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Abstract: In this article, we investigate the Kirchhoff-Schrödinger-Poisson type systems on the
Heisenberg group of the following form:

−(a + b
∫
Ω
|∇Hu|pdξ)∆H,pu − µϕ|u|p−2u = λ|u|q−2u + |u|Q

∗−2u in Ω,
−∆Hϕ = |u|p in Ω,
u = ϕ = 0 on ∂Ω,

where a, b are positive real numbers, Ω ⊂ HN is a bounded region with smooth boundary, 1 < p < Q,
Q = 2N + 2 is the homogeneous dimension of the Heisenberg group HN , Q∗ = pQ

Q−p , q ∈ (2p,Q∗)
and ∆H,pu = div(|∇Hu|p−2∇Hu) is the p-horizontal Laplacian. Under some appropriate conditions for
the parameters µ and λ, we establish existence and multiplicity results for the system above. To some
extent, we generalize the results of An and Liu (Israel J. Math., 2020) and Liu et al. (Adv. Nonlinear
Anal., 2022).
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1. Introduction

In this article, we investigate the following Kirchhoff-Schrödinger-Poisson type systems on the
Heisenberg group:

−(a + b
∫
Ω
|∇Hu|pdξ)∆H,pu − µϕ|u|p−2u = λ|u|q−2u + |u|Q

∗−2u in Ω,
−∆Hϕ = |u|p in Ω,
u = ϕ = 0 on ∂Ω,

(1.1)

where a, b are positive real numbers, Ω ⊂ HN is a bounded region with smooth boundary, 1 < p < Q,
Q = 2N + 2 is the homogeneous dimension of the Heisenberg group HN , Q∗ = pQ

Q−p , q ∈ (2p,Q∗),
∆H,pu = div(|∇Hu|p−2∇Hu) is known as the p-horizontal Laplacian, and µ and λ are some positive real
parameters.

In recent years, geometrical analysis of the Heisenberg group has found significant applications in
quantum mechanics, partial differential equations and other fields, which has attracted the attention of
many scholars who tried to establish the existence and multiplicity of solutions of partial differential
equations on the Heisenberg group. For instance, in the subcase of problem (1.1), when p = 2 and
b = µ = 0, the existence of solutions for some nonlinear elliptic problems in bounded domains has been
established. Tyagi [1] studied a class of singular boundary value problem on the Heisenberg group:

−∆Hu = µ g(ξ)u

(|z|4+t2)
1
2
+ λ f (ξ, t), ξ ∈ Ω,

u|∂Ω = 0,
(1.2)

and under appropriate conditions, obtained some existence results using Bonanno’s three critical point
theorem. Goel and Sreenadh [2] dealt with a class of Choquard type equation on the Heisenberg group,
and they established regularity of solutions and nonexistence of solutions invoking the mountain pass
theorem, the linking theorem and iteration techniques and boot-strap method.

In the case b , 0 and µ = 0, problem (1.1) becomes the Kirchhoff problem, which has also been
widely studied. For example, Sun et al. [3] dealt with the following Choquard-Kirchhoff problem with
critical growth:

M(∥u∥2)(−∆Hu + u) =
∫
HN

|u(η)|Q
∗
λ

|η−1ξ|λ
dη|u|Q

∗
λ−2u + µ f (ξ, u),

where f is a Carathéodory function, M is the Kirchhoff function, ∆H is the Kohn Laplacian on the
Heisenberg group HN , µ > 0 is a parameter and Q∗λ =

2Q−λ
Q−2 is the critical exponent. In their paper, a

new version of the concentration-compactness principle on the Heisenberg group was established for
the first time. Moreover, the existence of nontrivial solutions was obtained even under nondegenerate
and degenerate conditions. Zhou et al. [4] proved the existence of solutions of Kirchhoff type nonlo-
cal integral-differential operators with homogeneous Dirichlet boundary conditions on the Heisenberg
group using the variational method and the mountain pass theorem. Deng and Xian [5] obtained the
existence of solutions for Kirchhoff type systems involving the Q-Laplacian operator on the Heisen-
berg group with the help of the Trudinger-Moser inequality and the mountain pass theorem. For more
related results, see [6–13].

When b = 0, p = 2 and µ , 0, problem (1.1) becomes the Schrödinger-Poisson system. This
is a very interesting subject and has recently witnessed very profound results. For example, An and
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Liu [14] dealt with the following forms of Schrödinger-Poisson type system on the Heisenberg group:
−∆Hu + µϕu = λ|u|q−2u + |u|2u in Ω,
−∆Hϕ = u2 in Ω,
u = ϕ = 0 on ∂Ω,

where µ ∈ R and λ > 0 are some real parameters and 1 < q < 2. By applying the concentration
compactness and the critical point theory, they found at least two positive solutions and a positive
ground state solution.

Liang and Pucci [15] studied the following critical Kirchhoff-Poisson system on the Heisenberg
group: 

−M
(∫
Ω
|∇Hu|2dξ

)
∆Hu + ϕ|u|q−2u = h(ξ, u) + λ|u|2u in Ω,

−∆Hϕ = |u|q in Ω,
u = ϕ = 0 on ∂Ω,

where Ω ⊂ H1 is a smooth bounded domain, ∆H is the Kohn-Laplacian on the first Heisenberg group
H1 and 1 < q < 2. By applying the symmetric mountain pass lemma, they obtained the multiplicity of
solutions with λ sufficiently small.

The Kirchhoff-Poisson system on the Heisenberg group with logarithmic and critical nonlinearity
was considered by Pucci and Ye [13]:

−M
(∫
Ω
|∇Hu|2dξ

)
∆Hu + ϕu = |u|2u + λ|u|q−2u ln |u|2 in Ω,

−∆Hϕ = |u|2 in Ω,
u = ϕ = 0 on ∂Ω.

Under suitable assumptions on the Kirchhoff function M covering the degenerate case, they showed
that for a sufficiently large λ > 0, there exists a nontrivial solution to the above problem.

When p , 2 and µ , 0, as far as we know, for Kirchhoff-Schrodinger-Poisson systems (1.1) with
critical nonlinearities on the Heisenberg group, existence and multiplicity results are not yet available.
In the Euclidean case, Du et al. [16] first studied the existence results for the Kirchhoff-Poisson systems
with p-Laplacian under the subcritical case using the mountain pass theorem. Later, Du et al. [17]
studied quasilinear Schrödinger-Poisson systems. For the critical case, Du et al. [18] also obtained the
existence of ground state solutions with the variational approach.

Inspired by the above achievements, we aim to establish some results on the existence and multiplic-
ity of nontrivial solutions of the Kirchhoff-Schrödinger-Poisson systems (1.1). The major difficulties
in dealing with problem (1.1) are the presence of a nonlocal term and critical nonlinearities making the
study of this problem very challenging.

Before presenting the main results of this article, we first present some concepts of the Heisenberg
group. The Heisenberg group is represented by HN . If ξ = (x, y, t) ∈ HN , then the definition of this
group operation is

τξ(ξ′) = ξ ◦ ξ′ = (x + x′, y + y′, t + t′ + 2(x′y − y′x)), for every ξ, ξ′ ∈ HN ,

ξ−1 = −ξ is the inverse, and therefore (ξ′)−1 ◦ ξ−1 = (ξ ◦ ξ′)−1.
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The definition of a natural group of dilations on HN is δs(ξ) = (sx, sy, s2t), for every s > 0. Hence,
δs(ξ0 ◦ξ) = δs(ξ0)◦δs(ξ). It can be easily proved that the Jacobian determinant of dilatations δs : HN →

HN is constant and equal to sQ, for every ξ = (x, y, t) ∈ HN . The critical exponent is Q∗ := pQ
Q−p , where

the natural number Q = 2N + 2 is called the homogeneous dimension of HN . We define the Korányi
norm as follows

|ξ|H =
[
(x2 + y2)2 + t2

] 1
4
, for every ξ ∈ HN ,

and we derive this norm from the Heisenberg group’s anisotropic dilation. Hence, the homogeneous
degree of the Korányi norm is equal to 1, in terms of dilations

δs : (x, y, t) 7→ (sx, sy, s2t), for every s > 0.

The set
BH(ξ0, r) = {ξ ∈ HN : dH(ξ0, ξ) < r},

denotes the Korányi open ball of radius r centered at ξ0. For the sake of simplicity, we shall denote
Br = Br(O), where O = (0, 0) is the natural origin of HN .

The following vector fields

T =
∂

∂t
, X j =

∂

∂x j
+ 2y j

∂

∂t
, Y j =

∂

∂y j
− 2x j

∂

∂t
,

generate the real Lie algebra of left invariant vector fields for j = 1, · · · , n, which forms a basis
satisfying the Heisenberg regular commutation relation on HN . This means that

[X j,Y j] = −4δ jkT, [Y j,Yk] = [X j, Xk] = [Y j,T ] = [X j,T ] = 0.

The so-called horizontal vector field is just a vector field with the span of [X j,Y j]n
j=1.

The Heisenberg gradient on HN is

∇H = (X1, X2, · · · , Xn,Y1,Y2, · · · ,Yn),

and the Kohn Laplacian on HN is given by

∆H =

N∑
j=1

X2
j + Y2

j =

N∑
j=1

[
∂2

∂x2
j

+
∂2

∂y2
j

+ 4y j
∂2

∂x j∂t
− 4x j

∂2

∂x j∂t
+ 4(x2

j + y2
j)
∂2

∂t2 ].

The Haar measure is invariant under the left translations of the Heisenberg group and is Q-
homogeneous in terms of dilations. More precisely, it is consistent with the (2n + 1)-dimensional
Lebesgue measure. Hence, as shown Leonardi and Masnou [19], the topological dimension 2N + 1 of
HN is strictly less than its Hausdorff dimension Q = 2N+2. Next, |Ω| denotes the (2N + 1)-dimensional
Lebesgue measure of any measurable set Ω ⊆ HN . Hence,

|δs(Ω)| = sQ|Ω|, d(δsξ) = sQdξ and |BH(ξ0, r)| = αQrQ, where αQ = |BH(0, 1)|.

Now, we can state the main result of the paper.
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Theorem 1.1. Let q ∈ (2p,Q∗). Then there exist positive constants µ1 and λ1 such that for every
µ ∈ (0, µ1) and λ ∈ (λ1,+∞), the following assertions hold:

(I) Problem (1.1) has a nontrivial weak solution;
(II) Problem (1.1) has infinitely many nontrivial weak solutions if parameter a is large enough.

We can give the following example for problem (1.1) with p = 3 and Ω ⊂ H1:
−(a +

∫
Ω
|∇Hu|2dξ)∆Hu + µϕu = λ|u|6u + |u|10u in Ω,

−∆Hϕ = |u|3 in Ω,
u = ϕ = 0 on ∂Ω.

In this case, N = 1, p = 3 and q = 8, then Q = 2N + 2 = 4, Q∗ = 12. If positive parameters
µ small enough and λ large enough, by Theorem 1.1, we know that problem (1.1) has a nontrivial
weak solution. Moreover, if in addition the parameter a is large enough, problem (1.1) has infinitely
many nontrivial weak solutions. It should be noted that the methods in An and Liu [14] and Liang and
Pucci [15] do not seem to apply to problem (1.1).

Remark 1.1. Compared with previous results, this paper has the following key new features:

1) The presence of the nonlocal term ϕ|u|p−2u;
2) The lack of compactness caused by critical index;
3) The presence of the p-Laplacian makes this problem more complex and interesting.

It is worth stressing that the nonlocal term and the critical exponent lead to the lack of compactness
condition, and we use the concentration-compactness principle to overcome this difficulty. Moreover,
we shall use some more refined estimates to overcome the presence of the p-Laplacian.

We need to emphasize here that despite the similarity of some properties between the classical
Laplacian ∆ and Kohn Laplacian ∆H, similarities can be misleading (see Garofalo and Lanconelli [20]),
so there are still many properties that deserve further study. Moreover, for the case p , 2, it is
difficult to prove the boundedness of Palais-Smale sequences. In order to overcome these difficulties,
we use some more accurate estimates of relevant expression. Additionally, we use the concentration-
compactness principle on the Heisenberg group to prove the compactness condition.

The paper is organized as follows. In Section 2, we introduce some notations and known facts.
Moreover, we introduce some key estimates. In addition, we define the corresponding energy func-
tional Iλ and its derivative at u, that is, I′λ(u). In Section 3, we prove Theorem 1.1.

2. Preliminaries and (PS )c condition

2.1. Preliminaries

First of all, we collected some known facts, useful in the sequel. For additional background material,
readers are advised to refer to Papageorgiou et al. [21].

Let
∥u∥ss =

∫
Ω

|u|sdξ, for every u ∈ Ls(Ω),

represent the usual Ls-norm.
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Following Folland and Stein [22], we define the space S̊ 2
1(Ω) as the closure of C∞0 (Ω) in S 2

1(HN).
Then S̊ 2

1(Ω) is a Hilbert space with the norm

∥u∥2
S̊ 2

1(Ω)
=

∫
Ω

|∇Hu|2dξ.

We define the Folland-Stein space S 1,p(Ω) as the closure of C∞0 (Ω) with the norm

∥u∥ = (
∫
Ω

|∇Hu|pdξ)
1
p .

Then the embedding
S 1,p(Ω) ↪→ Ls(Ω), for every s ∈ (1,Q∗),

is compact. However, if s = Q∗, the embedding is only continuous (see Vassiliev [23]).
Additionally, we say that (u, ϕ) ∈ S 1,p(Ω) × S 1,p(Ω) is a solution of problem (1.1) if and only if

a
∫
Ω

|∇Hu|p−2∇Hu∇Hvdξ + b∥u∥p
∫
Ω

|∇Hu|p−2∇Hu∇Hvdξ

− µ

∫
Ω

ϕ|u|p−2uvdξ − λ
∫
Ω

|u|q−2uvdξ −
∫
Ω

|u|Q
∗−2uvdξ = 0

and ∫
Ω

∇Hϕ∇Hωdξ −
∫
Ω

|u|pωdξ = 0,

for every v, ω ∈ S 1,p(Ω) × S 1,p(Ω). Moreover, (u, ϕ) ∈ S 1,p(Ω) × S 1,p(Ω) is a positive solution of
problem (1.1) if u and ϕ are both positive. Therefore, in order to apply the critical point theory, we
need to define the functional J(u, ϕ) : S 1,p(Ω) × S 1,p(Ω)→ R as follows

J(u, ϕ) =
a
p
∥u∥p +

b
2p
∥u∥2p +

µ

2p

∫
Ω

|∇Hϕ|
2dξ −

µ

p

∫
Ω

ϕ|u|pdξ −
λ

q

∫
Ω

|u|qdξ −
1

Q∗

∫
Ω

|u|Q
∗

dξ,

for every (u, ϕ) ∈ S 1,p(Ω) × S 1,p(Ω). Then J is C1 on S 1,p(Ω) × S 1,p(Ω) and its critical points are the
solutions of problem (1.1). Indeed, the partial derivatives of J at (u, ϕ) are denoted by J′u(u, ϕ), J′ϕ(u, ϕ),
namely for every v, ω ∈ S 1,p(Ω) × S 1,p(Ω),

J′u(u, ϕ)[v] =a
∫
Ω

|∇Hu|p−2∇Hu∇Hvdξ + b∥u∥p
∫
Ω

|∇Hu|p−2∇Hu∇Hvdξ

− µ

∫
Ω

ϕ|u|p−2uvdξ − λ
∫
Ω

|u|q−2uvdξ −
∫
Ω

|u|Q
∗−2uvdξ = 0

and
J′ϕ(u, ϕ) =

µ

p

∫
Ω

∇Hϕ∇Hωdξ −
µ

p

∫
Ω

|u|pωdξ.

Standard computations show that J′u (respectively J′ϕ) continuously maps S 1,p(Ω) × S 1,p(Ω) into the
dual of S 1,p(Ω). Moreover, the functional J is C1 on S 1,p(Ω) × S 1,p(Ω) and

J′u(u, ϕ) = J′ϕ(u, ϕ) = 0

if and only if (u, ϕ) is a solution of problem (1.1).
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Lemma 2.1. Let u ∈ S 1,p(Ω). Then there is a unique nonnegative function ϕu ∈ S̊ 2
1(Ω) such that{

−∆Hϕ = |u|p in Ω,
ϕ = 0 on ∂Ω.

(2.1)

Furthermore, ϕu ≥ 0 and ϕu > 0 if u , 0. Also,
(i) ϕtu = tpϕu, for every t > 0;
(ii) ∥ϕu∥S̊ 2

1(Ω) ≤ Ĉ∥u∥p, where Ĉ > 0;

(iii) Let un ⇀ u in S 1,p(Ω). Then, ϕun ⇀ ϕu in S̊ 2
1(Ω), and∫

Ω

ϕun |un|
p−2unvdξ →

∫
Ω

ϕu|u|p−2uvdξ, for every v ∈ S 1,p(Ω). (2.2)

Proof. For any u ∈ S̊ 2
1(Ω), we define W : S̊ 2

1(Ω)→ R,

W(v) =
∫
Ω

v|u|pdξ, for every v ∈ S̊ 2
1(Ω).

Let vn → v ∈ S̊ 2
1(Ω), as n→ ∞. It follows by the Hölder inequality that

|W(vn) −W(v)| ≤
∫
Ω

(vn − v)|u|pdξ

≤ (
∫
Ω

|vn − v|Q
∗

dξ)
1

Q∗ (
∫
Ω

|u|
pQ∗

Q∗−1 dξ)
Q∗−1

Q∗

≤ S −
1
p ∥vn − v∥|u|ppQ∗

Q∗−1

→ 0, as n→ ∞,

where

S = inf
u∈S 1,p(Ω)\{0}

∫
Ω
|∇Hu|pdξ

(
∫
Ω
|u|Q∗dξ)

p
Q∗

(2.3)

is the best Sobolev constant. This implies that W is a continuous linear functional. Using the Lax-
Milgram theorem, we see that there is a unique ϕu ∈ S̊ 2

1(Ω) satisfying∫
Ω

∇Hϕu∇Hvdξ =
∫
Ω

v|u|pdξ, for every v ∈ S 1,p(Ω). (2.4)

Thus, ϕu ∈ S̊ 2
1(Ω) is the unique solution of problem (2.1). Moreover, applying the maximum

principle, one has ϕu ≥ 0 and ϕu > 0 if u , 0. Indeed, for every t > 0, one has

−∆Hϕtu = tpup = tp(−∆Hϕu) = −∆H(tpϕu).

Hence ϕtu = tpϕu due to the uniqueness of ϕu.
Furthermore, since ϕu ∈ S 1,p(Ω), we can view it as a text function in problem (2.1). Then by (2.4),

the Sobolev inequality and the Hölder inequality, we have (henceforth C0, C1, C2 will denote positive
constants) ∫

Ω

|∇Hϕu|
2dξ =

∫
Ω

ϕu|u|pdξ ≤ |ϕu|L2(Ω)|u|
p
L2p(Ω) ≤ C1∥ϕu∥S̊ 2

1(Ω)∥u∥
p.
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5756

Therefore, we get ∥ϕu∥S̊ 2
1(Ω) ≤ C1∥u∥p.

Since un ⇀ u in S 1,p(Ω), we can conclude that un → u a.e. in Ω and {|un|
p} is bounded in L2(Ω).

Moreover, we have |un|
p ⇀ |u|p in L2(Ω). Then for every v ∈ S̊ 2

1(Ω), it follows that∫
Ω

v|un|
pdξ →

∫
Ω

v|u|pdξ, as n→ ∞.

Therefore, ϕun ⇀ ϕu in S̊ 2
1(Ω). By the Hölder inequality, the Sobolev inequality and (ii), one has∫

Ω

|ϕun |un|
p−2un|

2p
2p−1 dξ ≤ |ϕun |

2p
2p−1

L2(Ω)(
∫
Ω

|un|
2pdξ)

p−1
2p−1

≤ C0∥ϕun∥
2p

2p−1

S̊ 2
1(Ω)

(
∫
Ω

|un|
2pdξ)

p−1
2p−1

≤ C2∥ϕun∥
2p2

2p−1 (
∫
Ω

|un|
2pdξ)

p−1
2p−1 .

Hence, {ϕun |un|
p−2un} is bounded in L

2p
2p−1 (Ω). Since

ϕun |un|
p−2un → ϕu|u|p−2u, a.e. in Ω,

we get ∫
Ω

ϕun |un|
p−2unvdξ →

∫
Ω

ϕu|u|p−2uvdξ, for every v ∈ S 1,p(Ω).

The proof of Lemma 2.1 is complete.

By similar arguments as in An and Liu [14], we can get the following result.

Lemma 2.2. Let Ψ(u) = ϕu for every u ∈ S 1,p(Ω), where ϕu is as in Lemma 2.1, and let

Υ = {(u, ϕ) ∈ S 1,p(Ω) × S 1,p(Ω) : J′ϕ(u, ϕ) = 0}.

Then Ψ is C1 and Υ is the graph of Ψ.

We define the corresponding energy functional Iλ(u) = J(u, ϕu) of problem (1.1) by

Iλ(u) =
a
p
∥u∥p+

b
2p
∥u∥2p−

µ

2p

∫
Ω

ϕu|u|pdξ−
λ

q

∫
Ω

|u|qdξ−
1

Q∗

∫
Ω

|u|Q
∗

dξ, for every u ∈ S 1,p(Ω). (2.5)

Based on the definition of J and Lemma 2.2, we can conclude that Iλ is of C1.

Lemma 2.3. (see An and Liu [14]) Let (u, ϕ) ∈ S 1,p(Ω) × S 1,p(Ω). Then (u, ϕ) is a critical point of J if
and only if u is a critical point of Iλ and ϕ = Ψ(u), where Ψ was defined in Lemma 2.2.

According to Lemma 2.3, we know that a solution (u, ϕu) of problem (1.1) corresponds to a critical
point u of the functional Iλ with ϕ = Ψ(u) and

⟨I′λ(u), v⟩ =a
∫
Ω

|∇Hu|p−2∇Hu∇Hvdξ + b∥u∥p
∫
Ω

|∇Hu|p−2∇Hu∇Hvdξ

− µ

∫
Ω

ϕu|u|p−2uvdξ − λ
∫
Ω

|u|q−2uvdξ −
∫
Ω

|u|Q
∗−2uvdξ, for every v ∈ S 1,p(Ω).

(2.6)

Therefore, based on the above arguments, we shall strive to use critical point theory and some
analytical techniques to prove the existence of critical points of functional Iλ.
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2.2. (PS )c condition

In this subsection, our main focus will be on proving that the functional Iλ satisfies the Palais-Smale
condition.

Lemma 2.4. Let q ∈ (2p,Q∗). Then there exists µ1 > 0 such that for any µ < µ1, the energy functional
Iλ satisfies (PS )c condition, where

c ∈
(
0, (

1
q
−

1
Q∗

)(aS )
Q
p

)
(2.7)

and S is the best Sobolev constant given by (2.3).

Proof. Let us assume that {un}n ⊂ S 1,p(Ω) is a (PS )c sequence related to the functional Iλ, that is,

Iλ(un)→ c and I′λ(un)→ 0, as n→ ∞. (2.8)

It follows that

c + o(1)∥un∥ = Iλ(un) −
1
q

I′λ(un)un

≥ a(
1
p
−

1
q

)∥un∥
p + b(

1
2p
−

1
q

)∥un∥
2p − µ(

1
2p
−

1
q

)
∫
Ω

ϕun |un|
pdξ + (

1
q
−

1
Q∗

)
∫
Ω

|un|
Q∗dξ

≥ a(
1
p
−

1
q

)∥un∥
p + (b − µĈ)(

1
2p
−

1
q

)∥un∥
2p, (2.9)

where Ĉ is a positive constant given by Lemma 2.1(ii). Let µ1 =
b
Ĉ

. By (2.9), we know that (PS )c

sequence {un}n ⊂ S 1,p(Ω) is bounded for every µ < µ1. Thus, we may assume that un ⇀ u weakly
in S 1,p(Ω), and un → u in Ls(Ω) with 1 < s < Q∗. Furthermore, since Iλ(un) = Iλ(|un|), we may also
assume that un ≥ 0 and u ≥ 0. Therefore, invoking the concentration compactness principle on the
Heisenberg group (see Vassiliev [23, Lemma 3.5]), we obtain

|∇Hun|
pdξ ⇀ dω ≥ |∇Hu|pdξ + Σ j∈Λω jδx j ,

|un|
Q∗dξ ⇀ dν = |u|Q

∗

dξ + Σ j∈Λν jδx j ,
(2.10)

where {x j} j∈Λ ⊂ Ω is the most a countable set of distinct points, ω and ν in HN are two positive Radon
measures, and {ω j} j∈Λ, {ν j} j∈Λ are nonnegative numbers. Moreover, we have

ω j ≥ S ν
p

Q∗

j . (2.11)

Next, we shall show that Λ = ∅. Indeed, assume that the hypothesis ω j , 0 holds for some j ∈ Λ.
Then when ε > 0 is sufficiently small, we can find 0 ≤ ψε, j ≤ 1 satisfying the following

ψε, j = 1 in BH(ξ j,
ε
2 ),

ψε, j = 0 in Ω\BH(ξ j, ε),
|∇Hψε, j| ≤

2
ε
,

(2.12)

Electronic Research Archive Volume 31, Issue 9, 5749–5765.



5758

where ψε, j ∈ C∞0 (BH(ξ j, ε)) is a cut-off function. Clearly, (unψε, j)n is bounded in S 1,p(Ω). It follows
from (2.8) and the boundedness of (unψε, j)n that

⟨I′λ(un), unψε, j⟩ → 0, as n→ ∞,

that is,

a(
∫
Ω

|∇Hun|
pψε, j +

∫
Ω

un|∇Hun|
p−2∇Hun∇Hψε, jdξ) + b∥un∥

p(
∫
Ω

|∇Hun|
pψε, j (2.13)

+

∫
Ω

un|∇Hun|
p−2∇Hun∇Hψε, jdξ) − µ

∫
Ω

ϕun |un|
pψε, jdξ = λ

∫
Ω

uq
nψε, jdξ +

∫
Ω

uQ∗
n ψε, jdξ + o(1).

It follows from the dominated convergence theorem that∫
BH(ξ j,ε)

|un|
qψε, jdξ →

∫
BH(ξ j,ε)

|u|qψε, jdξ, as n→ ∞.

Hence, letting ε→ 0, we get

lim
ε→0

lim
n→∞

∫
BH(ξ j,ε)

|un|
qψε, jdξ = 0. (2.14)

By Lemma 2.1,

lim
n→∞

∫
Ω

ϕun |un|
p−2unudξ =

∫
Ω

ϕu|u|pdξ, (2.15)

and since un → u in Ls(Ω) with 1 < s < Q∗, one has∫
Ω

(ϕun |un|
p − ϕun |un|

p−1u)dξ ≤
∫
Ω

|ϕun ||un|
p−1|un − u|dξ

≤

(∫
Ω

|ϕun |un|
p−1|

p
p−1 dξ

) p−1
p

|un − u|p → 0.
(2.16)

Combining (2.15) with (2.16), we obtain that

lim
n→∞

∫
Ω

ϕun |un|
pdξ =

∫
Ω

ϕu|u|pdξ,

thus
lim
ε→0

lim
n→∞

∫
BH(ξ j,ε)

ϕun |un|
pψε, jdξ = lim

ε→0

∫
BH(ξ j,ε)

ϕu|u|pψε, jdξ = 0. (2.17)

Since ∫
BH(ξ j,ε)

dξ =
∫

BH(0,ε)
dξ = |BH(0, 1)|εQ,

applying the Hölder inequality, we obtain
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lim
ε→0

lim
n→∞

∫
Ω

un|∇Hun|
p−1∇Hψε, jdξ ≤ lim

ε→0
lim
n→∞

(
∫

BH(ξ j,ε)
|∇Hun|

pdξ)
p−1

p (
∫

BH(ξ j,ε)
|un∇Hψε, j|

pdξ)
1
p

≤ C lim
ε→0

(
∫

BH(ξ j,ε)
|un|

p|∇Hψε, j|
pdξ)

1
p

≤ C lim
ε→0

(
∫

BH(ξ j,ε)
|un|

Q∗dξ)
1

Q∗ (
∫

BH(ξ j,ε)
|∇Hψε, j|

Qdξ)
1
Q = 0.

By (2.10), we have

lim
ε→0

lim
n→∞

∫
Ω

|∇Hun|
pψε, jdξ ≥ lim

ε→0

(
ω j +

∫
BH(ξ j,ε)

|∇Hu|pψε, jdξ
)
= ω j (2.18)

and

lim
ε→0

lim
n→∞

∫
Ω

uQ∗
n ψε, jdξ = lim

ε→0

(
ν j +

∫
BH(ξ j,ε)

uQ∗
n ψε, jdξ

)
= ν j. (2.19)

Therefore, by (2.13)–(2.19), one gets ν j ≥ aω j. It follows from (2.11) that

ν j = 0 or ν j ≥ (aS )
Q
p .

In fact, if ν j ≥ (aS )
Q
p holds, therefore by (2.8) and (2.10), for every µ < µ1, we have

c = lim
n→∞
{Iλ(un) −

1
q

I′λ(un)un} ≥ lim
n→∞

(
1
q
−

1
Q∗

)
∫
Ω

|un|
Q∗dξ

≥ (
1
q
−

1
Q∗

)ν j ≥ (
1
q
−

1
Q∗

)(aS )
Q
p ,

(2.20)

which contradicts (2.7). Thus, Λ = ∅. By (2.10) and Λ = ∅, we have∫
Ω

|un|
Q∗dξ →

∫
Ω

|u|Q
∗

dξ. (2.21)

Let
lim
n→∞
∥un∥

p = A.

If A = 0, then un → 0 in S 1,p(Ω). So assume now that A > 0. By (2.8), we get

a
∫
Ω

|∇Hun|
p−2∇Hun∇Hvdξ + bA

∫
Ω

|∇Hun|
p−2∇Hun∇Hvdξ

− µ

∫
Ω

ϕun |un|
p−2unvdξ − λ

∫
Ω

|un|
q−2unvdξ −

∫
Ω

|un|
Q∗−2unvdξ = o(1).

(2.22)

Let v = u in (2.22). Then

a∥u∥p + bA∥u∥p − µ
∫
Ω

ϕu|u|pdξ − λ
∫
Ω

|u|qdξ −
∫
Ω

|u|Q
∗

dξ = 0. (2.23)

By (2.8), (2.10), (2.21) and Lemma 2.1, one also has

lim
n→∞

a∥un∥
p + bA∥un∥

p − µ

∫
Ω

ϕu|u|pdξ − λ
∫
Ω

|u|qdξ −
∫
Ω

|u|Q
∗

dξ = 0. (2.24)

Thus, combining (2.23) and (2.24), we get limn→∞ ∥un∥
p = ∥u∥p. Thus, we see that un → u in

S 1,p(Ω) by the uniform convexity of S 1,p(Ω). This completes the proof of Lemma 2.4.
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3. Proof of Theorem 1.1

3.1. Existence of a nontrivial weak solutions

We need the following auxiliary lemmas to prove our main result.

Lemma 3.1. Let q ∈ (2p,Q∗) and µ ∈ (0, µ1). Then functional Iλ satisfies the mountain pass geometry,
that is,
(i) There exist constants ρ, α > 0 satisfying Iλ(u)|∂Bρ ≥ α, for every u ∈ S 1,p(Ω);
(ii) There exists e ∈ S 1,p(Ω)\Bρ satisfying Iλ(e) < 0.

Proof. First, applying the Hölder inequality, we get

Iλ(u) =
a
p
∥u∥p +

b
2p
∥u∥2p −

µ

2p

∫
Ω

ϕu|u|pdξ −
λ

q

∫
Ω

|u|qdξ −
1

Q∗

∫
Ω

|u|Q
∗

dξ

≥
a
p
∥u∥p +

b − µĈ
2p

∥u∥2p −
λ

q

∫
Ω

|u|qdξ −
1

Q∗

∫
Ω

|u|Q
∗

dξ

≥
a
p
∥u∥p −

λ

q
S −

q
p |Ω|

Q∗−q
Q∗ ∥u∥q −

1
Q∗

S −
Q∗
p ∥u∥Q

∗

= ∥u∥p{
a
p
−
λ

q
S −

q
p |Ω|

Q∗−q
Q∗ ∥u∥q−p −

1
Q∗

S −
Q∗
p ∥u∥Q

∗−p}.

(3.1)

Let
f (t) =

a
p
−
λ

q
S −

q
p |Ω|

Q∗−q
Q∗ tq−p −

1
Q∗

S −
Q∗
p tQ∗−p, for every t ≥ 0.

We now show that there exists a constant ρ > 0 satisfying f (ρ) ≥ a
p . We see that f is a continuous

function on [0,+∞) and limt→0+ f (t) = a
p . Hence there exists ρ such that f (t) ≥ a

p − ε1, for every
0 ≤ t ≤ ρ, where ρ is small enough such that ∥u∥ = ρ. If we choose ε1 =

a
2p , we have f (t) ≥ a

2p , for
every 0 ≤ t ≤ ρ. In particular, f (ρ) ≥ a

2p and we obtain Iλ(u) ≥ a
2pρ

p = α for ∥u∥ = ρ. Hence assertion
(i) of Lemma 3.1 holds.

Next, we shall show that assertion (ii) of Lemma 3.1 also holds:

Iλ(su) =
asp

p
∥u∥p +

bs2p

2p
∥u∥2p −

µs2p

2p

∫
Ω

ϕu|u|pdξ −
λsq

q

∫
Ω

|u|qdξ −
sQ∗

Q∗

∫
Ω

|u|Q
∗

dξ

≤
asp

p
∥u∥p +

bs2p

2p
∥u∥2p −

sQ∗

Q∗

∫
Ω

|u|Q
∗

dξ → −∞ as s→ +∞.
(3.2)

Thus, we can deduce that Iλ(s0u) < 0 and s0∥u∥ > ρ, for every s0 large enough. Let e = s0u. Then e
is the desired function and the proof of (ii) of Lemma 3.1 is complete.

Proof of Theorem 1.1(I). We claim that

0 < cλ = inf
h∈Γ

max
0≤s≤1

Iλ(h(s)) < (
1
q
−

1
Q∗

)(aS )
Q
p , (3.3)

where
Γ = {h ∈ C([0, 1], S 1,p(Ω)) : h(0) = 1, h(1) = e}.
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Indeed, we can choose v1 ∈ S 1,p(Ω)\{0} with ∥v1∥ = 1. From (3.2), we have lims→+∞ Iλ(sv1) = −∞.
Then

sup
s≥0

Iλ(sv1) = Iλ(sλv1), for some sλ > 0.

So sλ satisfies

asp
λ∥v1∥

p + bs2p
λ ∥v1∥

2p = µs2p
λ

∫
Ω

ϕv1 |v1|
pdξ + λsq

λ

∫
Ω

|v1|
qdξ + sQ∗

λ

∫
Ω

|v1|
Q∗dξ. (3.4)

Next, we shall prove that {sλ}µ>0 is bounded. In fact, suppose that the following hypothesis sλ ≥ 1
is satisfied for every λ > 0. Then it follows from (3.4) that

(a + b)s2p
λ ≥ asp

λ∥v1∥
p + bs2p

λ ∥v1∥
2p = µs2p

λ

∫
Ω

ϕv1 |v1|
pdξ + λsq

λ

∫
Ω

|v1|
qdξ + sQ∗

λ

∫
Ω

|v1|
Q∗dξ

≥ sQ∗

λ

∫
Ω

|v1|
Q∗dξ.

(3.5)

Since 2p < q < Q∗, we can deduce that {sλ}λ>0 is bounded.
Next, we shall demonstrate that sλ → 0, as λ → ∞. Suppose to the contrary, that there exist sλ > 0

and a sequence (λn)n with λn → ∞, as n → ∞, satisfying sλn → sλ, as n → ∞. Invoking the Lebesgue
dominated convergence theorem, we see that∫

Ω

|sλnv1|
qdξ →

∫
Ω

|sλv1|
qdξ, as n→ ∞.

It now follows that
λn

∫
Ω

|sλv1|
qdξ → ∞, as n→ ∞.

Thus, invoking (3.4), we can show that this cannot happen. Therefore, sλ → 0, as λ→ ∞.
Furthermore, (3.4) implies that

lim
λ→∞

λ

∫
Ω

|sλv1|
qdξ = 0

and
lim
λ→∞

∫
Ω

|sλv1|
Q∗dξ = 0.

Hence based on the definition of Iλ and sλ → 0, as λ→ ∞, we get that

lim
λ→∞

(sup
s≥0

Iλ(sv1)) = lim
λ→∞

Iλ(sλv1) = 0.

So, there is λ1 > 0, satisfying for every λ > λ1,

sup
s≥0

Iλ(sv1) < (
1
q
−

1
Q∗

)(aS )
Q
p .

Letting e = t1v1 with t1 large enough for Iλ(e) < 0, we get

0 < cλ ≤ max
0≤s≤1

Iλ(h(s)), where h(s) = st1v1.

Therefore
0 < cλ ≤ sup

s≥0
Iλ(sv1) < (

1
q
−

1
Q∗

)(aS )
Q
p ,

for λ large enough. This completes the proof of Theorem 1.1(I).
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3.2. Existence of infinitely many nontrivial weak solutions

In this subsection, we shall use the Krasnoselskii genus theory to prove Theorem 1.1(II). To this end,
let E be a Banach space and denote by Λ the class of all closed subsets A ⊂ E\{0} that are symmetric
with respect to the origin, that is, u ∈ E implies −u ∈ E. Moreover, suppose that X is k-dimensional and
X = span{z1, · · · , zk}. For every n ≥ k, inductively select zn+1 < Xn = span{z1, · · · , zn}. Let Rn = R(Zn)
and Υn = BRn

⋂
Zn. Define

Wn = {φ ∈ C(Υn, E) : φ|∂BRn
⋂

Zn = id and φ is odd}

and
Γi = {φ(Υn \ V) : φ ∈ Wn, n ≥ i,V ∈ Λ,Λ is closed, γ(V) ≤ n − i},

where γ(V) is the Krasnoselskii genus of V .

Theorem 3.1. (see Rabinowitz [24, Theorem 9.12]) Let I ∈ C1(E,R) be even with I(0) = 0 and let E
be an infinite-dimensional Banach space. Assume that X is a finite-dimensional space, E = X ⊕ Y and
that I satisfies the following properties:
(i) There exists θ > 0 such that I satisfies (PS )c condition, for every c ∈ (0, θ);
(ii) There exist ρ, α > 0 satifying I(u) ≥ α, for every u ∈ ∂Bρ

⋂
Y;

(iii) For every finite-dimensional subspace Ẽ ⊂ E, there exists R = R(Ẽ) > ρ such that I(u) ≤ 0 on
Ẽ \ BR.
For every i ∈ N, let ci = infX∈Γi maxu∈Z I(u), hence, 0 ≤ ci ≤ ci+1 and ci < θ, for every i > k. Then every
ci is a critical value of I. Moreover, if ci = ci+1 = · · · = ci+p = c < θ for i > k, then γ(Kc) ≥ p + 1,
where

Kc = {u ∈ E : I(u) = c and I′(u) = 0}.

Lemma 3.2. There is a nondecreasing sequence {sn} of positive real numbers, independent of λ, such
that for every λ > 0, we have

cλn = inf
W∈Γn

max
u∈W

Iλ(u) < sn,

where Γn was defined in Theorem 3.1.

Proof. By the definition of Γn, one has

cλn ≤ inf
W∈Γn

max
u∈W
{
a
p
∥un∥

p +
b

2p
∥un∥

2p −
µ

2p

∫
Ω

ϕunu
p
ndξ −

1
Q∗

∫
Ω

|un|
Q∗dξ} = sn,

therefore sn < ∞ and sn ≤ sn+1.

Proof of Theorem 1.1(II). We note that Iλ satisfies Iλ(0) = 0 and Iλ(−u) = Iλ(u). In the sequel, we shall
divide the proof into the following three steps:
Step 1. We shall prove that Iλ satisfies hypothesis (ii) of Theorem 3.1. Indeed, similar to the proof
of (i) in Lemma 3.1, we can easily prove that the energy functional Iλ satisfies the hypothesis (ii) of
Theorem 3.1.
Step 2. We shall prove that Iλ satisfies hypothesis (iii) of Theorem 3.1. Indeed, let Y be a finite-
dimensional subspace of S 1,p(Ω). Since all norms in finite-dimensional space are equivalent, it follows
that for every u ∈ Y , we have

Electronic Research Archive Volume 31, Issue 9, 5749–5765.



5763

Iλ(u) ≤
a
p
∥u∥p +

b
2p
∥u∥2p −

1
Q∗

∫
Ω

|u|Q
∗

dξ

≤
a
p
∥u∥p +

b
2p
∥u∥2p −

1
Q∗

C∥u∥Q
∗

, (3.6)

for some positive constant C > 0. Also, because of 2p < Q∗, we can choose a large R > 0 such that
Iλ(u) ≤ 0 on S 1,p(Ω) \ BR. This fact implies that the energy functional Iλ satisfies the hypothesis (iii) of
Theorem 3.1.
Step 3. We shall prove that problem (1.1) has infinitely many nontrivial weak solutions. Indeed,
applying the argument in Wei and Wu [25], we can choose a1 large enough so that for every a > a1,

sup sn < (
1
q
−

1
Q∗

)(aS )
Q
p ,

that is,

cλn < sn < (
1
q
−

1
Q∗

)(aS )
Q
p .

Thus, one has

0 < cλ1 ≤ cλ2 ≤ · · · ≤ cλn < sn < (
1
q
−

1
Q∗

)(aS )
Q
p .

From Lemma 2.4, we know that Iλ satisfies (PS )cλi
(i = 1, 2, · · · , n) condition. This fact implies that

the levels cλ1 ≤ cλ2 ≤ · · · ≤ cλn are critical values of Iλ, which be guaranteed by an application of the
Rabinowitz result [24, Proposition 9.30].

If cλi = cλi+1 where i = 1, 2, · · · , k − 1, then applying the Ambrosetti and Rabinowitz result [26,
Remark 2.12 and Theorem 4.2], we see that the set Kcλi

consists of infinite number of different points,
so problem (1.1) has infinite number of weak solutions. Hence, problem (1.1) has at least k pairs of
solutions. Since k is arbitrary, we can conclude that problem (1.1) has infinitely many solutions. This
completes the proof of Theorem 1.1(II).
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was supported by the Slovenian Research Agency program No. P1-0292 and grants Nos. J1-4031,
J1-4001, N1-0278, N1-0114 and N1-0083.

Conflict of interest

The authors declare there is no conflict of interest.

Electronic Research Archive Volume 31, Issue 9, 5749–5765.



5764

References

1. J. Tyagi, Nontrivial solutions for singular semilinear elliptic equations on the Heisenberg group,
Adv. Nonlinear Anal., 3 (2014), 87–94. https://doi.org/10.1515/anona-2013-0027

2. D. Goel, K. Sreenadh, Existence and nonexistence results for Kohn Laplacian with
Hardy-Littlewood-Sobolev critical exponents, J. Math. Anal. Appl., 486 (2020), 123915.
https://doi.org/10.1016/j.jmaa.2020.123915

3. X. Sun, Y. Song, S. Liang, On the critical Choquard-Kirchhoff problem on the Heisenberg group,
Adv. Nonlinear Anal., 12 (2023), 210–236. https://doi.org/10.1515/anona-2022-0270

4. J. Zhou, L. Guo, B. Zhang, Kirchhoff-type problems involving the fractional p-Laplacian
on the Heisenberg group, Rend. Circ. Mat. Palermo Ser. 2, 71 (2022), 1133–1157.
https://doi.org/10.1007/s12215-022-00763-6

5. S. Deng, X. Tian, Existence of solutions for Kirchhoff type systems involving Q-
Laplacian operator in Heisenberg group, J. Math. Anal. Appl., 495 (2021), 124727.
https://doi.org/10.1016/j.jmaa.2020.124727

6. A. K. Ben-Naouma, C. Troestler, M. Willem, Extrema problems with critical Sobolev expo-
nents on unbounded domains, Nonlinear Anal. Theory Methods Appl., 26 (1996), 823–833.
https://doi.org/10.1016/0362-546X(94)00324-B

7. S. Bordoni, P. Pucci, Schrödinger-Hardy systems involving two Laplacian operators in the Heisen-
berg group, Bull. Sci. Math., 146 (2018), 50–88. https://doi.org/10.1016/j.bulsci.2018.03.001

8. Z. Liu, L. Tao, D. Zhang, S. Liang, Y. Song, Critical nonlocal Schrödinger-Poisson system on
the Heisenberg group, Adv. Nonlinear Anal., 11 (2022), 482–502. https://doi.org/10.1515/anona-
2021-0203

9. P. Pucci, Existence and multiplicity results for quasilinear elliptic equations in the Heisenberg
group, Opuscula Math., 39 (2019), 247–257. https://doi.org/10.7494/OpMath.2019.39.2.247

10. P. Pucci, Critical Schrödinger-Hardy systems in the Heisenberg group, Discrete Contin. Dyn. Syst.
- Ser. S, 12 (2019), 375–400. https://doi.org/10.3934/dcdss.2019025

11. P. Pucci, L. Temperini, Concentration-compactness results for systems in the Heisenberg group,
Opuscula Math., 40 (2020), 151–163. https://doi.org/10.7494/OpMath.2020.40.1.151

12. P. Pucci, L. Temperini, Existence for (p, q) critical systems in the Heisenberg group, Adv. Nonlin-
ear Anal., 9 (2020), 895–922. https://doi.org/10.1515/anona-2020-0032

13. P. Pucci, Y. Ye, Existence of nontrivial solutions for critical Kirchhoff-Poisson systems in the
Heisenberg group, Adv. Nonlinear Stud., 22 (2022), 361–371. https://doi.org/10.1515/ans-2022-
0018

14. Y. C. An, H. Liu, The Schrödinger-Poisson type system involving a critical nonlinearity on the first
Heisenberg group, Isr. J. Math., 235 (2020), 385–411. https://doi.org/10.1007/s11856-020-1961-8

15. S. Liang, P. Pucci, Multiple solutions for critical Kirchhoff-Poisson systems in the Heisenberg
group, Appl. Math. Lett., 127 (2022), 107846. https://doi.org/10.1016/j.aml.2021.107846

16. Y. Du, J. Su, C. Wang, The Schrödinger-Poisson system with p-Laplacian, Appl. Math. Lett., 120
(2021), 107286. https://doi.org/10.1016/j.aml.2021.107286

Electronic Research Archive Volume 31, Issue 9, 5749–5765.

http://dx.doi.org/https://doi.org/10.1515/anona-2013-0027
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2020.123915
http://dx.doi.org/https://doi.org/10.1515/anona-2022-0270
http://dx.doi.org/https://doi.org/10.1007/s12215-022-00763-6
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2020.124727
http://dx.doi.org/https://doi.org/10.1016/0362-546X(94)00324-B
http://dx.doi.org/https://doi.org/10.1016/j.bulsci.2018.03.001
http://dx.doi.org/https://doi.org/10.1515/anona-2021-0203
http://dx.doi.org/https://doi.org/10.1515/anona-2021-0203
http://dx.doi.org/https://doi.org/10.7494/OpMath.2019.39.2.247
http://dx.doi.org/https://doi.org/10.3934/dcdss.2019025
http://dx.doi.org/https://doi.org/10.7494/OpMath.2020.40.1.151
http://dx.doi.org/https://doi.org/10.1515/anona-2020-0032
http://dx.doi.org/https://doi.org/10.1515/ans-2022-0018
http://dx.doi.org/https://doi.org/10.1515/ans-2022-0018
http://dx.doi.org/https://doi.org/10.1007/s11856-020-1961-8
http://dx.doi.org/https://doi.org/10.1016/j.aml.2021.107846
http://dx.doi.org/https://doi.org/10.1016/j.aml.2021.107286


5765

17. Y. Du, J. Su, C. Wang, On a quasilinear Schrödinger-Poisson system, J. Math. Anal. Appl., 505
(2022), 125446. https://doi.org/10.1016/j.jmaa.2021.125446

18. Y. Du, J. Su, C. Wang, On the critical Schrödinger-Poisson system with p-Laplacian, Commun.
Pure Appl. Anal., 21 (2022), 1329–1342. http://dx.doi.org/10.3934/cpaa.2022020

19. G. P. Leonardi, S. Masnou, On the isoperimetric problem in the Heisenberg group HN , Ann. Mat.
Pura Appl., 184 (2005), 533–553. https://doi.org/10.1007/s10231-004-0127-3

20. N. Garofalo, E. Lanconelli, Frequency functions on the Heisenberg group, the un-
certainty principle and unique continuation, Ann. Inst. Fourier, 40 (1990), 313–356.
https://doi.org/10.5802/aif.1215
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