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ABSTRACT
This paper intends to study the following degenerate fractional
Schrödinger–Kirchhoff–Poisson equations with critical nonlinearity
and electromagnetic fields in R

3:⎧⎪⎨⎪⎩
ε2sM([u]2s,A)(−�)sAu + V(x)u + φu

= k(x)|u|r−2u +
(
Iμ ∗ |u|2�s

)
|u|2�s−2u, x ∈ R

3,

(−�)tφ = u2, x ∈ R
3,

where ε > 0 is a positive parameter, 3/4 < s < 1, 0< t< 1, V is
an electric potential satisfying suitable assumptions, and 0 < k∗ ≤
k(x) ≤ k∗,Iμ(x) = |x|3−μwith 0 < μ < 3, 2�s = 3+μ

3−2s and2 < r < 2�s .
With the help of the concentration compactness principle and vari-
ational method, and together with some careful analytical skills, we
prove the existence and multiplicity of solutions for the above prob-
lem as ε → 0 in degenerate cases, that is the Kirchhoff term M can
vanish at zero.
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1. Introduction

In this paper, we intend to study the following degenerate fractional Schrödinger–
Kirchhoff–Poisson equations with upper critical nonlinearity and electromagnetic fields
in R3:{
ε2sM([u]2s,A)(−�)sAu + V(x)u + φu = k(x)|u|r−2u +

(
Iμ ∗ |u|2�s

)
|u|2�s−2u, x ∈ R3,

(−�)tφ = u2, x ∈ R3,
(1)

where ε > 0 is a positive parameter, 3/4 < s < 1, 0< t<1, Iμ(x) = |x|3−μ with 0 < μ <

3, 0 < k∗ ≤ k(x) ≤ k∗, 2�s = 3+μ
3−2s is the upper Sobolev critical exponent, 2 < r < 2�s , V is

an electric potential, (−�)sA and A are called the magnetic operator and magnetic poten-
tial, respectively. This problem belong to fractional Schrödinger–Poisson system due to the
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potential φ satisfying a nonlinear fractional Poisson equation in problem (1). According
to d’Avenia and Squassina [13], the fractional operator (−�)sA is defined by

(−�)sAu(x) := 2 lim
ε→0

∫
RN\Bε(x)

u(x)− ei(x−y)·A
(
x+y
2

)
u(y)

|x − y|N+2s dy, x ∈ R
N ,

and magnetic potential A is given by

[u]2s,A :=
∫∫

R2N

|u(x)− ei(x−y)·A
(
x+y
2

)
u(y)|2

|x − y|N+2s dx dy.

Throughout the paper, the electric potential V and Kirchhoff function M satisfy the
following assumptions:

(V) V(x) ∈ C(R3,R), V(0) = minx∈R3 V(x) = 0 and the set Vb = {x ∈ R3 : V(x) <
b} has finite Lebesgue measure, where b>0 is a positive constant.

(M) (M1) There exists σ ∈ (1, 2�s/2) satisfying σM(t) ≥ M(t)t for all t ≥ 0, where
M(t) = ∫ t

0 M(s) ds.
(M2) There existsm1 > 0 such thatM(t) ≥ m1tσ−1 for all t ∈ R+ andM(0) = 0.

Remark 1.1: The typical function that satisfies conditions (M1)-(M2) is given byM(t) =
a + b tσ−1 for t ∈ R

+
0 , where a ∈ R

+
0 , b ∈ R

+
0 and a+ b>0. In particular, whenM(t) ≥

d > 0 for some d and all t ≥ 0, this case is said to be non-degenerate, while it is called
degenerate ifM(0) = 0 andM(t) > 0 for t>0. However, in proving the compactness con-
dition, the two cases of degenerate and non-degenerate are completely different, and it’s
more complicated in a degenerate case. In this paper, we deal with the critical fractional
Schrödinger–Kirchhoff–Poisson equations with electromagnetic fields in degenerate cases.

Ourmotivation to study problem (1)mainly comes from the application of the fractional
magnetic operator.Wenote that the equationwith fractionalmagnetic operator often arises
as a model for various physical phenomena, in particular in the study of the infinitesimal
generators of Lévy stable diffusion processes [14]. Also, a lot of literature on nonlocal oper-
ators and their applications exists, and hencewe refer interested readers to [15,18,19,33,42].
In order to further research this kind of equation by variational methods, many scholars
have established the basic properties of fractional Sobolev spaces; readers are referred to
[34,35].

First, we make a quick overview of the literature on the magnetic Schrödinger equation
without Poisson term. For example, there are works on themagnetic Schrödinger equation

− (∇u − iA)2u + V(x)u = f (x, |u|)u, (2)

where the magnetic operator in Equation (2) is given by

−(∇u − iA)2u = −�u + 2iA(x) · ∇u + |A(x)|2u + iudivA(x).

Squassina and Volzone [38] state that, up to correcting the operator by the factor (1 − s), it
holds that (−�)sAu → −(∇u − iA)2u as s → 1. Thus, up to normalization, the nonlocal
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case can be seen as an approximation of the local one. Recently, many researchers have paid
attention to the equations with fractional magnetic operator. In particular, Mingqi et al.
[29] obtained some existence results of Schrödinger–Kirchhoff type equation involving
the magnetic operator

M([u]2s,A)(−�)sAu + V(x)u = f (x, |u|)u in R
N , (3)

where f satisfies the subcritical growth condition. For the critical growth case, the authors
in [10] first considered the following fractional Schrödinger equations:

ε2s(−�)sAεu + V(x)u = f (x, |u|)u + K(x)|u|2∗
α−2u in R

N . (4)

They obtained the existence of ground state solution uε by using variational methods. For
the non-degenerate case, Liang et al. [21] proved the existence andmultiplicity of solutions
for a class of Schrödinger–Kirchhoff type equation. Ambrosio [6] obtained the existence
and concentration results for some fractional Schrödinger equations in RN with magnetic
fields. As for other results, we refer to [7,8,23,24] and references therein.We draw the atten-
tion of the reader to the degenerate case involving themagnetic operator in Liang et al. [22]
and Mingqi et al. [29].

On the other hand, for the caseA ≡ 0 in problem (1), some researchers began to use var-
iousmethods to study this kind of problem. For example, using the perturbation approach,
Zhang et al. in [43] obtained the existence results for the fractional Schrödinger–Poisson
system with a general subcritical or critical nonlinearity. In [30], the authors proved that
the number of positive solutions for a class of doubly singularly perturbed fractional
Schrödinger–Poisson system via the Ljusternick–Schnirelmann category. Liu [27]was con-
cerned with the existence of multi-bump solutions for the fractional Schrödinger–Poisson
system by means of the Lyapunov–Schmidt reduction method. By using the non-Nehari
manifold approach, Chen and Tang [12] proved the existence of ground state solutions
for fractional Schrödinger–Poisson system. For more related results, we can cite the recent
works [1,4,5,16,17,25,36,37,39,40,46] and the references therein.

Once we turn our attention to the Schrödinger–Kirchhoff–Poisson equations with elec-
tromagnetic fields, we immediately see that the literature is relatively scarce. In this case, we
can cite the recent works [2,3,28]. Ambrosio [2] proved concentration results for a class of
fractional Schrödinger–Poisson type equation with magnetic field and subcritical growth.
For the critical growth case, Ambrosio [3] also obtained themultiplicity and concentration
of nontrivial solutions to the fractional Schrödinger–Poisson equation withmagnetic field.
However, to the best of our knowledge, semiclassical solutions to the degenerate fractional
Schrödinger–Kirchhoff–Poisson equations with critical nonlinearity and electromagnetic
fields (1) has not been considered until now.

Inspired by the previously mentioned works, our main objective is to study the crit-
ical fractional Schrödinger–Kirchhoff–Poisson equations with electromagnetic fields in
degenerate cases. For our prove, we use the concentration compactness principle and vari-
ational method. For this purpose, we will use some minimax arguments. Moreover, due to
the appearance of the critical term and degenerate nature of the Kirchhoff coefficient, the
Sobolev embedding does not possess the compactness. To this end, we need some technical
estimations.

We are now in a position to state our existence result as follows.
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Theorem 1.1: Assume that (V) and (M) hold. Then, for any κ > 0, there is Eκ > 0 such
that if 0 < ε < Eκ , then problem (1) has at least one solution uε. Moreover, uε → 0 in E as
ε → 0.

We also obtain the following existence results for problem (1).

Theorem 1.2: Under the assumptions of Theorem 1.1. Then, for any m ∈ N and κ > 0,
there is Emκ > 0 such that if 0 < ε < Emκ , then problem (1) has at least m pairs of solutions
uε,i, uε,−i, i = 1, 2, . . . ,m. Moreover, uε,i → 0 in E as ε → 0, i = 1, 2, . . . ,m.

The main feature of our paper is establishing some results for degenerate fractional
Schrödinger–Kirchhoff–Poisson equations (1) under the critical nonlinearity and elec-
tromagnetic fields. The lack of compactness can lead to a lot of difficulties, in order to
overcome the challenge, we use the concentration-compactness principles for fractional
Sobolev spaces from [20,32,44], and prove the (PS)c condition at special levels c. On the
other hand, we need to develop new techniques to construct sufficiently small minimax
levels.

The plan of this paper is the following: In Section 2, we give some basic definitions of
fractional Sobolev space and their properties. In Section 3, we show some compactness
lemmas of the functional associated to our problem. Section 4 deals with the existence and
multiplicity results for problem (1).

2. Preliminaries

In this section, we have collected some known results for the convenience and later use.
For any s ∈ (0, 1), fractional Sobolev space Hs

A(R
3,C) is defined by

Hs
A(R

3,C) = {
u ∈ L2(RN ,C) : [u]s,A < ∞}

and [u]s,A denotes the so-called Gagliardo semi-norm, that is

[u]s,A =
⎛⎝∫∫

R6

|u(x)− ei(x−y)·A
(
x+y
2

)
u(y)|2

|x − y|N+2s dx dy

⎞⎠1/2

and Hs
A(R

3,C) is endowed with the norm

‖u‖Hs
A(R

3,C) = (
[u]2s,A + ‖u‖2L2

) 1
2 .

Now, we give the following embedding theorem, see Lemma 3.5 in [13].

Proposition 2.1: The space Hs
A(R

3,C) is continuously embedded in Lϑ(R3,C) for all ϑ ∈
[2, 2∗

s ]. Furthermore, the space Hs
A(R

3,C) is continuously compactly embedded in Lϑ(K,C)
for all ϑ ∈ [2, 2∗

s ] and any compact set K ⊂ R3.

Next, we have the following diamagnetic inequality, its proof can be found in d’Avenia
and Squassina [13].
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Lemma 2.1: Let u ∈ Hs
A(R

3), then |u| ∈ Hs(R3). That is

‖|u|‖s ≤ ‖u‖s,A.
From Proposition 3.6 in [14], for all u ∈ Hs(R3), we have

[u]s = ‖(−�) s2 ‖L2(R3),

i.e. ∫∫
R6

|u(x)− u(y)|2
|x − y|3+2s dx dy =

∫
R3

|(−�) s2 u(x)|2 dx.
Moreover,∫∫

R6

(u(x)− u(y))(v(x)− v(y))
|x − y|3+2s dx dy =

∫
R3
(−�) s2 u(x) · (−�) s2 v(x) dx.

For problem (1), we will use the Banach space E defined by

E =
{
u ∈ Hs

A(R
3,C) :

∫
R3

V(x)|u|2 dx < ∞
}

with the norm

‖u‖E :=
(
[u]2s,A +

∫
R3

V(x)|u|2 dx
) 1

2
.

It follows from the assumption (V) that the embedding E ↪→ Hs
A(R

3,C) is continuous.
Moreover, the norm ‖ · ‖E is equivalent to the norm ‖ · ‖ε , where

‖u‖ε :=
(
[u]2s,A + ε−2s

∫
R3

V(x)|u|2 dx
) 1

2

for each ε > 0.
Obviously, for each θ ∈ [2, 2∗

s ], there is cθ > 0 such that

|u|θ ≤ cθ‖u‖E ≤ cθ‖u‖ε , (5)

where 0 < ε < 1. Hereafter, we shortly denote by ‖ · ‖ν the norm of Lebesgue space Lν(
)
with ν ≥ 1.

Now, we give the following Hardy–Littlewood–Sobolev inequality, see Lieb and Loss
[26, Theorem 4.3].

Lemma2.2: Assume that p, ι > 1 and 0 < μ < N,N ≥ 3with 1/p + (N − μ)/N + 1/ι =
2, f ∈ Lp(RN) and h ∈ Lι(RN). There exists a sharp constant C(p, ι,μ,N) independent of f,
h, such that ∫ ∫

R2N

f (x)h(y)
|x − y|N−μ dx dy ≤ C(p, ι,μ,N)‖f ‖Lp‖h‖Lι . (6)

Set p = ι = 2N/(N + μ), then

C(p, ι,μ,N) = C(N,μ) = π
N−μ
2

�
(
μ
2
)

�
(
N+μ
2

) {� (N2 )
�(N)

} μ
N

.
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If u = v = |w|q, Lemma 2.2 implies that∫
RN

(Iμ ∗ |w|q) |w|q dx

is well defined if w ∈ Lιq(RN) for some r>1 satisfying 2/r + (N − μ)/N = 2. Moreover,
in the upper critical case,∫

RN

(
Iμ ∗ |u|2�s

)
|u|2�s dx ≤ C(N,μ)‖u‖22

�
s

2∗
s

(7)

and the equality holds if and only if

u = C
(

l
l2 + |x − m|2

)N−2
2

, (8)

for some x0 ∈ RN , where C>0 and l>0, see [26]. Let

S = inf
u∈Ds(RN)\{0}

{∫∫
R2N

|u(x)− u(y)|2
|x − y|N+2s dx dy :

∫
RN

|u|2∗
s dx = 1

}
(9)

and

SH = inf
u∈Ds(RN)\{0}

{∫∫
R2N

|u(x)− u(y)|2
|x − y|N+2s dx dy :

∫
RN

(
Iμ ∗ |u|2�s

)
|u|2�s dx = 1

}
. (10)

By (9) and (7), SH is achieved if and only if u satisfies (8) and SH = S/C(N,μ)
1
p∗ , see

Mukherjee and Sreenadh [31].

3. Proof of (PS)c

In this section, in order to overcome the lack of compactness caused by the upper criti-
cal exponents, we intend to employ the second concentration-compactness principle, see
[20,32,44] for more details.

Now, let s, t ∈ (0, 1) such that 4s + 2t ≥ 3, we can see that

Hs(R3,R) ↪→ L
12

3+2t (R3,R). (11)

Then, by (11), we have∫
R3

u2v dx ≤ ‖u‖2
L

12
3+2t (R3)

‖v‖2∗
t

≤ C‖u‖2Hs(R3,R)‖v‖Dt,2(R3)

for u ∈ Hs(R3,R), where

‖v‖2Dt,2(R3) =
∫∫

R6

|u(x)− u(y)|2
|x − y|3+2t dx dy.

The Lax–Milgram Theorem implies that there exists a unique ψ t
|u| such that ψ t

|u| ∈
Dt,2(R3,R) such that

(−�)tψ t
|u| = |u|2 in R

3. (12)
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Therefore, we have

ψ t
|u|(x) = π− 3

2 2−2t�(3 − 2t)
�(t)

∫
R3

|u(y)|2
|x − y|3−2t dy, ∀ x ∈ R

3. (13)

Furthermore, (13) is convergent at infinity since |u|2 ∈ L
6

3+2t (R3,R).
Next, we collect some properties ofψ t

|u|, which will be used in this paper. The following
proposition can be proved by using similar arguments as [2,3].

Proposition 3.1: Assume that 4s + 2t ≥ 3 holds. Then for any u ∈ E, we have

(i) ψ t
|u| : H

s(R3,R) → Dt,2(R3,R) is continuous and maps bounded sets into bounded
sets;

(ii) if un ⇀ u in E, then ψ t
|un| ⇀ ψ t

|u| in Dt,2(R3,R);
(iii) ψ t

|αu| = α2ψ t
|u| for any α ∈ R and ψ t

|u(·+y)|(x) = ψ t
|u|(x + y);

(iv) ψ t
|u| ≥ 0 for all u ∈ E. Moreover

‖ψ t
|u|‖Dt,2(R3,R) ≤ C‖u‖2

L
12

3+2t (R3)
≤ C‖u‖2ε

and ∫
R3
ψ t

|u||u|2 dx ≤ C‖u‖4
L

12
3+2t (R3)

≤ C‖u‖4ε .

Now, we will use the following equivalent form

M
(
[u]2s,A

)
(−�)sAu + ε−2sV(x)u + ε−2sψ t

|u|u = ε−2sk(x)|u|r−2u + ε−2s|u|2∗
s −2u, (14)

for x ∈ R3. Now, the energy functional Jε : E → R associated to problem (1) is defined by

Jε(u) := 1
2
M (

[u]2s,A
)+ ε−2s

2

∫
R3

V(x)|u|2 dx + ε−2s

4

∫
R3
ψ t

|u||u|2 dx

− ε−2s

r

∫
R3

k(x)|u|r dx − ε−2s

22�s

∫
R3

(
Iμ ∗ |u|2�s

)
|u|2�s dx. (15)

Clearly, Jε is of class C1(E,R) (see [41]). Moreover, the Fréchet derivative of Jε is given by

〈J′ε(u), v〉

= M
(
[u]2s,A

)
R

∫∫
R6

(u(x)− ei(x−y)·A
(
x+y
2

)
u(y))(v(x)− ei(x−y)·A

(
x+y
2

)
v(y))

|x − y|3+2s dx dy

+ ε−2sR

∫
R3

V(x)uv̄ dx + ε−2sR

∫
R3
ψ t

|u|uv̄ dx − ε−2sR

∫
R3

k(x)|u|r−2uv̄ dx

− ε−2sR

∫
R3

(
Iμ ∗ |u|2�s

)
|u|2�s−2uv̄ dx, ∀ u, v ∈ E. (16)

Lemma 3.1: Let (V) and (M) hold. Then for any 0 < ε < 1, (PS)c sequence {un}n for Jε is
bounded in E and c ≥ 0.
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Proof: Let sequence {un}n be a (PS)c sequence for Jε , that is Jε(un) → c and J′ε(un) → 0
in E′. It follows from (V) and (M) that

c + o(1)‖un‖ε = Jε(un)− 1
r
〈J′ε(un), un〉 = 1

2
M (

[un]2s,A
)− 1

p
M
(
[un]2s,A

)
[un]2s,A

+
(
1
2

− 1
r

)
ε−2s

∫
R3

V(x)|un|2 dx +
(
1
4

− 1
p

)
ε−2s

∫
R3
ψ t

|un||un|2 dx

+
(
1
r

− 1

22�s

)
ε−2s

∫
R3

(
Iμ ∗ |un|2

�
s
)

|un|2
�
s dx

≥
(

1
2σ

− 1
r

)
M
(
[un]2s,A

)
[un]2s,A +

(
1
2

− 1
r

)
ε−2s

∫
R3

V(x)|un|2 dx

≥
(

1
2σ

− 1
r

)
m1[un]2σs,A +

(
1
2

− 1
r

)
ε−2s

∫
R3

V(x)|un|2 dx. (17)

This fact together with 2 < r < 2∗
s implies that {un}n is bounded in E. Moreover, we can

obtain c ≥ 0 by passing to the limit in (17). �

Lemma 3.2: Under the assumptions of Lemma 3.1. Then for any 0 < ε < 1, the energy
functional Jε satisfies (PS)c condition, for all c ∈ (0, α0ετ ), where

α0 := min

⎧⎨⎩
(
1
r

− 1

22�s

) (
m1SσH

) 2�s
2�s−σ ,

(
1
2σ

− 1
r

)(
m

2�s
2σ
1 Ĉμ

−1
S
2�s
2

) 2σ
2�s−2σ

⎫⎬⎭ (18)

and

τ := max

{
2s2�s

2�s − σ
,

4σ s

2�s − 2σ

}
. (19)

Proof: If infn∈N ‖un‖ε = 0, then there exists a subsequence of {un} such that un → 0 in E
as n → ∞. Thus, we assume that infn∈N ‖un‖ε = d1 > 0 in the following sequel.

From Lemma 3.1, we know that {un}n is bounded in E. Thus, by diamagnetic inequality,
{|un|}n is bounded in Hs(R3). Furthermore, we have un → u a.e. in R3 and un ⇀ u in E.
Let

|(−�) s2 un|2 ⇀ ω, |un|2∗
s ⇀ ξ

and (
Iμ ∗ |un|2

�
s
)

|un|2
�
s ⇀ ν weakly in the sense of measures,

where ω, ξ and ν are bounded nonnegative measures on R3. Then, by using the fractional
version of concentration compactness principle in the fractional Sobolev space (see [20]),
up to a subsequence, there exists a (at most countable) set of distinct points {xi}i∈I ⊂ R3

and a family of positive numbers {νi}i∈I such that

ν =
(
Iμ ∗ |u|2�s

)
|u|2�s +

∑
i∈I
νiδxi ,

∑
i∈I
ν

3
3+μ
i < ∞, (20)
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ξ ≥ |u|2∗
s + C

− 3
3+μ

μ

∑
i∈I
ν

3
3+μ
i δxi , ξi ≥ C

− 3
3+μ

μ ν
3

3+μ
i (21)

and

ω ≥ |(−�) s2 u|2 + SH
∑
i∈I
ν

1
2�s
i δxi , ωi ≥ SHν

1
2�s
i , (22)

where δxi is the Dirac-mass of mass 1 concentrated at x ∈ R3.
Now, let i ∈ I, we claim that either νi = 0 or

νi ≥ (
m1SσH

) 2�s
2�s−σ ε

2s2�s
2�s−σ . (23)

In order to prove (23), we takeφ ∈ C∞
0 (R

3) satisfying 0 ≤ φ ≤ 1;φ ≡ 1 inB(xi, ε),φ(x) =
0 in R3 \ B(xi, 2ε). For any ε > 0, define φε := φ( x−xi

ε
), where i ∈ I. Clearly, {φεun} is

bounded in E and 〈J′ε(un), unφε)〉 → 0 as n → ∞. Hence

M
(‖un‖2s,A)

(∫∫
R6

|un(x)− ei(x−y)·A( x+y
2 )un(y)|2φε(y)

|x − y|3+2s dx dy + ε−2s
∫

R3
V(x)|un|2φε(x) dx

)

= −R

{
M
(‖un‖2s,A) ∫∫

R6

(un(x)− ei(x−y)·A( x+y
2 )un(y))un(x)(φε(x)− φε(y))
|x − y|3+2s dx dy

}

+ ε−2s
∫

R3

(
Iμ ∗ |un|2

�
s
)

|un|2
�
sφε dx + ε−2s

∫
R3

k(x)|un|rφε dx + on(1). (24)

We deduce from (M2) and diamagnetic inequality that

M
(‖un‖2s,A)

(∫∫
R6

|un(x)− ei(x−y)·A( x+y
2 )un(y)|2φε(y)

|x − y|3+2s dx dy +
∫

R3
V(x)|un|2φε(x) dx

)

≥ m1

(∫∫
R6

|un(x)− ei(x−y)·A( x+y
2 )un(y)|2φε(y)

|x − y|3+2s dx dy +
∫

R3
V(x)|un|2φε(x) dx

)σ

≥ m1

(∫∫
R6

∣∣|un(x)| − |un(y)|
∣∣2 φε(y)

|x − y|3+2s dx dy

)σ
. (25)

Note that

lim
ε→0

lim
n→∞

∫∫
R6

∣∣|un(x)| − |un(y)|
∣∣2 φε(y)

|x − y|3+2s dx dy = lim
ε→0

∫
R3
φεdω = ωi (26)

and

lim
ε→0

lim
n→∞

∫
R3

(
Iμ ∗ |un|2

�
s
)

|un|2
�
sφε dx = lim

ε→0

∫
R3
φε dν = νi. (27)

From the Hölder inequality, we have∣∣∣∣∣∣R
⎧⎨⎩M (‖un‖2s,A) ∫∫

R6

(un(x)− ei(x−y)·A
(
x+y
2

)
un(y))un(x)(φε(x)− φε(y))

|x − y|3+2s dx dy

⎫⎬⎭
∣∣∣∣∣∣
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≤ C
∫∫

R6

|un(x)− ei(x−y)·A
(
x+y
2

)
un(y)| · |φε(x)− φε(y)| · |un(x)|
|x − y|3+2s dx dy

≤ C
(∫∫

R6

|un(x)|2|φε(x)− φε(y)|2
|x − y|3+2s dx dy

)1/2

. (28)

As the proof of Lemma 3.4 in Zhang et al. [45], we get

lim
ε→0

lim
n→∞

∫∫
R6

|un(x)|2|φε(x)− φε(y)|2
|x − y|3+2s dx dy = 0. (29)

Since φε has compact support, by the definition of φε(x), we have

lim
ε→0

lim
n→∞

∫
R3

k(x)|un|rφε dx = 0. (30)

Combining (25)–(30), we get that

ε−2sνi ≥ m1ω
σ
i .

It follows from (22) that νi = 0 or

νi ≥ (
m1SσH

) 2�s
2�s−σ ε

2s2�s
2�s−σ .

Next, we prove that νi = 0, for all i ∈ I and ν∞ = 0.
Indeed, if not, then there exists a i ∈ I such that (23) holds. Similar to (17), we deduce

c = lim
ε→0

lim
n→∞

(
Jε(un)− 1

r
〈J′ε(un), un〉

)

≥
(
1
r

− 1

22�s

)
ε−2s

∫
R3

(
Iμ ∗ |u|2�s

)
|u|2�s dx

≥
(
1
r

− 1

22�s

)
ε−2s

∫
R3

(
Iμ ∗ |u|2�s

)
|u|2�sφε dx

≥
(
1
p

− 1

22�s

)
ε−2sνi ≥

(
1
r

− 1

22�s

) (
m1SσH

) 2�s
2�s−σ ε

2sσ
2�s−σ . (31)

For the concentration at infinity, letting R>0, we take a cut off function φR ∈ C∞(R3)

such that

φR(x) =
{
0 |x| < R,
1 |x| > R + 1.

Define

ω∞ = lim
R→∞ lim sup

n→∞

∫
{x∈R3:|x|>R}

|(−�) s2 un|2 dx,
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ξ∞ = lim
R→∞ lim sup

n→∞

∫
{x∈R3:|x|>R}

|un|2∗
s dx

and

ν∞ = lim
R→∞ lim sup

n→∞

∫
{x∈R3:|x|>R}

(
Iμ ∗ |un|2

�
s
)

|un|2
�
s dx.

By using the fractional version of concentration compactness principle (see [20]), for the
energy at infinity, we have

lim sup
n→∞

∫
R3

(
Iμ ∗ |un|2

�
s
)

|un|2
�
s dx =

∫
R3

dν + ν∞, (32)

lim sup
n→∞

∫
R3

|(−�) s2 un|2 dx =
∫

R3
dω + ω∞, (33)

lim sup
n→∞

∫
R3

|un|2∗
s dx =

∫
R3

dξ + ξ∞, (34)

ξ∞ ≤ (
S−1ω∞

) 2∗s
2 , (35)

ν∞ ≤ Cμ
(∫

R3
dξ + ξ∞

) 3+μ
6
ξ

3+μ
6∞ (36)

and

ν∞ ≤ S−2�s
H

(∫
R3

dω + ω∞
) 2�s

2
ω

2�s
2∞ . (37)

By using the Hardy–Littlewood–Sobolev and Hölder’s inequality, we get

ν∞ = lim
R→∞ lim

n→∞

∫
R3

(
Iμ ∗ |un|2

�
s
)

|un|2
�
sφR(y) dx

≤ Cμ lim
R→∞ lim

n→∞ |un|2
�
s
2∗
s

(∫
R3

|un(x)|2∗
s φR(y) dx

) 2�s
2∗s

≤ Ĉμξ
2�s
2∗s∞ . (38)

Since {φRun} is also bounded in E. Hence, 〈J′ε(un), unφR)〉 → 0 as n → ∞, which yields
that

M
(‖un‖2s,A)

(∫∫
R6

|un(x)− ei(x−y)·A( x+y
2 )un(y)|2φR(y)

|x − y|3+2s dx dy + ε−2s
∫

R3
V(x)|un|2φR(x) dx

)

= −R

{
M
(‖un‖2s,A) ∫∫

R6

(un(x)− ei(x−y)·A( x+y
2 )un(y))un(x)(φR(x)− φR(y))
|x − y|3+2s dx dy

}
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+ ε−2s
∫

R3

(
Iμ ∗ |un|2

�
s
)

|un|2
�
sφR dx + ε−2s

∫
R3

k(x)|un|rφR dx + on(1). (39)

It’s easy to get

lim sup
R→∞

lim sup
n→∞

∫∫
R6

||un(x)| − |un(y)||2φR(y)
|x − y|3+2s dx dy = ω∞

and∣∣∣∣∣R
{
M
(‖un‖2s,A) ∫∫

R6

(un(x)− ei(x−y)·A( x+y
2 )un(y))un(x)(φR(x)− φR(y))
|x − y|3+2s dx dy

}∣∣∣∣∣
≤ C

(∫∫
R6

|un(x)|2|φR(x)− φR(y)|2
|x − y|3+2s dx dy

)1/2

.

Furthermore

lim sup
R→∞

lim sup
n→∞

∫∫
R6

|un(x)|2|φR(x)− φR(y)|2
|x − y|3+2s dx dy

= lim sup
R→∞

lim sup
n→∞

∫∫
R6

|un(x)|2|(1 − φR(x))− (1 − φR(y))|2
|x − y|3+2s dx dy.

From the proof of Lemma 3.4 in Zhang et al. [45], we have

lim sup
R→∞

lim sup
n→∞

∫∫
R6

|un(x)|2|(1 − φR(x))− (1 − φR(y))|2
|x − y|3+2s dx dy = 0.

It follows from (M2) that

M
(‖un‖2s,A)

⎛⎝∫∫
R6

|un(x)− ei(x−y)·A
(
x+y
2

)
un(y)|2φR(y)

|x − y|3+2s dx dy +
∫

R3
|un|2φR(x) dx

⎞⎠
≥ m1

⎛⎝∫∫
R6

|un(x)− ei(x−y)·A
(
x+y
2

)
un(y)|2φR(y)

|x − y|3+2s dx dy +
∫

R3
|un|2φR(x) dx

⎞⎠σ

≥ m1

(∫∫
R6

∣∣|un(x)| − |un(y)|
∣∣2 φR(y)

|x − y|3+2s dx dy

)σ
= m1ω

σ
∞.

By the definition of φR, we have

lim
R→∞ lim

n→∞

∫
R3

k(x)|un|rφR dx ≤ k∗ lim
R→∞ lim

n→∞

∫
R3

|un|rφR dx = 0.

Therefore, by (39) together with (38), we can obtain that

ε−2sĈμξ
2�s
2∗s∞ ≥ ε−2sν∞ ≥ m1ω

σ
∞.
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It follows from (35) that ω∞ = 0 or

ω∞ ≥
(
m1Ĉμ

−1
S
2�s
2

) 2
2�s−2σ

ε

4s
2�s−2σ . (40)

If (40) holds, then we have

c = lim
R→∞ lim

n→∞

(
Jε(un)− 1

r
〈J′ε(un), un)〉

)

≥
(

1
2σ

− 1
r

)
m1

(∫∫
R6

∣∣|un(x)| − |un(y)|
∣∣2 φR(y)

|x − y|3+2s dx dy

)σ

≥
(

1
2σ

− 1
r

)
m1ω

σ
∞ ≥

(
1
2σ

− 1
r

)(
m

2�s
2σ
1 Ĉμ

−1
S
2�s
2

) 2σ
2�s−2σ

ε

4σ s
2�s−2σ . (41)

By the selection of α0 and τ , for any c < α0ε
τ , this gives a contradiction. Thus, ω∞ = 0.

By (37), we know that

νi = 0 for all i ∈ I and ν∞ = 0.

Thus ∫
R3

(
Iμ ∗ |un|2

�
s
)

|un|2
�
s dx →

∫
R3

(
Iμ ∗ |u|2�s

)
|u|2�s dx as n → ∞. (42)

By the Brézis–Lieb Lemma [11], we get∫
R3

(
Iμ ∗ |un − u|2�s

)
|un − u|2�s dx → 0 as n → ∞.

Finally, with the aid of the weak lower semicontinuity of the norm, condition (m1) and the
Brézis–Lieb Lemma [11], we can obtain that

o(1)‖un‖ = 〈J′ε(un), un〉 = M
(
[un]2s,A

)
[un]2s,A + ε−2s

∫
R3

V(x)|un|2 dx

+ ε−2s
∫

R3
ψ t

|un||un|2 dx − ε−2s
∫

R3

(
Iμ ∗ |un|2

�
s
)

|un|2
�
s dx

− ε−2s
∫

R3
k(x)|un|r dx

≥ m0
(
[un]2s,A − [u]2s,A

)+ ε−2s
∫

R3
V(x)(|un|2 − |u|2) dx + M

(
[u]2s,A

)
[u]2s,A

+ ε−2s
∫

R3
V(x)|u|2 dx + ε−2s

∫
R3
ψ t

|u||u|2 dx

− ε−2s
∫

R3

(
Iμ ∗ |u|2�s

)
|u|2�s dx − ε−2s

∫
R3

k(x)|u|r dx

≥ min{m0, 1}‖un − u‖2ε + o(1)‖u‖ε .
Here we use the fact that J′ε(u) = 0. This fact implies that {un}n strongly converges to u in
E. Hence the proof is complete. �
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4. Proof of main results

In order to prove Theorems 1.1 and 1.2, we first prove that functional Jε(u) satisfies the
following mountain pass geometry.

Lemma 4.1: Let (V) and (M) hold. Then for any 0 < ε < 1,

(C1) there exist βε , ρε > 0 such that Jε(u) > 0 if u ∈ Bρε \ {0} and Jε(u) ≥ βε if u ∈
∂Bρε , where Bρε = {u ∈ E : ‖u‖ε ≤ ρε};

(C2) For any finite dimensional subspace H ⊂ E,

Jε(u) → −∞ as u ∈ H, ‖u‖ε → ∞.

Proof: From the Hardy–Littlewood–Sobolev inequality and the Sobolev embedding
theorem, we have

Jε(u) ≥ min
{
m1

2σ
,
1
2

}
‖u‖2ε − ε−2sk∗|u|rr − ε−2s

∫
R3

(
Iμ ∗ |u|2�s

)
|u|2�s dx

≥ min
{
m1

2σ
,
1
2

}
‖u‖2ε − ε−2sC‖u‖rε − ε−2sCμC‖u‖22�sε .

Since r>2 and 22�s > 2, we can obtain the conclusion (C1) in Lemma 4.1.
On the other hand, from (M2), we have that

M(t) ≤ M(1)tσ for all t ≥ 1. (43)

Let v0 ∈ C∞
0 (R

3,C) with ‖v0‖ε = 1. Thus, we have

Jε(tv0) ≤ M(1)t2σ + 1
2
t2 + ε−2s

4
Ct4 − ε−2st22

�
s

∫
R3

(
Iμ ∗ |v0|2

�
s
)

|v0|2
�
s dx

− ε−2sk∗tr|v0|rr.

Note that all norms in a finite-dimensional space H are equivalent and max{4, 2σ } < 22�s ,
we can also obtain the conclusion (C2) in Lemma 4.1. �

What we need to point out is that Jε(u) does not satisfy (PS)c condition for any c > 0.
Thus, we need to construct a special finite-dimensional subspace by which we construct
sufficiently small minimax levels.

On the one hand, from Lemma 3.5 in [10], we know that

inf
{∫∫

R6

|φ(x)− φ(y)|2
|x − y|3+2s dx dy : φ ∈ C∞

0 (R
3), |φ|r = 1

}
= 0.

Thus, for any 1 > δ > 0 one can choose φδ ∈ C∞
0 (R

3) with |φδ|r = 1 and suppφδ ⊂
Brδ (0) so that ∫∫

R6

|φδ(x)− φδ(y)|2
|x − y|3+2s dx dy ≤ Cδ

6−(3−2s)r
r .
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Let

qδ(x) = eiA(0)xφδ(x) (44)

and

qε,δ(x) = qδ(ε−
τ+2s
3 x), (45)

where τ is defined by (19).
On the other hand, since 22�s > σ , thus, there exists a finite number t0 ∈ [0,+∞) such

that

max
t≥0

Iε(tqδ) ≤ C0

2
t2σ0

⎛⎝∫∫
R6

|qδ(x)− ei(x−y)·A
(
εx+εy

2

)
qδ(y)|2

|x − y|3+2s dx dy

⎞⎠2σ

+ t20
2

∫
R3

V (εx) |qδ|2 dx + t40
4

∫
R3
ψ

t0
|qδ |||qδ|2 dx − k∗

∫
R3

|qδ|r dx

:= Iε(t0qδ),

where

Iε(u) := C0

2

⎛⎝∫∫
R6

|u(x)− ei(x−y)·A
(
εx+εy

2

)
u(y)|2

|x − y|3+2s dx dy

⎞⎠2σ

+ 1
2

∫
R3

V (εx) |u|2 dx

+ 1
4

∫
R3
ψ t

|u|||u|2 dx − k∗
∫

R3
|u|r dx − 1

22�s

∫
R3

(
Iμ ∗ |u|2�s

)
|u|2�s dx.

Therefore, for any t>0, we get

Jε(tqε,δ) ≤ C0

2
t2σ
(∫∫

R6

|qε,δ(x)− ei(x−y)·A( x+y
2 )qε,δ(y)|2

|x − y|3+2s dx dy

)2σ

+ t2

2
ε−2s

∫
R3

V(x)|qε,δ|2 dx + t4

4
ε−2s

∫
R3

|ψ t
|qε,δ |||qε,δ|2 dx

− trk∗ε−2s
∫

R3
|qε,δ|r dx

≤ ετ

⎡⎢⎣C0

2
t2σ
⎛⎝∫∫

R6

|qδ(x)− ei(x−y)·A
(
εx+εy

2

)
qδ(y)|2

|x − y|3+2s dx dy

⎞⎠2σ

+ t2

2

∫
R3

V (εx) |qδ|2 dx + t4

4
ε2t
∫

R3
|ψ t

|qδ |||qδ|2 dx − trk∗
∫

R3
|qδ|r dx

]
≤ ετ Iε(t0qδ).

Let ψδ(x) = eiA(0)xφδ(x), where φζ (x) is as defined above. From Lemma 3.6 in [10], we
have the following lemma.
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Lemma 4.2: For any δ > 0 there exists ε0 = ε0(δ) > 0 such that

∫∫
R6

|qδ(x)− ei(x−y)·A
(
εx+εy

2

)
qδ(y)|2

|x − y|3+2s dx dy ≤ Cδ
6−(3−2s)r

r + 1
1 − s

δ2s + 4
s
δ2s

for all 0 < ε < ε0 and some constant C>0 depending only on [φ]s,0.

On the one hand, since V(0) = 0 and note that suppφδ ⊂ Brδ (0), there is ε∗ > 0 such
that

V (εx) ≤ δ

|φδ|22
for all |x| ≤ rδ and 0 < ε < ε∗.

This fact together with Lemma 4.2 implies that

max
t≥0

Jε(tqδ) ≤ N (δ), (46)

where

N (δ) := C0

2
t2σ0

(
Cδ

6−(3−2s)r
r + 1

1 − s
δ2s + 4

s
δ2s
)2σ

+ t20
2
δ

+ C
(
Cδ

6−(3−2s)r
r + 1

1 − s
δ2s + 4

s
δ2s + δ

)2
. (47)

Thus we have the following result.

Lemma 4.3: Let (V) and (M) hold. Then for any κ > 0 there exists Eκ > 0 such that for
each 0 < ε < Eκ , there is êε ∈ E with ‖̂eε‖ > �ε, Jε(̂eε) ≤ 0 and

max
t∈[0,1]

Jε(t̂eε) ≤ κετ . (48)

Proof: Let δ > 0 satisfy N (δ) ≤ κ . Set Eκ = min{ε0, ε∗} and t̂ε > 0 be such that
t̂ε‖qε,δ‖ε > �ε and Jε(tqε,δ) ≤ 0 for all t ≥ t̂ε . Choose êε = t̂εqε,δ . Then by (46), we can
obtain the conclusion of Lemma 4.3 holds. �

In order to get the multiplicity results of problem (1), one can choosem∗ ∈ N functions
φiδ ∈ C∞

0 (R
3) such that suppφiδ ∩ suppφkδ = ∅, i �= k, |φiδ|s = 1 and∫∫

R6

|φiδ(x)− φiδ(y)|2
|x − y|3+2s dx dy ≤ Cδ

6−(3−2s)r
r .

Let rm
∗

δ > 0 be such that suppφiδ ⊂ Birζ (0) for i = 1, 2, . . . ,m∗. Set

qiδ(x) = eiA(0)xφiδ(x) (49)

and

qiε,δ(x) = qiδ(ε
− τ+2s

3 x). (50)
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Denote

Fm
∗

εδ = span{q1ε,δ , q2ε,δ , . . . , qm
∗

ε,δ }.
Let u = ∑m∗

i=1 ciq
i
ε,δ ∈ Fm

∗
εδ . Then there exists constant C>0 such that

Jε(u) ≤ C
m∗∑
i=1

Jε(ciqiε,δ).

As discussed above, we have

Jε(ciqiε,δ) ≤ ετ Iε(|ci|qiδ).

As before, we can obtain the following estimate:

max
u∈Fm∗

εδ

Jε(u) ≤ Cm∗N (δ)ετ (51)

for all δ small enough and some constant C>0.
From (51), we have the following lemma.

Lemma 4.4: Let (V) and (M) hold. Then, for any m∗ ∈ N and κ > 0 there exists Em∗κ > 0
such that for each 0 < ε < Em∗κ , there exists an m∗-dimensional subspace Fεm∗ satisfying

max
u∈Fm∗

εδ

Jε(u) ≤ κετ .

Now, we began to prove our main results.
Proof of Theorem1.1. For any 0 < κ < α0, we choose Eκ > 0 satisfies 0 < ε < Eκ , and

define the minimax value

cε := inf
γ∈ϒε

max
t∈[0,1]

Jε(t̂eε),

where

ϒε := {γ ∈ C([0, 1],E) : γ (0) = 0 and γ (1) = êε}.
By Lemma 4.1, we have αε ≤ cε ≤ κετ . Lemma 3.2 implies that Jε satisfies the (PS)cε con-
dition. Thus, using the mountain pass theorem, there is uε ∈ E such that J′ε(uε) = 0 and
Jε(uε) = cε , that is uε is a nontrivial solution of problem (11).

On the other hand, by (12), we have

κετ ≥ Jε(uε) = Jε(uε)− 1
r
J′ε(uε)uε

≥
(

1
2σ

− 1
r

)
m1[uε]2σs,A +

(
1
2

− 1
r

)
ε−2s

∫
R3

V(x)|uε|2 dx.

This fact implies that uε → 0 in E as ε → 0. This completes the proof of Theorem 1.1.

Proof of Theorem 1.2.Denote the set of all symmetric (in the sense that −Z = Z) and
closed subsets of E by �, for each Z ∈ �. Denote by gen(Z) the Krasnoselski genus, and
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define

j(Z) := min
ι∈�m∗

gen(ι(Z) ∩ ∂B�ε ),

where�m∗ is the set of all odd homeomorphisms ι ∈ C(E,E) and �ε is given by Lemma 4.1.
Then j is a version of Benci’s pseudoindex [9]. Let

cεi := inf
j(Z)≥i

sup
u∈Z

Jε(u), 1 ≤ i ≤ m∗.

Since Jε(u) ≥ αε for all u ∈ ∂B+
�ε

and since j(Fεm∗) = dim Fεm∗ = m∗, we obtain

αε ≤ cε1 ≤ · · · ≤ cεm∗ ≤ sup
u∈Hεm∗

Jε(u) ≤ κετ .

Thus, Lemma 3.2 implies that Jε satisfies the (PS)cε condition for any c < α0ε
τ . By using

the mountain pass theorem, we know that cεi are critical valves and Jε has at leastm∗ pairs
of nontrivial critical points satisfying

αε ≤ Jε(uε) ≤ κετ .

Hence, problem (1) has at least m∗ pairs of solutions. Moreover, we also have uε,i → 0 in
E as ε → 0, i = 1, 2, . . . ,m.
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