λ

I ′µ(un)un

}
= lim

n→∞

{
(
1

2
− 1

2Q∗
λ

)∥un∥2 − µ(
1

q
− 1

2Q∗
λ

)

∫
Ω
|un|qdξ

}
(3.12)

≥ (
1

2
− 1

2Q∗
λ

)µj + (
1

2
− 1

2Q∗
λ

)∥u∥2 − µ(
1

q
− 1

2Q∗
λ

)S− q
2 |Ω|

Q∗
λ−q

Q∗
λ ∥u∥q.
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Let

f(t) = (
1

2
− 1

2Q∗
λ

)t2 − µ(
1

q
− 1

2Q∗
λ

)S− q
2 |Ω|

Q∗
λ−q

Q∗
λ tq.

Then by a simple calculation, we see that

t0 = (µ(
1

q
− 1

2Q∗
λ

)S− q
2 |Ω|

Q∗
λ−q

Q∗
λ )

Q∗
λ

(Q∗
λ
−1)(2−q)

is the minimum value point of f(x), and the minimum value of f(x) is

f(t0) = (µ(
1

q
− 1

2Q∗
λ

)S− q
2 |Ω|

Q∗
λ−q

Q∗
λ )

2
2−q (2q)

q
2−q (

q

2
− 1)

< (µ(
1

q
− 1

2Q∗
λ

)S− q
2 |Ω|

Q∗
λ−q

Q∗
λ )

2
2−q (

Q∗
λ

Q∗
λ − 1

q)
q

2−q = Dµ
2

2−q .

Thus,

c > (
1

2
− 1

2Q∗
λ

)S

Q∗
λ

Q∗
λ
−1

HG −Dµ
2

2−q ,

which contradicts (3.3). Thus, J = ∅, and one has∫
Ω

|un(η)|Q
∗
λ

|η−1ξ|λ
dη|un(ξ)|Q

∗
λ →

∫
Ω

|u(η)|Q∗
λ

|η−1ξ|λ
dη|u(ξ)|Q∗

λ as n→ ∞. (3.13)

From (3.3) and (3.13), we get∫
Ω
∇Hun∇Hφdξ − µ

∫
Ω
|un|q−1φdξ

−
∫
Ω

∫
Ω

|un(ξ)|Q
∗
λ |un(η)|Q

∗
λ−1φ

|η−1ξ|λ
dηdξ = o(1). (3.14)

Choose φ = u in (3.14). Then

∥u∥2 − µ

∫
Ω
|u|qdξ −

∫
Ω

∫
Ω

|u(ξ)|Q∗
λ |u(η)|Q∗

λ

|η−1ξ|λ
dηdξ = 0. (3.15)

By (3.3) and (3.13), we also have

lim
n→∞

∥un∥2 − µ

∫
Ω
|u|qdξ −

∫
Ω

∫
Ω

|u(ξ)|Q∗
λ |u(η)|Q∗

λ

|η−1ξ|λ
dηdξ = 0. (3.16)

Combining (3.15) and (3.16), we obtain that limn→∞ ∥un∥ = ∥u∥. Thus,

uniform convexity follows from S̊2
1(Ω), so we can conclude that un → u in

S̊2
1(Ω). This completes the proof of Lemma 3.1. □
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Lemma 3.2. Let 1 < q < 2. Then there exist Λ0, ρ0 > 0 such that if
µ ∈ (0,Λ0), then

inf
u∈Bρ0

Iµ(u) < 0

and

Iµ(u) >
1

2
g(ρ0)ρ

q
0 > 0 for all u ∈ Sρ0 ,

where g(s) = 1
2s

2−q − a0s
2Q∗

λ−q.

Proof. First, by the Young inequality, we obtain that

Iµ(u) =
1

2
∥u∥2 − µ

q

∫
Ω
|u|qdξ − 1

2Q∗
λ

∫
Ω

∫
Ω

|u(ξ)|Q∗
λ |u(η)|Q∗

λ

|η−1ξ|λ
dηdξ (3.17)

≥ 1

2
∥u∥2 − µ

q
S− q

2 |Ω|
Q∗
λ−q

Q∗
λ ∥u∥q − C(λ,Q)

2Q∗
λ

(∫
Ω
|u|Q∗

dξ
) 2Q−λ

Q

≥ 1

2
∥u∥2 − µ

q
S− q

2 |Ω|
Q∗
λ−q

Q∗
λ ∥u∥q − 1

2Q∗
λS

Q∗
λ

HG

∥u∥2Q∗
λ

= ∥u∥q
{1

2
∥u∥2−q − µ

q
S− q

2 |Ω|
Q∗
λ−q

Q∗
λ − 1

2Q∗
λS

Q∗
λ

HG

∥u∥2Q∗
λ−q

}
.

Let a0 =
1

2Q∗
λS

Q∗
λ

HG

> 0. Then it follows from (3.17) that

Iµ(u) ≥ ∥u∥q
{1

2
∥u∥2−q − µ

q
S− q

2 |Ω|
Q∗
λ−q

Q∗
λ − a0∥u∥2Q

∗
λ−q

}
. (3.18)

Take

g(s) =
1

2
s2−q − a0s

2Q∗
λ−q.

Then the maximum value point of g(s) is

ρ0 =
( 2− q

2a0(2Q∗
λ − q)

) 1
2Q∗

λ
−2
,

and the maximum value of g(s) is

g(ρ0) =
ρ2−q
0

2

(
1− 2− q

2Q∗
λ − q

)
> 0.

Hence, if

Λ0 =
1

2
qS

q
2 |Ω|

q−Q∗
λ

Q∗
λ g(ρ0),
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then for all µ ∈ (0,Λ0), we have from (3.18) that

Iµ(u) ≥
1

2
g(ρ0)ρ

q
0 > 0 for all u ∈ Sρ0 .

Furthermore, for any u ∈ S̊2
1(Ω)\{0}, one has

lim
s→0+

Iµ(su)

sq
= −µ

q

∫
Ω
|u|qdξ < 0,

which implies that u ∈ Bρ0 makes Iµ(u) < 0. From this, we can conclude
that infu∈Bρ0

Iµ(u) < 0, and the proof of Lemma 3.2 is complete. □

Lemma 3.3. Let 1 < q < 2 and assume that µ ∈ (0,Λ0). Then problem

(1.1) has a positive solution u1 ∈ S̊2
1(Ω) such that Iµ(u1) < 0.

Proof. Let ρ0 be as in Lemma 3.2 and set

w = inf
u∈Bρ0

Iµ(u) < 0 < inf
u∈Sρ0

Iµ(u). (3.19)

Note that Iµ(|u|) = Iµ(u). According to the Ekeland variational principle
(see [9]), we know that

Iµ(un) ≤ inf
u∈Bρ0

Iµ(u) +
1

n
, Iµ(v) ≥ Iµ(un)−

1

n
∥v − un∥

for all v ∈ Bρ0 and some nonnegative minimizing sequence {un} ⊂ Bρ0 .
From this and (3.19), we get I ′µ(u) → 0 and Iµ(un) → w. Because of un ≥ 0

and ∥un∥ ≤ ρ0, there is u1 ∈ Bρ0 and u1 ≥ 0 satisfying un ⇀ u1 in S̊2
1(Ω) as

n→ ∞. It follows from Lemma 3.1 that un → u1 in S̊2
1(Ω) and

w = lim
n→∞

Iµ(un) = Iµ(u1) < 0.

Hence, we have u1 ≥ 0 and u1 ̸≡ 0. Moreover, u1 is a solution of problem
(1.1), that is

−∆Hu1 = µ|u1|q−1 +

∫
Ω

|u1(η)|Q
∗
λ

|η−1ξ|λ
dη|u1|Q

∗
λ−1.

The maximum principle (see Bony [5]) implies that u1 > 0 in Ω. Thus, u1
is a positive solution of problem (1.1). This completes the proof of Lemma
3.3. □
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3.2. The existence of the second positive solution of problem (1.1).

Lemma 3.4. Let 1 < q < 2 and µ ∈ (0,Λ0). Then Iµ(u) > 0 for all u ∈ Sρ0.

Moreover, there is e ∈ S̊2
1(Ω)\Bρ0 satisfying Iµ(e) < 0, where Λ0, ρ0 are as

in Lemma 3.2.

Proof. It is evident that Lemma 3.2 proves the first assertion. Therefore,
we only need to prove the rest of Lemma 3.4. Let u ∈ S̊2

1(Ω)\{0}. Then one
has

Iµ(su) =
s2

2
∥u∥2 − µsq

q

∫
Ω
|u|qdξ − s2Q

∗
λ

2Q∗
λ

∫
Ω

∫
Ω

|u(ξ)|Q∗
λ |u(η)|Q∗

λ

|η−1ξ|λ
dηdξ

≤ s2

2
∥u∥2 − C(λ,Q)s2Q

∗
λ

2Q∗
λ

(∫
Ω
|u|Q∗

dξ
) 2Q−λ

Q

→ −∞ as s→ +∞. (3.20)

Thus there exists e ∈ S̊2
1(Ω)\Bρ0 satisfying Iµ(e) < 0. This completes the

proof of Lemma 3.4. □

Lemma 3.5. Let 1 < q < 2 and assume that υγ is defined by (2.4). Then
there exists Λ1 > 0 such that µ ∈ (0,Λ1), and

sup
s≥0

Iµ(u1 + sυγ) <
(1
2
− 1

2Q∗
λ

)
S

Q∗
λ

Q∗
λ
−1

HG −Dµ
2

2−q , (3.21)

where u1 is the positive solution from Lemma 3.4 and D is from (3.2).

Proof. Because u1 is the positive solution from Lemma 3.4, there exist
positive constants t and T satisfying t ≤ u1(ξ) ≤ T for any ξ ∈ sup ν, where
ν is as in (2.4). Moreover, one has I ′µ(u1)u1 = 0 and Iµ(u1) < 0.

Next, it is easy to prove that for any a, b > 0, we have

(a+ b)σ ≥ aσ + σaσ−1b, 1 < σ < 2 (3.22)

and

(a1 + b1)
Q∗

λ(a2 + b2)
Q∗

λ ≥ aσ1a
σ
2 + bσ1b

σ
2 + 2σaσ1a

σ−1
2 b2 + 2σaσ1a2b

σ−1
2 , 2 ≤ σ.

(3.23)
Hence, for any s ≥ 0, we have

Iµ(u1 + sυγ) = Iµ(u1) +
s2

2
∥υγ |2 + sI ′µ(u1)υγ

− µ

q

∫
Ω

[
(u1 + sυγ)

q − uq1 − qsuq−1
1 υγ

]
dξ
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− 1

2Q∗
λ

∫
Ω

∫
Ω

[ |u1(ξ) + sυγ(ξ)|Q
∗
λ |u1(η) + sυγ(η)|Q

∗
λ

|η−1ξ|λ

− |u1(ξ)|Q
∗
λ |u1(η)|Q

∗
λ

|η−1ξ|λ
− 2Q∗

λs
|u1(ξ)|Q

∗
λ |u1(η)|Q

∗
λ−1|υγ(η)|

|η−1ξ|λ
]
dηdξ

≤ s2

2
∥υγ∥2 −

s2Q
∗
λ

2Q∗
λ

∫
Ω

∫
Ω

|υγ(ξ)|Q
∗
λ |υγ(η)|Q

∗
λ

|η−1ξ|λ
dηdξ

− sQ
∗
λ−1

∫
Ω

∫
Ω

|u1(ξ)|Q
∗
λ |u1(η)||υγ(η)|Q

∗
λ−1

|η−1ξ|λ
dηdξ

≤ s2

2
∥υγ∥2 −

C(λ,Q)s2Q
∗
λ

2Q∗
λ

(

∫
Ω
|υγ |Q

∗
dξ)

2Q−λ
Q

− tsQ
∗
λ−1

∫
Ω

∫
Ω

|u1(ξ)|Q
∗
λ |υγ(η)|Q

∗
λ−1

|η−1ξ|λ
dηdξ. (3.24)

Let

ϕ(s) =
s2

2
∥υγ∥2 −

C(λ,Q)s2Q
∗
λ

2Q∗
λ

(∫
Ω
|υγ |Q

∗
dξ

) 2Q−λ
Q

− tsQ
∗
λ−1

∫
Ω

∫
Ω

|u1(ξ)|Q
∗
λ |υγ(η)|Q

∗
λ−1

|η−1ξ|λ
dηdξ.

The definition of ϕ(s) enables us to obtain ϕ(0) = 0 and ϕ(s) → −∞ as
s→ +∞. Thus, we can find sγ > 0 and positive constants s1, s2 independent
of γ, µ, satisfying

ϕ(sγ) = sup
s≥0

ϕ(s), ϕ′(sγ) = 0 (3.25)

and

0 < s1 ≤ sγ ≤ s2 <∞. (3.26)

Therefore, one has

sγ∥υγ∥2 − C(λ,Q)s
2Q∗

λ−1
γ

(∫
Ω
|υγ |Q

∗
dξ

) 2Q−λ
Q

(3.27)

− t(Q∗
λ − 1)s

Q∗
λ−2

γ

∫
Ω

∫
Ω

|u1(ξ)|Q
∗
λ |υγ(η)|Q

∗
λ−1

|η−1ξ|λ
dηdξ = 0 (3.28)

and

∥υγ∥2 − C(λ,Q)(2Q∗
λ − 1)s

2Q∗
λ−2

γ

(∫
Ω
|υγ |Q

∗
dξ

) 2Q−λ
Q

(3.29)
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− t(Q∗
λ − 1)(Q∗

λ − 2)s
Q∗

λ−3
γ

∫
Ω

∫
Ω

|u1(ξ)|Q
∗
λ |υγ(η)|Q

∗
λ−1

|η−1ξ|λ
dηdξ < 0. (3.30)

From (3.29), we obtain that there exists s1 > 0 (independent of γ, µ) satis-
fying 0 < s1 ≤ sγ .

Next, from (3.27) one has

∥υγ∥2

s
2Q∗

λ−2
γ

− C(λ,Q)
(∫

Ω
|υγ |Q

∗
dξ

) 2Q−λ
Q

−
t(Q∗

λ − 1)

s
Q∗

λ+1
γ

∫
Ω

∫
Ω

|u1(ξ)|Q
∗
λ |υγ(η)|Q

∗
λ−1

|η−1ξ|λ
dηdξ = 0.

(3.31)

This implies that sγ has an upper bound for γ > 0 small enough. If not,

making sγ → ∞ in (3.31), one gets
∫
Ω |υγ |Q

∗
dξ = 0, which contradicts

Lemma 2.2 for γ small enough. It follows from (3.24), (3.25), (3.26), Lemmas
2.1, and 2.2 that

sup
s≥0

Iµ(u1 + sυγ) ≤ sup
s≥0

Φ(s) = Φ(sγ)

≤ sup
s≥0

{s2
2
∥υγ∥2 −

C(λ,Q)s2Q
∗
λ

2Q∗
λ

(∫
Ω
|υγ |Q

∗
dξ

) 2Q−λ
Q

}
− tsQ

∗
λ−1

∫
Ω

∫
Ω

|u1(ξ)|Q
∗
λ |υγ(η)|Q

∗
λ−1

|η−1ξ|λ
dηdξ

≤ sup
s≥0

{s2
2
∥υγ∥2 −

C(λ,Q)s2Q
∗
λ

2Q∗
λ

(∫
Ω
|υγ |Q

∗
dξ

) 2Q−λ
Q

}
− tsQ

∗
λ−1C(λ,Q)

(∫
Ω
|u1(ξ)|Q

∗
dξ

) 2Q−λ
2Q

(∫
Ω
|υγ(η)|2dη

)Q−λ+2
2(Q−2)

≤ sup
s≥0

{s2
2
S

2Q−λ
Q−λ+2

HG − C(λ,Q)s2Q
∗
λ

2Q∗
λ

(
S

Q
Q−λ+2C(λ,Q)

−Q
Q−λ+2

) 2Q−λ
Q

}
− C1(γ

−2)
Q−λ+2
2(Q−2)

= sup
s≥0

{s2
2
S

Q∗
λ

Q∗
λ
−1

HG − C(λ,Q)s2Q
∗
λ

2Q∗
λ

S

Q∗
λ

Q∗
λ
−1

HG

}
− C1γ

−Q−λ+2
Q−2

<
(1
2
− 1

2Q∗
λ

)
S

Q∗
λ

Q∗
λ
−1

HG − C1γ
−Q−λ+2

Q−2 , (3.32)

where C1 > 0 is independent of γ and µ.
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Let γ
−Q−λ+2

Q−2 = µ
q

2−q and Λ1 =
C1
D . Then for any µ ∈ (0,Λ1), one has

C1γ
−Q−λ+2

Q−2 > Dµ
2

2−q . (3.33)

By (3.32) and (3.33), equation (3.21) holds if µ ∈ (0,Λ1). This completes
the proof of Lemma 3.5. □

From the above discussion, we get the following result.

Lemma 3.6. Let 1 < q < 2. Then there exists µ∗ > 0 such that for all
µ ∈ (0,Λ∗), problem (1.1) has a positive solution u2 ∈ S̊2

1(Ω) satisfying
Iµ(u2) > 0.

3.3. Existence of a positive ground state solution of problem (1.1).
In this subsection, we will show that problem (1.1) has a positive ground
state solution. Indeed, let

N = {u ∈ S̊2
1(Ω) : u ̸= 0, ⟨I ′µ(u), u⟩ = 0}.

Since any nontrivial solution of problem (1.1) belongs to N , we can set
τ = infu∈N Iµ(u). Clearly, if u ∈ N , one also has |u| ∈ N and Iµ(|u|) = Iµ(u),
and therefore we can consider a nonnegative minimizing sequence {un} ⊂ N
and such that

Iµ(un) → τ as n→ ∞. (3.34)

By Lemma 3.3, τ < 0 and {un} is bounded in S̊2
1(Ω). More generally,

suppose that un ⇀ uλ weakly in S̊2
1(Ω) and un → uλ strongly in Lp(Ω) with

1 < p < Q∗. Thus, uλ ̸= 0. In fact, if uλ = 0 and l = limn→∞ ∥un∥, then
since un ∈ M, one has

∥un∥2 = I ′µ(un)[un] + µ

∫
Ω
|un|qdξ +

∫
Ω

∫
Ω

|un(ξ)|Q
∗
λ |un(η)|Q

∗
λ

|η−1ξ|λ
dηdξ

≤ C(λ,Q)
(∫

Ω
|un|Q

∗
dξ

) 2Q−λ
Q

+ o(1) ≤ S
−Q∗

λ
HG ∥un∥2Q

∗
λ + o(1). (3.35)

From this, one can infer that either l = 0 or l ≥ S

Q∗
λ

2Q∗
λ
−2

HG . Besides, from
(3.34), one has

τ = lim
n→∞

{1

2
∥un∥2 −

µ

q

∫
Ω
|un|qdξ −

1

2Q∗
λ

∫
Ω

∫
Ω

|un(ξ)|Q
∗
λ |un(η)|Q

∗
λ

|η−1ξ|λ
dηdξ

}
=

(1
2
− 1

2Q∗
λ

)
lim
n→∞

∥un∥2 =
(1
2
− 1

2Q∗
λ

)
l2. (3.36)
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If l = 0, then from (3.36), we get τ = 0, which is a contradiction. Thus

τ ≥
(1
2
− 1

2Q∗
λ

)
S

Q∗
λ

Q∗
λ
−1

HG .

It follows from Lemma 3.5 that(1
2
− 1

2Q∗
λ

)
S

Q∗
λ

Q∗
λ
−1

HG ≤ τ <
(1
2
− 1

2Q∗
λ

)
S

Q∗
λ

Q∗
λ
−1

HG −Dµ
2

2−q ,

which is also a contradiction. Therefore, we must have uλ ̸= 0 in S̊2
1(Ω).

On the other hand, un → uλ in S̊2
1(Ω) is derived from Lemma 3.1. In

other words, uλ is a positive solution of problem (1.1) and Iµ(uλ) ≥ τ .
Next, we show that Iµ(uλ) ≤ τ . Indeed, by the Fatou Lemma and (3.33),

we get

τ = lim
n→∞

{
Iµ(un)−

1

2Q∗
λ

I ′µ(un)un

}
= lim

n→∞

{(1
2
− 1

2Q∗
λ

)
∥un∥2 − µ

(1
q
− 1

2Q∗
λ

)∫
Ω
uqndξ

}
≥

(1
2
− 1

2Q∗
λ

)
∥uλ∥2 − µ

(1
q
− 1

2Q∗
λ

)∫
Ω
uqλdξ. (3.37)

Furthermore, because uλ is a positive solution of problem (1.1), we have

Iµ(uλ) = Iµ(uλ)−
1

2Q∗
λ

I ′µ(uλ)uλ

=
(1
2
− 1

2Q∗
λ

)
∥uλ∥2 − µ

(1
q
− 1

2Q∗
λ

)∫
Ω
uqλdξ.

From (3.37), we have Iλ(uλ) ≤ τ and Iλ(uλ) = τ and uλ ̸= 0. This means
that uλ is a positive ground state solution of problem (1.1). Consequently,
invoking Lemmas 3.3 and 3.6 completes the proof of Theorem 1.1.

4. High perturbations of problem (1.1)

This section focuses on the proof of Theorem 1.2. To this end, we shall
apply the general Mountain Pass Theorem.

Theorem 4.1. (see Rabinowitz [32]) Let E be a real Banach space and
I ∈ C1(E,R) satisfying (PS) condition. Suppose that I(0) = 0 and that

(i) there are constants ρ, α > 0 satisfying I(u)|∂Bρ ≥ α;

(ii) there exists e ∈ E\Bρ satisfying I(e) ≤ 0.
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Then I has a critical value c ≥ α. Moreover,

c = inf
h∈Γ

max
0≤t≤1

I(h(t)) ≥ α,

where
Γ = {h ∈ C([0, 1], E) : h(0) = 1, h(1) = e}.

Next, we prove that the geometric properties (i) and (ii) of Theorem 4.1
are satisfied by Iµ.

Lemma 4.1. Let 2 < q < Q∗
λ. Then the properties (i) and (ii) of Theorem

4.1 are satisfied by the energy functional Iµ.

Proof. From (3.17), we have

Iµ(u) ≥
1

2
∥u∥2 − µ

q
S− q

2 |Ω|
Q∗
λ−q

Q∗
λ ∥u∥q − 1

2Q∗
λS

Q∗
λ

HG

∥u∥2Q∗
λ . (4.1)

Now, we can take ρ, α > 0 satisfying Iµ(u) ≥ α for all u ∈ ∂Bρ, since 2 < q,
2 < 2Q∗

λ. Thus, property (i) of Theorem 4.1 holds.
Now, we show that property (ii) of Theorem 4.1 also holds. From (3.20),

one has

Iµ(su) =
s2

2
∥u∥2 − µsq

q

∫
Ω
|u|qdξ − s2Q

∗
λ

2Q∗
λ

∫
Ω

∫
Ω

|u(ξ)|Q∗
λ |u(η)|Q∗

λ

|η−1ξ|λ
dηdξ

≤ s2

2
∥u∥2 − C(λ,Q)s2Q

∗
λ

2Q∗
λ

(∫
Ω
|u|Q∗

dξ
) 2Q−λ

Q
.

(4.2)

Since 2 < 2Q∗
λ, we can deduce that Iµ(s0u) < 0 and s0∥u∥ > ρ for s0 large

enough. Let e = s0u. Hence, e is the desired function and the proof of
property (ii) of Theorem 4.1 is complete. □

Lemma 4.2. Let 2 < q < Q∗
λ. Then for all

cµ <
(1
2
− 1

q

)
S

Q∗
λ

Q∗
λ
−1

HG , (4.3)

Iµ satisfies the (PS)cµ condition.

Proof. We assume that {un} ⊂ S̊2
1(Ω) satisfies

Iµ(un) → cµ, I ′µ(un) → 0 as n→ ∞, (4.4)

where cµ is as in (4.4). It follows that

1 + cµ + o(∥un∥) ≥Iµ(un)−
1

q
I ′µ(un)un =

(1
2
− 1

q

)
∥un∥2
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+
(1
q
− 1

2Q∗
λ

)∫
Ω

∫
Ω

|un(ξ)|Q
∗
λ |un(η)|Q

∗
λ

|η−1ξ|λ
dηdξ

≥
(1
2
− 1

q

)
∥un∥2. (4.5)

From this, we can derive that {un} is bounded in S̊2
1(Ω).

The rest of the proof is similar to the proof of Lemma 3.1. We have

µj ≥ S

Q∗
λ

Q∗
λ
−1

HG and by using the concentration compactness principle, we have

cµ = lim
n→∞

{
Iµ(un)−

1

q
I ′µ(un)un

}
= lim

n→∞

{
(
1

2
− 1

q
)∥un∥2 +

(1
q
− 1

2Q∗
λ

)∫
Ω

∫
Ω

|un(ξ)|Q
∗
λ |un(η)|Q

∗
λ

|η−1ξ|λ
dηdξ

}
≥ lim

n→∞

{
(
1

2
− 1

q
)∥un∥2

}
≥ (

1

2
− 1

q
)µj + (

1

2
− 1

q
)∥u∥2 >

(1
2
− 1

q

)
S

Q∗
λ

Q∗
λ
−1

HG .

From (4.3), we have J = ∅. As in the discussion of Lemma 3.1, one knows

that un → u in S̊2
1(Ω). This completes the proof of Lemma 4.2. □

Proof of Theorem 1.2. We claim that

0 < cµ = inf
h∈Γ

max
0≤t≤1

Iµ(h(t)) <
(1
2
− 1

q

)
S

Q∗
λ

Q∗
λ
−1

HG . (4.6)

Assume that (4.6) holds. Then Lemmas 4.2 and 4.1 and Theorem 4.1 assure
the existence of nontrivial critical points of Iµ.

In order to prove (4.6), we choose v0 ∈ S̊2
1(Ω) such that

∥v0∥ = 1 and lim
s→+∞

Iµ(sv0) = −∞.

Then

sup
s≥0

Iµ(sv0) = Iµ(sµv0) for some sµ > 0.

So, sµ satisfies

∥sµv0∥2 = µ

∫
Ω
|sµv0|qdξ +

∫
Ω

∫
Ω

|sµv0(ξ)|Q
∗
λ |sµv0(η)|Q

∗
λ

|η−1ξ|λ
dηdξ. (4.7)

Now, we demonstrate that {sµ}µ>0 is bounded. Indeed, suppose that the
following hypothesis sµ ≥ 1 is satisfied for all µ > 0. Furthermore, we can
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deduce from (4.7) that

sqµ ≥ ∥sµv0∥2 = µ

∫
Ω
|sµv0|qdξ +

∫
Ω

∫
Ω

|sµv0(ξ)|Q
∗
λ |sµv0(η)|Q

∗
λ

|η−1ξ|λ
dηdξ (4.8)

≥ s
2Q∗

λ
µ

∫
Ω

∫
Ω

|v0(ξ)|Q
∗
λ |v0(η)|Q

∗
λ

|η−1ξ|λ
dηdξ. (4.9)

It follows from (4.8) that {sµ}µ>0 is bounded, since 2 < 2Q∗
λ.

Next, we demonstrate that sµ → 0 as µ → ∞. Suppose to the contrary,
there are sµ > 0 and a sequence (µn)n with µn → ∞ as n → ∞, satisfy-
ing sµn → sµ as n → ∞. Invoking the Lebesgue dominated convergence
theorem, we have∫

Ω
|sµnv0|qdξ →

∫
Ω
|sµv0|qdξ as n→ ∞.

It now follows that

µn

∫
Ω
|sµv0|qdξ → ∞ as n→ ∞.

Thus, invoking (4.7), we can show that this cannot happen. Therefore,
sµ → 0 as µ→ ∞. Furthermore, we can apply (4.7) to show that

lim
µ→∞

µ

∫
Ω
|sµv0|qdξ = 0

and

lim
µ→∞

∫
Ω

∫
Ω

|sµv0(ξ)|Q
∗
λ |sµv0(η)|Q

∗
λ

|η−1ξ|λ
dηdξ = 0.

Therefore, sµ → 0 as µ→ ∞ and by the definition of Iµ, we get that

lim
µ→∞

(sup
s≥0

Iµ(sv0)) = lim
µ→∞

Iµ(sµv0) = 0.

So, there is µ∗ > 0 such that if µ > µ∗, we have

sup
s≥0

Iµ(sv0) < (
1

2
− 1

q
)S

Q∗
λ

Q∗
λ
−1

HG .

Letting e = s1v0 with s1 large enough to have Iµ(e) < 0, we get

0 < cµ ≤ max
0≤t≤1

Iµ(h(t)) where h(t) = ts1v0.

Therefore,

0 < cµ ≤ sup
s≥0

Iµ(sv0) < (
1

2
− 1

q
)S

Q∗
λ

Q∗
λ
−1

HG
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for µ large enough. The proof of Theorem 1.2 is now complete. □

5. Proof of Theorem 1.3

In order to prove Theorem 1.3, we shall use the Krasnoselskii genus theory
[32]. Let X be a Banach space and let Λ denote the family of all closed subsets
A ⊂ X\{0} which are symmetric with respect to the origin, that is, u ∈ A
implies that also −u ∈ A. If z1, · · · , zk are in Z, then the span of all liner
combinations of z1, · · · , zk is denoted by span{z1, · · · , zk} and is called the
subset of Z generated by z1, · · · , zk.

Theorem 5.1. (see Rabinowitz [32]) Let E be an infinite-dimensional Ba-
nach space and let I ∈ C1(X) be even, with I(0) = 0. Assume that E =
X ⊕ Y , where X is a finite-dimensional space, and I satisfies the following
properties:

(i) There is θ > 0 such that I satisfies the (PS)c condition for all c ∈ (0, θ).
(ii) There are ρ, α > 0 such that I(u) ≥ α for all u ∈ ∂Bρ

⋂
Y .

(iii) For any finite dimensional subspace Ẽ ⊂ E, there is R = R(Ẽ) > ρ

such that I(u) ≤ 0 on Ẽ \BR.

Moreover, suppose that X is k-dimensional and X = span{z1, · · · , zk}.
For n ≥ k, inductively select zn+1 /∈ Xn = span{z1, · · · , zn}. Let Rn =
R(Xn) and Υn = BRn

⋂
Xn. Define

Wn = {φ ∈ C(Υn, E) : φ|∂BRn

⋂
Xn

= id and φ is odd}
and

Γi = {φ(Υn \ V ) : φ ∈Wn, n ≥ i, V ∈ Λ, γ(V ) ≤ n− i},
where γ(V ) is the Krasnoselskii genus of V . For i ∈ N , let

ci = inf
X∈Γi

max
u∈X

I(u).

Hence, 0 ≤ ci ≤ ci+1 and ci < θ for i > k. Then, we get that ci is a critical
value of I. Moreover, if ci = ci+1 = · · · = ci+p = c < θ for i > k, then
γ(Kc) ≥ p+ 1, where

Kc = {u ∈ E : I(u) = c and I ′(u) = 0}.

Proof of Theorem 1.3. It is well known that S̊2
1(Ω) is a reflexive Banach

space and Iµ ∈ C1(S̊2
1(Ω)). The energy functional Iµ satisfies Iµ(0) = 0. We

have three steps to prove Theorem 1.3.
Step 1. The proof is similar to the proof of (i) and (ii) in Theorem 4.1.

We can see that (ii) and (iii) of Theorem 5.1 are satisfied.
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Step 2. We show that there is a sequence (Ψn)n ⊂ R+, with Ψn ≤ Ψn+1,
satisfying

cµn = inf
X∈Γn

max
u∈X

Iµ(u) < Ψn.

For this purpose, applying an argument given in Wei and Wu [36], according
to the definition of cµn, one has

cµn = inf
X∈Γn

max
u∈X

Iµ(u) ≤ inf
X∈Γn

max
u∈X

{∥u∥2− 1

2Q∗
λ

∫
Ω

∫
Ω

|u(ξ)|Q∗
λ |u(η)|Q∗

λ

|η−1ξ|λ
dηdξ}.

Set

Ψn = inf
X∈Γn

max
u∈X

{∥u∥2 − 1

2Q∗
λ

∫
Ω

∫
Ω

|u(ξ)|Q∗
λ |u(η)|Q∗

λ

|η−1ξ|λ
dηdξ}.

Then Ψn <∞ and Ψn ≤ Ψn+1, by the definition of Γn.
Step 3. We show that problem (1.1) has at least n pairs of weak solutions.

As in (4.6), a similar discussion yields that there exists µ∗∗ > 0 satisfying

cµn ≤ Ψn < (
1

2
− 1

q
)S

Q∗
λ

Q∗
λ
−1

HG for all µ > µ∗∗.

Thus, one has

0 < cµ1 ≤ cµ2 ≤ · · · ≤ cµn < Ψn < (
1

2
− 1

q
)S

Q∗
λ

Q∗
λ
−1

HG .

An application of Rabinowitz [32, Proposition 9.30] ensures that the levels
cµ1 ≤ cµ2 ≤ · · · ≤ cµn are critical values of Iµ.

If cµi = cµi+1 where i = 1, 2, · · · , k−1, then by Ambrosetti and Rabinowitz
[2, Remark 2.12 and Theorem 4.2], the set Kcµi

consists of infinite number

of different points and problem (1.1) has infinite numbers of weak solutions.
Hence, problem (1.1) has at least n pairs of solutions. The proof of Theorem
1.3 is completed. □
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