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Abstract. We consider a Neumann boundary value problem driven by
the anisotropic (p, q)-Laplacian plus a parametric potential term. The re-

action is “superlinear”. We prove a global (with respect to the parameter)

multiplicity result for positive solutions. Also, we show the existence of
a minimal positive solution and finally, we produce a nodal solution.

1. Introduction

Let Ω ⊆ RN be a bounded domain with C2-boundary ∂Ω. In this paper, we

study the following parametric anisotropic Neumann (p, q)-equation:

(Pλ)

−∆p(z)u−∆q(z)u+ λ|u|p(z)−2u = f(z, u) in Ω,
∂u

∂n
= 0 on ∂Ω, λ ∈ R.
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Given r ∈ C(Ω) with 1 < min
Ω
r, we denote by ∆r(z) the anisotropic r-Laplace

differential operator defined by

∆r(z)u = div
(
|Du|r(z)−2Du

)
for all u ∈W 1,r(z)(Ω).

In contrast to the isotropic r-Laplacian (that is, if r( · ) is constant), the

anisotropic one is not homogeneous and this is a source of difficulties in the

study of anisotropic problems. Equation (Pλ) is driven by the sum of two such

operators. So, even when the exponents are constant functions (isotropic oper-

ators), the differential operator of the problem is not homogeneous. There is

also a parametric potential term u 7→ λ|u|p(z)−2u with λ ∈ R being the param-

eter. Note that λ need not be positive and so the differential operator is not

in general coercive. In the reaction (right-hand side of problem (Pλ)), we have

a Carathéodory function f(z, x) (that is, for all x ∈ R the mapping z 7→ f(z, x)

is measurable and for almost all z ∈ Ω, the function x 7→ f(z, x) is continuous),

which is (p+ − 1)-superlinear as x → ±∞
(
here, p+ = max

Ω
p for p ∈ C0,1(Ω)

)
.

However, we do not use the Ambrosetti–Rabinowitz condition (the AR-condition

for short), which is common in the literature when dealing with “superlinear”

problems. Our condition on f(z, · ) is less restrictive and incorporates in our

framework, also superlinear nonlinearities with “slower” growth near ±∞.

Our aim is to study the changes in the set of positive solutions as the pa-

rameter λ ∈ R moves on the real line. We prove a global multiplicity result

(a bifurcation-type result for large values of the parameter). More precisely, we

show the existence of a critical parameter value λ∗ > −∞ such that

• for all λ > λ∗, problem (Pλ) has at least two positive smooth solutions;

• for λ = λ∗, problem (Pλ) has at least one positive smooth solution;

• for λ ∈ (0, λ∗), problem (Pλ) has no positive solution.

We also establish that for all λ ∈ [λ∗,∞), problem (Pλ) has a smallest posi-

tive solution. Finally, the extremal constant sign solutions are used to produce

a nodal (sign-changing) solution.

Analogous bifurcation type results describing the changes in the set of posi-

tive solutions for anisotropic Neumann problems were proved by Fan and Deng [4]

and Deng and Wang [1]. They consider problems driven by the p(z)-Laplacian

and impose restrictive positivity and monotonicity conditions on the reaction

f(z, · ) and, in addition, they employ the AR-condition to express the superlin-

earity of the reaction. We also mention the recent isotropic work of Papageorgiou

and Zhang [16] with a parametric boundary condition. Finally, further existence

and multiplicity results can be found in [5], [6], [9], [10] and the references therein.
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2. Mathematical background and hypotheses

The analysis of problem (Pλ) requires the use of function spaces with variable

exponents. A comprehensive presentation of the theory of these spaces can be

found in the book of Diening, Harjulehto, Hästo and Ruzička [2]. We also refer

to the monograph of Rădulescu and Repovš [17] for the basic variational and

topological methods used in the treatment of problems with variable exponent.

Let M(Ω) be the vector space of all measurable functions u : Ω → R. As

usual, we identify two such functions which differ only on a Lebesgue-null subset

of Ω. Given r ∈ C(Ω), we define r− = min
Ω
r and r+ = maxΩ r.

Consider the set E1 = {r ∈ C(Ω) : 1 < r−}. Then, for r ∈ E1, we define the

variable exponent Lebesgue space Lr(z)(Ω) as follows Lr(z)(Ω) = {u ∈ M(Ω) :

ρr(u) <∞}, where ρr( · ) is the modular function defined by

ρr(u) =

∫
Ω

|u|r(z) dz.

We equip the space Lr(z)(Ω) with the so called “Luxemburg norm” defined by

‖u‖r(z) = inf

{
ϑ > 0 : ρr

(
u

ϑ

)
≤ 1

}
.

Then Lr(z)(Ω) becomes a Banach space which is separable and reflexive (in fact,

uniformly convex). For r ∈ E1, we define the conjugate variable exponent r′( · )
corresponding to r( · ) by

r′(z) =
r(z)

r(z)− 1
for all z ∈ Ω.

Evidently, r′ ∈ E1 and 1/r(z) + 1/r′(z) = 1 for all z ∈ Ω. We know that

Lr(z)(Ω)∗ = Lr
′(z)(Ω) and the following Hölder’s inequality is true∫

Ω

|uv| dz ≤
(

1

r−
+

1

r′−

)
‖u‖r(z)‖v‖r′(z)

for all u ∈ Lr(z)(Ω) and all v ∈ Lr′(z)(Ω).

Having the variable exponent Lebesgue spaces, we can define the correspond-

ing variable exponent Sobolev spaces. So, if r ∈ E1, then we define

W 1,r(z)(Ω) =
{
u ∈ Lr(z)(Ω) : |Du| ∈ Lr(z)(Ω)

}
,

with Du being the weak gradient of u( · ). We equip this space with the following

norm

‖u‖1,r(z) = ‖u‖r(z) + ‖Du‖r(z) for all u ∈W 1,r(z)(Ω)

with ‖Du‖r(z) = ‖|Du|‖r(z). It follows that W 1,r(z)(Ω) is a Banach space which

is separable and reflexive (in fact, uniformly convex).
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For r ∈ E1 we introduce the corresponding critical Sobolev variable exponent

r∗( · ) defined by

r∗(z) =


Nr(z)

N − r(z)
if r(z) < N,

+∞ if N ≤ r(z),
for all z ∈ Ω.

Suppose that r ∈ C0,1(Ω) ∩ E1 and τ ∈ C(Ω) with 1 ≤ τ−. We have the

following embeddings (anisotropic Sobolev embedding theorem).

Proposition 2.1.

(a) W 1,r(z)(Ω) ↪→ Lτ(z)(Ω) continuously if τ(z) ≤ r∗(z) for all z ∈ Ω.

(b) W 1,r(z)(Ω) ↪→ Lτ(z)(Ω) compactly if τ(z) < r∗(z) for all z ∈ Ω.

If u ∈W 1,r(z)(Ω), then we write ρr(Du) = ρr(|Du|). There is a close relation

between the norm ‖ · ‖r(z) and the modular function ρr( · ).

Proposition 2.2. If r ∈ E1 and {un, u}n∈N ⊆ Lr(z)(Ω), then:

(a) ‖u‖r(z) = ϑ if and only if ρr(u/ϑ) = 1.

(b) ‖u‖r(z) < 1 (resp. = 1, > 1) if and only If ρr(u) < 1 (resp. = 1, > 1).

(c) If ‖u‖r(z) < 1 then ‖u‖r+r(z) ≤ ρr(u) ≤ ‖u‖r−r(z).
(d) If ‖u‖r(z) > 1 then ‖u‖r−r(z) ≤ ρr(u) ≤ ‖u‖r+r(z).
(e) ‖un‖r(z) → 0 if and only if ρr(un)→ 0.

(f) ‖un‖r(z) →∞ if and only if ρr(un)→ +∞.

Let Ar : W 1,r(z)(Ω)→W 1,r(z)(Ω)∗ be the nonlinear operator defined by

〈Ar(u), h〉 =

∫
Ω

|Du|r(z)−2(Du,Dh)RN dz

for all u, h ∈W 1,r(z)(Ω). This operator has the following properties, see Gasinski

and Papageorgiou [7] and Rădulescu and Repovš [17, p. 40].

Proposition 2.3. The operator Ar : W 1,r(z)(Ω)→W 1,r(z)(Ω)∗ is bounded (that

is, maps bounded sets to bounded sets), continuous, monotone (thus, maximal

monotone, too) and of type (S)+, that is,

“un
w→ u in W 1,r(z)(Ω) and lim sup

n→∞
〈Ar(un), un − u〉 ≤ 0

imply that un → u in W 1,r(z)(Ω)”.

We now recall the Weierstrass–Tonelli theorem, which we will use in the

sequel. For the convenience of the reader we include also the proof.

Theorem 2.4. If X is a reflexive Banach space and φ : X → R is sequentially

weakly lower semicontinuous and coercive, then there exists û ∈ X such that

φ(û) = inf{φ(u) : u ∈ X}.
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Proof. The coercivity of φ implies that for R > 0 big we have

inf
X
ϕ = inf

BR

φ,

with BR = {u ∈ X : ‖u‖X ≤ R}.
On account of the reflexivity of X and the Eberlein-Smulian theorem, BR is

sequentially weakly compact. Since ϕ( · ) is sequentially weakly lower semicon-

tinuous, we conclude that there exists û ∈ X such that φ(û) = inf
X
φ. �

On account of the anisotropic regularity theory (see [3, Theorem 1.3] and

[19, Corollary 3.1]), we will also use the Banach space C1(Ω). This is an ordered

Banach space with positive cone

C+ = {u ∈ C1(Ω) : u(z) ≥ 0 for all z ∈ Ω}.

This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω}.

We will also use another open cone in C1(Ω), which is defined by

D+ =

{
u ∈ C1(Ω) : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣∣∣
∂Ω∩u−1(0)

< 0

}
.

Recall that ∂u
∂n = (Du, n)RN , with n( · ) being the outward unit normal on ∂Ω.

If h1, h2 ∈M(Ω) with h1 ≤ h2, then we define:

[h1, h2] = {u ∈W 1,r(z)(Ω) : h1(z) ≤ u(z) ≤ h2(z) for a.a. z ∈ Ω},

[h1) = {u ∈W 1,r(z)(Ω) : h1(z) ≤ u(z) for a.a. z ∈ Ω},

intC1(Ω)[h1, h2] = the interior in C1(Ω) of [h1, h2] ∩ C1(Ω).

Suppose that X is a Banach space and ϕ ∈ C1(X). We introduce the following

sets

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),

ϕc = {x ∈ X : ϕ(u) ≤ c} for all c ∈ R.

We say that ϕ( · ) satisfies the “C-condition”, if it has the following property:

“Every sequence {un}n∈N ⊆ X such that {ϕ(un)}n∈N ⊆ R is bounded and

(1 + ‖un‖)ϕ′(un)→ 0 in X∗ admits a strongly convergent subsequence”.

This is a compactness condition of the functional ϕ( · ) which compensates

for the fact that the ambient space X is not in general locally compact (being

infinite dimensional). Various techniques have been proposed in the literature

in order to recover the compactness in several circumstances. We refer to Tang

and Cheng [21] who proposed a new approach to restore the compactness of

Palais–Smale sequences and to Tang and Chen [20] who introduced an original

method to recover the compactness of minimizing sequences.



398 N.S. Papageorgiou — V.D. Rădulescu — D.D. Repovš

If Y2 ⊆ Y1 ⊆ X, then by Hk(Y1, Y2) (for k ∈ N0), we denote the kth relative

singular homology group with integer coefficients. If u ∈ Kϕ is isolated, then

the kth critical group of ϕ at u is defined by

Ck(ϕ, u) = Hk

(
ϕc ∩ U, (ϕc ∩ U) \ {u}

)
for all k ∈ N0,

with c = ϕ(u) and U is a neighbourhood of u such that ϕc ∩Kϕ ∩U = {u}. The

excision property of singular homology implies that this notion is well-defined,

that is, independent of the choice of the isolating neighborhood U (see [14]).

If u ∈M(Ω), we set

u+(z) = max{u(z), 0}, u−(z) = max{−u(z), 0}, for all z ∈ Ω.

Then, if u ∈W 1,r(z)(Ω), we know that

u± ∈W 1,r(z)(Ω), u = u+ − u−, |u| = u+ − u−.

Given a Carathéodory function g : Ω × R → R, we denote by Ng( · ) the corre-

sponding Nemyt’skĭı operator, that is,

Ng(u)( · ) = g( · , u( · )) for all u ∈M(Ω).

Since a Carathéodory function is jointly measurable, Ng(u) ∈M(Ω).

By | · |N we denote the Lebesgue measure on RN and by ‖ · ‖ we will denote

the norm of the Sobolev space W 1,p(z)(Ω).

Now we will introduce our hypotheses on the data of problem (Pλ).

(H0) p, q ∈ C0,1(Ω) and 1 < q(z) < p(z) for all z ∈ Ω.

(H1) f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for

almost all z ∈ Ω and

(i) |f(z, x)| ≤ a(z)
[
1 + xr(z)−1

]
for almost all z ∈ Ω, all x ≥ 0, with

â ∈ L∞(Ω), r ∈ C(Ω), p+ < r(z) < p∗(z) for all z ∈ Ω;

(ii) if

F (z, x) =

∫ x

0

f(z, s) ds

then

lim
x→+∞

F (z, x)

xp+
= +∞ uniformly for a.a. z ∈ Ω;

(iii) if e(z, x) = f(z, x)x − p+F (z, x), then there exists µ ∈ L1(Ω) such

that

e(z, x) ≤ e(z, y) + µ(z) for a.a. z ∈ Ω, all 0 ≤ x ≤ y;

(iv) there exist τ ∈ C(Ω) and C0, δ0, Ĉ > 0 such that

1 < τ+ < q−,

C0x
τ(z)−1 ≤ f(z, x) for a.a. z ∈ Ω, all 0 ≤ x ≤ δ0,

−Ĉxp(z)−1 ≤ f(z, x) for a.a. z ∈ Ω, all x ≥ 0;
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(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for almost all z ∈ Ω

the function x 7→ f(z, x) + ξ̂ρx
p(z)−1 is nondecreasing on [0, ρ].

Remark 2.5. Since we look for positive solutions and all the above hypotheses

concern the positive semiaxis R+ = [0,∞), without any loss of generality we

assume that

(2.1) f(z, x) = 0 for a.a. z ∈ Ω, all x ≤ 0.

Hypotheses (H1) (ii), (iii) imply that, for almost all z ∈ Ω the mapping f(z, · )
is (p+−r)-superlinear as x→ +∞. However, this superlinearity condition is not

expressed using the AR-condition. We recall that the AR-condition (unilateral

version due to (2.1)) says that there exist ϑ > p+ and M > 0 such that

0 < ϑF (z, x) ≤ f(z, x)x for a.a. z ∈ Ω, all x ≥M,

0 < essinf
Ω

F ( · ,M).

These conditions imply that there exists C̃ > 0 such that

C̃xϑ−1 ≤ f(z, x) for a.a. z ∈ Ω, all x ≥M.

So, the AR-condition dictates at least (ϑ − 1)-polynomial growth for f(z, · ).
Hypotheses (H1) (ii), (iii) are less restrictive and incorporate in our framework

superlinear nonlinearities with “slower” growth as x → +∞ (see the example

below). Also we emphasize that in contrast to the previous works [1], [4], we

do not assume that f ≥ 0 neither that f(z, · ) is nondecreasing. These are

hypotheses employed by Fan and Deng [4] and Deng and Wang [1]. Moreover,

in the aforementioned works the authors assume the AR-condition for f(z, · ).
Finally, note that also in contrast to the previous works, we do not assume that

the parameter λ is strictly positive. Here, λ ∈ R and so the differential operator

(left-hand side) of problem (Pλ) is not in general coercive.

Example 2.6. Consider the function

f(z, x) =

ϑ(x+)τ(z)−1 − Ĉ0(x+)γ(z)−1 if x ≤ 1,

xp+−1 lnx+ (ϑ− Ĉ0)xη(z)−1 if 1 < x

with τ, γ, η ∈ C(Ω), τ+ < q−, 1 < τ(z) < γ(z), 1 < η(z) < p(z) for all z ∈ Ω

with Ĉ0 > ϑ > 0. Then this function satisfies hypotheses (H1) above but does

not satisfy the hypotheses of [1], [4] (the AR-condition fails and f(z, · ) is not

monotone on R+ = [0,∞)).

We introduce the following sets

L+ = {λ ∈ R : problem (Pλ) has a positive solution} ,

S+
λ = the set of positive solutions of (Pλ).
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3. Positive solutions

We start by showing that L+ is nonempty. To this end, let η > 0 and consider

the following auxiliary anisotropic Neumann problem

(3.1)

−∆p(z)u−∆q(z)u+ up(z)−1 = η in Ω,

∂u

∂n
= 0 on ∂Ω, u ≥ 0.

Proposition 3.1. If hypotheses (H0) hold, then problem (3.1) has a unique

positive solution uη ∈ intC+ and uη → 0 in C1(Ω) as η → 0+.

Proof. Let Kp : Lp(z)(Ω)→ Lp
′(z)(Ω) be the nonlinear operator defined by

Kp(u)( · ) = |u( · )|p( · )−2u( · ) for all u ∈ Lp(z)(Ω).

This operator is continuous and strictly monotone, too (see [14, p. 117]). Then

we introduce V : W 1,p(z)(Ω)→W 1,p(z)(Ω)∗ defined by

V (u) = Ap(u) +Aq(u) +Kp(u) for all u ∈W 1,p(z)(Ω).

Then V ( · ) is maximal monotone (see [14, p. 135]), strictly monotone and

〈V (u), u〉 ≥ ρp(Du) + ρp(u) for all u ∈W 1,p(z)(Ω) ⇒ V ( · ) is coercive

(see Proposition 2.2). Then Corollary 2.8.7 of [14, p. 135] implies that V ( · ) is

surjective. So, we can find uη ∈W 1,p(z)(Ω) such that V (uη) = η.

On account of the strict monotonicity of V ( · ), this solution is unique. Taking

duality brackets with −u−η ∈W 1,p(z)(Ω), we obtain

ρp(Du
−
η ) + ρp(u

−
η ) ≤

∫
Ω

η(−u−η ) dz ≤ 0 ⇒ uη ≥ 0, uη 6= 0

(see Proposition 2.2 and recall that η > 0).

We have

(3.2) −∆p(z)uη −∆q(z)uη + up(z)−1
η = η in Ω,

∂uη
∂n

= 0 on ∂Ω.

From Winkert and Zacher [22] (see also Papageorgiou, Rădulescu and Zhang [15,

Proposition A1]), we have uη ∈ L∞(Ω). Then the anisotropic regularity theory

(see Fan [3] and Tan and Fang [19]), we have uη ∈ C+ \ {0}. From (3.2) we have

∆p(z)uη + ∆q(z)uη ≤ up(z)−1
η in Ω ⇒ uη ∈ intC+

(see Papageorgiou, Qin and Rădulescu [11, Proposition 4]).

Now, let ηn → 0+ and let un = uηn ∈ intC+ for all n ∈ N. The anisotropic

regularity theory (see [3], [19]) implies that there exist α ∈ (0, 1) and C1 > 0

such that

(3.3) un ∈ C1,α(Ω), ‖un‖C1,α(Ω) ≤ C1 for all n ∈ N.
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The compact embedding of C1,α(Ω) into C1(Ω), implies that at least for a sub-

sequence we have

(3.4) un → u in C1(Ω) as n→∞.

Recall that

Ap(un) +Aq(un) +Kp(un) = ηn in W 1,p(z)(Ω for all n ∈ N,

that is,

〈Ap(un), h〉+ 〈Aq(un), h〉+

∫
Ω

|un|p(z)−2unh dz =

∫
Ω

ηnh dz

for all h ∈ W 1,p(z)(Ω). We pass to the limit as n → ∞. Because of (3.4) and

Proposition 2.3 we have

Ap(un)→ Ap(u), Aq(un)→ Aq(u) in W 1,p(z)(Ω)

and ∫
Ω

|un|p(z)−2unh dz →
∫

Ω

|u|p(z)−2uh dz.

Hence in the limit we have

Ap(u) +Aq(u) +Kp(u) = 0 ⇒ u = 0.

Therefore we obtain (see (3.4))

uη → 0 in C1(Ω) as η → 0+. �

Using Proposition 3.1, we see that, for η ∈ (0, 1) small, we have

(3.5) 0 ≤ uη(z) ≤ 1 for all z ∈ Ω.

For such an η ∈ (0, 1), let mη = min
Ω
uη > 0 (recall that uη ∈ intC+). Then let

(3.6) λ̂ =
‖Nf (uη)‖∞
m
p+−1
η

+ 1 > 0

(see hypothesis (H1) (i)). We will show that λ̂ ∈ L+ and so L+ 6= ∅.

Proposition 3.2. If hypotheses H0, H1 hold, then L+ 6= ∅ and S+
λ ⊆ intC+ for

every λ ∈ R.

Proof. Let uη ∈ intC+ and λ̂ > 0 be as above. We have

−∆p(z)uη −∆q(z)uη + λ̂u p(z)−1
η(3.7)

≥ −∆p(z)uη −∆q(z)uη +
f(z, uη(z))

m
p+−1
η

up+−1
η + u p(z)−1

η

(see (3.5), (3.6))

≥ η + f(z, uη) (see Proposition 3.1)

≥ f(z, uη) in Ω.
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We introduce the Carathéodory function f̂(z, x) defined by

(3.8) f̂(z, x) =

f(z, x+) if x ≤ uη(z),

f(z, uη(z)) if uη(z) < x.

We set

F̂ (z, x) =

∫ x

0

f̂(z, s) ds

and consider the C1-functional ϕ̂ : W 1,p(z)(Ω)→ R defined by

ϕ̂(u) =

∫
Ω

1

p(z)
|Du|p(z) dz +

∫
Ω

1

q(z)
|Du|q(z) dz

+ λ̂

∫
Ω

1

p(z)
|u|p(z) dz −

∫
Ω

F̂ (z, u) dz

for all u ∈W 1,p(z)(Ω). We have

ϕ̂(u) ≥ 1

p+

[
ρp(Du) + λ̂ρp(u)

]
−
∫

Ω

F̂ (z, u) dz ⇒ ϕ̂( · ) is coercive

(see (3.8) and Proposition 2.2). Also, using Proposition 2.1 (the anisotropic

Sobolev embedding theorem), we see that ϕ̂( · ) is sequentially weakly lower semi-

continuous. So, by the Weierstrass–Tonelli theorem, we can find û ∈W 1,p(z)(Ω)

such that

(3.9) ϕ̂(û) = inf
{
ϕ̂(u) : u ∈W 1,p(z)(Ω)

}
.

Let u ∈ intC+ and choose t ∈ (0, 1) small such that

(3.10) 0 < tu(z) ≤ min
{
δ0,min

Ω
uη

}
for all z ∈ Ω.

Here δ0 > 0 is as in hypothesis (H1) (iv) and recall that uη ∈ intC+, so that

min
Ω
uη > 0. We have

ϕ̂(tu) ≤ tq−

q−

[
ρp(Du) + ρq(Du) + λ̂ρp(u)

]
− C0t

τ+

τ+
ρτ (u)

(see (3.10), hypothesis (H1) (iv) and recall that t ∈ (0, 1))

= C2t
q− − C3t

τ+ for some C2, C3 > 0.

Recall that τ+ < q− (see hypothesis (H1) (iv)). So, choosing t ∈ (0, 1) even

smaller if necessary, we have

ϕ̂(tu) < 0 ⇒ ϕ̂(û) < 0 = ϕ̂(0) (see (3.9))

⇒ û 6= 0.

From (3.9), if ϕ̂′(û) = 0, then

(3.11) 〈Ap(û), h〉+ 〈Aq(û), h〉+ λ̂

∫
Ω

|û|p(z)−2ûh dz =

∫
Ω

f̂(z, û)h dz
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for all h ∈ W 1,p(z)(Ω). In (3.11) first we choose h = −û ∈ W 1,p(z). Then we

have

ρp(Dû
−) + ρq(Dû

−) + λ̂ρp(û
−) = 0 (see (3.8), (2.1)) ⇒ û ≥ 0, û 6= 0.

Next, in (3.11) we choose h = (û− uη)+ ∈W 1,p(z)(Ω). We have

〈Ap(û),(û− uη)+〉+ 〈Aq(û), (û− uη)+〉+ λ̂

∫
Ω

ûp(z)−1(û− uη)+ dz

=

∫
Ω

f(z, uη)(û− uη)+ dz (see (3.8))

≤〈Aq(uη), (û− uη)+〉+ 〈Aq(uη), (û− uη)+〉

+ λ̂

∫
Ω

up(z)−1
η (û− uη)+ dz (see (3.7))

⇒ û ≤ uη (see Proposition 2.3).

So, we have proved that

(3.12) û ∈ [0, uη], û 6= 0.

From (3.11), (3.12) and (3.8) it follows that û ∈ S+
λ and so λ̂ ∈ L+ 6= ∅.

Moreover, as before, the anisotropic regularity theory (see [3], [19]) and the

anisotropic maximum principle (see [11]), imply that S+
λ ⊆ intC+ for all λ ∈ R.�

Next, we show that L+ is connected, more precisely L+ is an upper half line.

Proposition 3.3. If hypotheses (H0), (H1) hold, λ ∈ L and λ < µ < ∞, then

µ ∈ L+.

Proof. Since by hypothesis λ ∈ L+, we can find uλ ∈ S+
λ ⊆ intC+. Then we

have

(3.13) −∆p(z)uλ −∆q(z)uλ + µu
p(z)−1
λ

≥ −∆p(z)uλ −∆q(z)uλ + λu
p(z)−1
λ = f(z, uλ)

in Ω. Let ϑ > −µ and consider the Carathéodory function k(z, x) defined by

(3.14) k(z, x) =

f(z, x+) + ϑ(x+)p(z)−1 if x ≤ uλ(z),

f(z, uλ(z)) + ϑuλ(z)p(z)−1 if uλ(z) < x.

Let K(z, x) =
∫ x

0
k(z, s) ds and consider the C1-functional ϕ̂µ : W 1,p(z)(Ω)→ R

defined by

ϕ̂µ(u) =

∫
Ω

1

p(z)
|Du|p(z) dz +

∫
Ω

1

q(z)
|Du|q(z) dz

+

∫
Ω

ϑ+ µ

p(z)
|u|p(z) dz −

∫
Ω

K(z, u) dz
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for all u ∈ W 1,p(z)(Ω). Since ϑ + µ > 0 from (3.14) and Proposition 2.2, we

see that ϕ̂µ( · ) is coercive. Also using Proposition 2.1 (the anisotropic Sobolev

embedding theorem), we infer that ϕ̂µ( · ) is sequentially weakly lower semicon-

tinuous. So, we can find uµ ∈W 1,p(z)(Ω) such that

(3.15) ϕ̂µ(uµ) = inf
{
ϕ̂µ(u) : u ∈W 1,p(z)(Ω)

}
.

As in the proof of Proposition 3.2, via hypothesis (H1) (iv), we show that

ϕ̂µ(uµ) < 0 = ϕ̂µ(0) ⇒ uµ 6= 0.

From (3.15) we have that

(3.16) 〈ϕ̂′µ(uµ), h〉 = 0 for all h ∈W 1,p(z)(Ω).

As before (see the proof of Proposition 3.2), choosing h = −u−µ ∈ W 1,p(z)(Ω)

and h = (uµ − uλ)+ ∈W 1,p(z)(Ω) in (3.16), we show that

(3.17) uµ ∈ [0, µλ], uµ 6= 0, uµ 6= uλ

(since λ < µ). From (3.16), (3.17) and (3.14), we deduce that uµ ∈ S+
µ ⊆ intC+

and so µ ∈ L+. �

An interesting byproduct of the above proof, is the following corollary.

Corollary 3.4. If hypotheses (H0), (H1) hold, λ ∈ L+, uλ ∈ S+
λ and λ < µ <

∞, then µ ∈ L+ and we can find uµ ∈ S+
µ such that uµ ≤ uλ.

We can improve the assertion of this corollary as follows.

Proposition 3.5. If hypotheses (H0), (H1) hold, λ ∈ L+, uλ ∈ S+
λ and λ < µ <

∞, then µ ∈ L+ and we can find uµ ∈ S+
µ such that uλ − uµ ∈ D+.

Proof. From Corollary 3.4 we already know that µ ∈ L+ and we can find

uµ ∈ S+
µ ⊆ intC+ such that

(3.18) 0 ≤ uµ ≤ uλ.

Let ρ = ‖uλ‖∞ and let ξ̂ρ > 0 be as postulated by hypothesis (H1) (v). We

have

−∆p(z)uλ −∆q(z)uλ + [λ+ ξ̂ρ]u
p(z)−1
λ = f(z, uλ) + ξ̂ρu

p(z)−1
λ(3.19)

≥ f(z, uµ) + ξ̂ρu
p(z)−1
µ (see (3.18) and hypothesis (H1) (v))

= −∆p(z)uµ −∆q(z)uµ +
[
µ+ ξ̂ρ

]
up(z)−1
µ (since uµ ∈ S+

µ )

= −∆p(z)uµ −∆q(z)uµ + [λ+ ξ̂ρ]u
p(z)−1
µ + (µ− λ)up(z)−1

µ

≥ −∆p(z)uµ −∆q(z)uµ + [λ+ ξ̂ρ]u
p(z)−1
µ (since λ < µ).

We know that uµ∈ intC+. Hence 0 < mµ=min
Ω
uµ. We set m̂µ=min{mµ, 1}>0.

Then

0 < [µ− λ] m̂p+−1
µ ≤ [µ− λ]up(z)−1

µ for all z ∈ Ω.
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Then from (3.19) and Proposition 5 of Papageorgiou, Qin and Rădulescu [11],

we infer that uλ − uµ ∈ D+. �

Let λ∗ = inf L+.

Proposition 3.6. If hypotheses (H0), (H1) hold, then λ∗ > −∞.

Proof. Let λ > λ∗. Then on account of Proposition 3.3, we have λ ∈ L+. So,

we can find u ∈ S+
λ ⊆ intC+ and, for all h ∈W 1,p(z)(Ω), we have

(3.20) 〈Ap(u), h〉+ 〈Aq(u), h〉+ λ

∫
Ω

up(z)−1h dz =

∫
Ω

f(z, u)h dz.

In (3.20) we choose h ≡ 1 ∈W 1,p(z)(Ω). Then

λ

∫
Ω

up(z)−1 dz =

∫
Ω

f(z, u) dz ≥ −Ĉ
∫

Ω

up(z)−1 dz

⇒
(
λ+ Ĉ

) ∫
Ω

up(z)−1 dz ≥ 0

⇒ λ+ Ĉ ≥ 0 and so λ ≥ −Ĉ.

So, we conclude that λ∗ ≥ −Ĉ > −∞. �

By imposing a sign condition on f(z, · ), we can have that L+ ⊆ R+ =

[0,+∞], that is, λ∗ ≥ 0.

The new conditions on the reaction f(z, x) are the following.

(H′1) f : Ω×R→ R is a Carathéodory function such that f(z, 0) = 0 for almost

all z ∈ Ω, hypotheses (H′1) (i)–(iii), (v) are the same as the corresponding

hypotheses (H1) (i)–(iii), (v) and

(iv) there exist τ ∈ C(Ω) and C0, δ0 > 0 such that

1 < τ+ < q−,

C0x
τ(z)−1 ≤ f(z, x) for a.a. z ∈ Ω, all 0 ≤ x ≤ δ0,

and 0 ≤ f(z, x) for a.a. z ∈ Ω, all x ≥ 0.

Remark 3.7. So, the new conditions of f(z, · ) require that f(z, · )
∣∣
R+

is non-

negative (it can not change sign). This was the case with the reactions in the

works of Fan and Deng [4] and Deng and Wang [1].

Under the above stronger conditions on the reaction f(z, · ) we can show that

the set L+ of admissible parameters is a subset of R+.

Proposition 3.8. If hypotheses (H0), (H′1) hold, then λ∗ ≥ 0.

Proof. Let λ > λ∗. We know that λ ∈ L+ and so there exists u ∈ S+
λ ⊆ intC+.

From (3.20) with h ≡ 1 ∈W 1,p(z)(Ω), we have

λ

∫
Ω

up(z)−1 dz =

∫
Ω

f(z, u) dz ≥ 0 (see (H′1) (iv))

⇒ λ ≥ 0 and so λ∗ ≥ 0.
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The proof is complete. �

On account of hypotheses (H1) (i), (iv), we see that we can find C4 > 0 such

that

(3.21) f(z, x) ≥ C0x
τ(z)−1 − C4x

r(z)−1 for a.a. z ∈ Ω, all x ≥ 0.

Let η > 0 and let λ̂η = λ∗ + η. Evidently, λ̂η ∈ L+ (see Corollary 3.4). The

unilateral growth condition in (3.21) leads to the following auxiliary anisotropic

Neumann problem

(3.22)

−∆p(z)u−∆q(z)u+ λ̂η|u|p(z)−1 = C0u
τ(z)−1 − C4u

r(z)−1 in Ω,

∂u

∂n
= 0 on ∂Ω, u ≥ 0.

Proposition 3.9. If hypotheses (H0) hold, then problem (3.22) has a unique

positive solution u∗η ∈ intC+.

Proof. Let λ ∈
(
λ∗, λ̂η

]
. We know that λ ∈ L+ (see Proposition 3.3) and so we

can find u ∈ S+
λ ⊆ intC+. Let ϑ > −λ̂η and consider the Carathéodory function

(3.23) β(z, x) =

C0(x+)τ(z)−1 − C4(x+)r(z)−1 + ϑ(x+)p(z)−1 if x ≤ u(z),

C0u(z)τ(z)−1 − C4u(z)r(z)−1 + ϑu(z)p(z)−1 if u(z) < x.

We set

B(z, x) =

∫ x

0

β(z, s) ds

and consider the C1-functional Ψ: W 1,p(z)(Ω)→ R defined by

Ψ(u) =

∫
Ω

1

p(z)
|Du|p(z) dz +

∫
Ω

1

q(z)
|Du|q(z) dz

+

∫
Ω

ϑ+ λ̂η
p(z)

|u|p(z) dz −
∫

Ω

B(z, u) dz

for all u ∈ W 1,p(z)(Ω). From (3.23) and since ϑ > −λ̂η we see that Ψ( · )
is coercive. Also it is sequentially weakly lower semicontinuous. So, by the

Weierstrass–Tonelli theorem, we can find u∗η ∈W 1,p(z)(Ω) such that

(3.24) Ψ(u∗η) = inf
{

Ψ(u) : u ∈W 1,p(z)(Ω)
}
.

Since τ+ < q− < p+ < r−, if v ∈ intC+ and t ∈ (0, 1) is small (at least so that

tv(z) ≤ u(z) for all z ∈ Ω), then

Ψ(tv) < 0 ⇒ Ψ(u∗η) < 0 = Ψ(0) (see (3.24)) ⇒ u∗η 6= 0.
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From (3.24) we have

(3.25) Ψ′(u∗η) = 0 ⇒ 〈Ap(u∗η), h〉+ 〈Aq(u∗η), h〉

+
(
ϑ+ λ̂η

) ∫
Ω

|u∗η|p(z)−2u∗ηh dz =

∫
Ω

β(z, u∗η)h dz

for all h ∈W 1,p(z)(Ω). In (3.25) first we choose h = −(u∗η)− ∈W 1,p(z)(Ω). Using

(3.23) we obtain

ρp(D(u∗η)−) + ρq((u
∗
η)−) +

[
ϑ+ λ̂η

]
ρp((u

∗
η)−) = 0

⇒ u∗η ≥ 0, u∗η 6= 0 (recall that ϑ > −λ̂η).

Next, in (3.25) we choose (u∗η − u)+ ∈W 1,p(z)(Ω). Then we have

〈Ap(u∗η), (u∗η − u)+〉+ 〈Aq(u∗η), (u∗η − u)+〉+ (ϑ+ λ̂η)

∫
Ω

|u∗η|p(z)−2u∗ηh dz

=

∫
Ω

[
C0u

τ(z)−1 − C4u
r(z)−1 + ϑup(z)−1

]
(u∗η − u)+ (see (3.23))

≤
∫

Ω

[
f(z, u) + ϑup(z)−1

]
(u∗η − u)+ dz (see (3.21))

≤〈Ap(u), (u∗η − u)+〉+ 〈Aq(u), (u∗η − u)+〉

+ (ϑ+ λ̂η)

∫
Ω

up(z)−1(u∗η − u)+ dz (since u ∈ Sλ and λ ≤ λ̂η)

⇒ u∗η ≤ u (see Proposition 2.3).

So, we have proved that

(3.26) u∗η ∈ [0, u], u∗η 6= 0.

From (3.25), (3.26) and (3.23) it follows that

u∗η is a positive solution of problem (3.22).

As before, the anisotropic regularity theory ([3], [19]) and the anisotropic maxi-

mum principle (see [11]), imply that u∗η ∈ intC+.

Next, we show that this positive solution of (3.22) is unique. To this end,

we consider the integral functional j : L1(Ω)→ R = R ∪ {+∞} defined by

j(u) =



∫
Ω

1

p(z)

∣∣Du1/q−
∣∣p(z) dz +

∫
Ω

1

q(z)

∣∣Du1/q−
∣∣q(z) dz

if u ≥ 0, u1/q− ∈W 1,p(z)(Ω),

+∞ otherwise.

From Theorem 2.2 of Takač and Giacomoni [18], we know that j( · ) is convex.

Let dom j =
{
u ∈ L1(Ω) : j(u) < ∞

}
(the effective domain of j( · )). Suppose

y∗η is another positive solution of problem (3.22). Again, we have y∗η ∈ intC+.
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On account of Proposition 4.1.22 of Papageorgiou, Rădulescu and Repovš [14,

p. 274], we have

(3.27)
u∗η
y∗η
∈ L∞(Ω) and

y∗η
u∗η
∈ L∞(Ω).

Let h = (u∗η)q−(y∗η)q− . From (3.27) and for |t| < 1 small, we have

(u∗η) + th ∈ dom j, (y∗η)q− + th ∈ dom j.

Exploiting the convexity of j( · ) and using the chain rule, we see that j( · ) is

Gâteaux differentiable at (u∗η)q− and at (y∗η)q− in the direction h. Moreover, via

Green’s identity, we have

j′
(
(u∗η)q−

)
(h) =

1

q−

∫
Ω

−∆p(z)u
∗
η −∆q(z)u

∗
η

(u∗η)q−−1
h dz

=
1

q−

∫
Ω

[
C0

(u∗η)q−−τ(z)
− C4(u∗η)r(z)−q− − λ̂η(u∗η)p(z)−q−

]
h dz,

j′
(
(y∗η)q−

)
(h) =

1

q−

∫
Ω

−∆p(z)y
∗
η −∆q(z)y

∗
η

(y∗η)q−−1
h dz

=
1

q−

∫
Ω

[
C0

(y∗η)q−−τ(z)
− C4(y∗η)r(z)−q− − λ̂η(y∗η)p(z)−q−

]
h dz.

The convexity of j( · ) implies that j′( · ) is monotone. Then

0 ≤
∫

Ω

C0

[
1

(u∗η)q−−τ(z)
− 1

(y∗η)q−−τ(z)

]
h dz

−
∫

Ω

C4

[
(u∗η)r(z)−q− − (y∗η)r(z)−q−

]
h dz

− λ̂η
∫

Ω

[
(u∗η)p(z)−q− − (y∗n)p(z)−q−

]
h dz ≤ 0

⇒ u∗η = y∗η (recall that τ+ < q− < p−).

This proves the uniqueness of the positive solution u∗η ∈ intC+ of problem

(3.22). �

This unique positive solution of problem (3.22) provides a lower bound for

the elements of S+
λ locally in λ > λ∗.

Proposition 3.10. If hypotheses (H0), (H1) hold, η > 0 and λ ∈ (λ∗, λ̂η =

λ∗ + η], then u∗η ≤ u for all u ∈ S+
λ .

Proof. Let u ∈ S+
λ , ϑ > −λ̂η and consider the Carathéodory function k(z, x)

defined by

(3.28) k(z, x) =

C0(x+)τ(z)−1 − C4(x+)r(z)−1 + ϑ(x+)p(z)−1 if x ≤ u(z),

C0u(z)τ(z)−1 − C4u(z)r(z)−1 + ϑu(z)p(z)−1 if u(z) < x.
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We set

K(z, x) =

∫ x

0

k(z, s) ds

and consider the C1-functional σ : W 1,p(z)(Ω)→ R defined by

σ(u) =

∫
Ω

1

p(z)
|Du|p(z) dz +

∫
Ω

1

q(z)
|Du|q(z) dz

+

∫
Ω

ϑ+ λ̂η
p(z)

|u|p(z) dz −
∫

Ω

K(z, u)dz

for all u ∈ W 1,p(z)(Ω). From (3.28) and since ϑ > −λ̂η, we see that σ( · ) is

coercive. Also, using the anisotropic Sobolev embedding theorem (see Proposi-

tion 2.1), we see that σ( · ) is sequentially weakly lower semicontinuous. So, by

the Weierstrass–Tonelli theorem, we can find û∗η ∈W 1,p(z)(Ω) such that

(3.29) σ(û∗η) = min
{
σ(u) : u ∈W 1,p(z)(Ω)

}
.

Since τ+ < q− ≤ q(z) < p(z) for all z ∈ Ω, we see that, if v ∈ intC+ and

t ∈ (0, 1) is small (at least so that tv ≤ u), we have

σ(tv) < 0 ⇒ σ(û∗η) < 0 = σ(0) (see (3.29)) ⇒ û∗η 6= 0.

From (3.29) we have σ′(u∗η) = 0, thus, for all h ∈W 1,p(z)(Ω),

(3.30) 〈Ap(û∗η), h〉+ 〈Aq(û∗η), h〉+

∫
Ω

(ϑ+ λ̂η)|û∗η|p(z)−2û∗ηh dz

=

∫
Ω

k(z, û∗η)h dz.

In (3.30) first we choose h = −(û∗η)− ∈W 1,p(z)(Ω). Using (3.28), we obtain

ρp(D(û∗η)−) + ρq(D(û∗η)−) +

∫
Ω

(ϑ+ λ̂η)
(
(û∗η)−

)p(z)
dz = 0

⇒ û∗η ≥ 0, û∗η 6= 0 (recall that ϑ > −λ̂η).

Next, in (3.30) we choose h = (û∗η − u)+ ∈W 1,p(z)(Ω). We have

〈Ap(û∗η),(û∗η − u)+〉+ 〈Aq(û∗η), (û∗η − u)+〉+

∫
Ω

(ϑ+ λ̂η)(û∗η)p(z)−1(û∗η − u)+ dz

=

∫
Ω

[
C0u

τ(z)−1 − C4u
r(z)−1 + ϑup(z)−1

]
(û∗η − u)+ dz (see (3.28))

≤
∫

Ω

[
f(z, u) + ϑup(z)−1

]
(û∗η − u)+dz (see (3.21))

≤〈Ap(u), (û∗η − u)+〉+ 〈Aq(u), (û∗η − u)+〉

+

∫
Ω

(ϑ+ λ̂η)up(z)−1(û∗η − u)+ dz (since u ∈ S+
λ , λ ≤ λ̂η)

⇒ û∗η ≤ u.
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So, we have proved that

(3.31) û∗η ∈ [0, u], û∗η 6= 0.

From (3.30), (3.31), (3.28) and Proposition 3.9, we conclude that

û∗η = u∗η ⇒ u∗η ≤ u for all u ∈ S+
λ , all λ ∈ (λ∗, λ̂η = λ∗ + η]. �

Remark 3.11. This proposition reveals that if hypotheses (H′1) hold, then

λ∗ > 0.

Next, we show that for all λ > λ∗, we have at least two positive solutions.

Proposition 3.12. If hypotheses (H0), (H1) hold and λ > λ∗, then problem

(Pλ) has at least two positive solutions u0, û ∈ intC+, u0 6= û.

Proof. Let η, µ ∈ (λ∗,∞) such that λ∗ < η < λ < µ. We know that η, µ ∈ L+

(see Proposition 3.3). Moreover, on account of Proposition 3.5 we can find

uη ∈ S+
η , u0 ∈ S+

λ and uµ ∈ S+
µ such that

(3.32) uη − u0 ∈ D+ and u0 − uµ ∈ D+ ⇒ u0 ∈ intC1(Ω)[uµ, uη].

Let ϑ > −λ and consider the Carathéodory functions ĝ(z, x) and g(z, x) de-

fined by

(3.33) ĝ(z, x) =


f(z, uµ(z)) + ϑuµ(z)p(z)−1,

f(z, x) + ϑxp(z)−1,

f(z, uη(z)) + ϑuη(z)p(z)−1,

and

(3.34) g(z, x) =

f(z, uµ(z)) + ϑuµ(z)p(z)−1 if x < uµ(z),

f(z, x) + ϑxp(z)−1 if uµ(z) ≤ x.

We set

Ĝ(z, x) =

∫ x

0

ĝ(z, s) ds, G(z, x) =

∫ x

0

g(z, s) ds

and consider the C1-functionals γ̂λ, γλ : W 1,p(z)(Ω)→ R defined by

γ̂λ(u) =

∫
Ω

1

p(z)
|Du|p(z) dz +

∫
Ω

1

q(z)
|Du|q(z) dz

+

∫
Ω

ϑ+ λ

p(z)
|u|p(z) dz −

∫
Ω

Ĝ(z, u) dz,

γλ(u) =

∫
Ω

1

p(z)
|Du|p(z) dz +

∫
Ω

1

q(z)
|Du|q(z) dz

+

∫
Ω

ϑ+ λ

p(z)
|u|p(z) dz −

∫
Ω

G(z, u) dz

for all u ∈W 1,p(z)(Ω). Using (3.33) and (3.34), we show easily that

(3.35) Kγ̂λ ⊆ [uµ, uη] ∩ intC+ and Kγλ ⊆ [uµ) ∩ intC+.
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It is clear from (3.33) and (3.34) that

(3.36) γλ
∣∣
[uµ,uη ]

= γ̂λ
∣∣
[uµ,uη]

.

Then, from (3.35) and (3.36), we see that we may assume that

(3.37) Kγ̂λ = {u0}.

Otherwise, we already have a second positive solution for problem (Pλ) and so

we are done. From (3.33) and since ϑ > −λ, we see that γ̂( · ) is coercive. Also,

it is sequentially weakly lower semicontinuous. So, γ̂λ( · ) has a global minimizer

on account of (3.37) this global minimizer is u0. From (3.32) and (3.36) it

follows that

(3.38) u0 is a local C1(Ω)-minimizer of γλ( · )

⇒ u0 is a local W 1,p(z)(Ω)-minimizer of γλ( · )

(see [7]). From (3.35) and (3.34), we see that we may assume that Kγλ is

finite, otherwise we already have a sequence of distinct positive smooth solutions

for (Pλ) and so we are done. Then from (3.38) and Theorem 5.7.6 of [14, p. 367],

we see that there exists ρ ∈ (0, 1) small such that

(3.39) γλ(u0) < inf
{
γλ(u) : ‖u− u0‖ = ρ

}
= mλ.

Note that if u ∈ intC+, then on account of hypothesis (H1) (ii), we have

(3.40) γλ(tu)→ −∞ as t→ +∞.

Claim. γλ( · ) satisfies the C-condition.

Consider a sequence {un}n∈N ⊆W 1,p(z)(Ω) such that

|γλ(un)| ≤ C5 for some C5 > 0, all n ∈ N,(3.41)

(1 + ‖un‖)γ′λ(un)→ 0 in W 1,p(z)(Ω)∗ as n→∞.(3.42)

From (3.42), we have

(3.43)

∣∣∣∣〈Ap(un), h〉+ 〈Aq(un), h〉

+

∫
Ω

(ϑ+ λ)|un|p(z)−2unh dz −
∫

Ω

g(z, un)h dz

∣∣∣∣ ≤ εn‖h‖
1 + ‖un‖

for all h ∈ W 1,p(z)(Ω) and with εn → 0+. In (3.43) we choose h = −u−n ∈
W 1,p(z)(Ω). Then

ρp(Du
−
n ) + ρq(Du

−
n ) + [ϑ+ λ]ρq(u

−
n ) ≤ C6‖u−n ‖

for some C6 > 0, all n ∈ N (see (3.34))

⇒ {u−n }n∈N ⊆W 1,p(z)(Ω) is bounded(3.44)

(see Proposition 2.2 and recall that ϑ > −λ).
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To show that {un}n∈N ⊆W 1,p(z)(Ω) is bounded, we need to show that {u+
n }n∈N

⊆ W 1,p(z)(Ω) is bounded (see (3.44)). Arguing by contradiction, suppose that

at least for a subsequence we have

(3.45) ‖u+
n ‖ → ∞.

Let vn = u+
n /‖u+

n ‖ for n ∈ N. Then ‖vn‖ = 1, vn ≥ 0 for all n ∈ N. So, we may

assume that

(3.46) vn
w→ v in W 1,p(z)(Ω), vn → v in Lr(z)(Ω), v ≥ 0.

Let Ω+ = {z ∈ Ω : v(z) > 0}. First we assume that |Ω+|N > 0 (that is, v 6= 0).

Then we have

u+
n → +∞ for a.a. z ∈ Ω+

⇒ F (z, u+
n (z))

u+
n (z)p+

→∞ for a.a. z ∈ Ω+

(see hypothesis (H1) (ii))

⇒
∫

Ω+

F (z, u+
n )

‖u+
n ‖p+

dz → +∞ (by Fatou’s lemma).(3.47)

Note that hypotheses (H1) (i), (ii) imply that

−C7 ≤ F (z, x) for a.a. z ∈ Ω, all x ≥ 0, some C7 > 0.

Hence we have ∫
Ω

F (z, u+
n )

‖u+
n ‖p+

dz =

∫
Ω+

F (z, u+
n )

‖u+
n ‖p+

dz +

∫
Ω\Ω+

F (z, u+
n )

‖u+
n ‖p+

dz

≥
∫

Ω+

F (z, u+
n )

‖u+
n ‖p+

dz − C7|Ω|N
‖u+

N‖p+

⇒
∫

Ω

F (z, u+
n )

‖u+
n ‖p+

dz → +∞ (see (3.47) and (3.45)).(3.48)

On the other hand, from (3.34), (3.42) and (3.44), we can say that, for some

C8 > 0 and all n ∈ N,

− 1

q−

[ ∫
Ω

1

‖u+
n ‖p+−p(z)

|Dvn|p(z) dz +

∫
Ω

1

‖u+
n ‖p+−q(z)

|Dvn|q(z) dz

+

∫
Ω

ϑ+ λ

‖u+
n ‖p+−p(z)

|vn|p(z) dz +

∫
Ω

F (z, u+
n )

‖u+
n ‖p+

dz ≤ C8

implies

(3.49)

∫
Ω

F (z, u+
n )

‖u+
n ‖p+

dz ≤ C9 for some C9 > 0, all n ∈ N.

Comparing (3.49) and (3.47), we have a contradiction.



Global Multiplicity for Parametric Anisotropic Neumann (p, q)-Equations 413

Next, we assume that |Ω+|N = 0, (that is, v ≡ 0). For all n ∈ N, let tn ∈ [0, 1]

be such that

(3.50) γλ
(
tnu

+
n

)
= max

{
γλ
(
tu+
n

)
: 0 ≤ t ≤ 1

}
.

For ξ > 1, let yn = ξ1/p−vn for all n ∈ N. Then yn
w→ 0 in W 1,p(z)(Ω). It follows

that

(3.51)

∫
Ω

ϑ+ λ

p(z)
yp(z)n dz → 0,

∫
Ω

G(z, yn) dz → 0.

On account of (3.45), we can find n0 ∈ N such that

(3.52)
ξ1/p−

‖u+
n ‖
∈ (0, 1] for all n ≥ n0.

Then, for n ≥ n0, we have

γλ(tnu
+
n ) = γλ(yn) (see (3.52), (3.50))

=

∫
Ω

1

p(z)
ξp(z)/p− |Dvn|p(z) dz

+

∫
Ω

ϑ+ λ

p(z)
ξp(z)/p−vp(z)n dz −

∫
Ω

G(z, yn) dz

≥ ξ

p+

[
ρp(Dvn) + (ϑ+ λ)ρp(vn)

]
−
∫

Ω

G(z, yn) dz

(recall that ξ > 1)

⇒ γλ(tnu
+
n ) ≥ C10ξ

2p+
(3.53)

for some C10 > 0, all n ≥ n1 ≥ n0 (see (3.51)).

Since ξ > 1 is arbitrary, from (3.53) we infer that

(3.54) γλ(tnu
+
n )→ +∞ as n→∞.

For some C11 > 0 and all n ∈ N (see (3.34), (3.41)) we have

(3.55) γλ(0) = 0 and γλ(u+
n ) ≤ C11.

From (3.54) and (3.55), it follows that we can find n2 ∈ N such that

tn ∈ (0, 1) for all n ≥ n2 ⇒
d

dt
γλ(tu+

n )

∣∣∣∣
t=t1

= 0 (see (3.50))

⇒ 〈γ′λ(tnu
+
n ), tnu

+
n 〉 = 0 for all n ≥ n2 (by the chain rule).(3.56)
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Then, for n ≥ n2, we have

γλ(tnu
+
n ) = γλ(tnu

+
n )− 1

p+
〈γ′λ(tnu

+
n ), tnu

+
n 〉 (see (3.56))(3.57)

≤
∫

Ω

[
1

p(z)
− 1

p+

]
|Du+

n |p(z) dz

+

∫
Ω

[
1

q(z)
− 1

p+

]
|Du+

n |q(z) dz

+
1

p+

∫
Ω

[
g(z, tnu

+
n )(tnu

+
n )− p+G(z, tnu

+
n )
]
dz

(since tn ∈ (0, 1))

≤
∫

Ω

[
1

p(z)
− 1

p+

]
|Du+

n |p(z) +

∫
Ω

[
1

q(z)
− 1

p+

]
|Du+

n |q(z) dz

+
1

p+

∫
Ω

[
g(z, u+

n )u+
n − p+G(z, u+

n )
]
dz + C12

for some C12 > 0 (see (H1) (iii) and (3.34))

= γλ(u+
n )− 1

p+
〈γ′λ(u+

n ), u+
n 〉+ C12 ≤ C13

for some C13 > 0 and all n ∈ N (see (3.41), (3.42), (3.44)).

Comparing (3.57) and (3.54), we have a contradiction. Therefore {u+
n }n∈N ⊆

W 1,p(z)(Ω) is bounded, hence {un}n∈N ⊆W 1,p(z)(Ω) is bounded (see (3.44)).

We may assume that

(3.58) un
w→ u in W 1,p(z)(Ω) and un → u in Lr(z)(Ω).

In (3.43) we choose h = un − u ∈ W 1,p(z)(Ω), pass to the limit as n → ∞ and

use (3.58). Then

lim
n→∞

[〈Ap(un), un − u〉+ 〈Aq(un), un − u〉] = 0

⇒ lim sup
n→∞

[〈Ap(un), un − u〉+ 〈Aq(u), un − u〉] ≤ 0

(since Aq( · ) is monotone)

⇒ lim sup
n→∞

〈Ap(un), un − u〉 ≤ 0 (see (3.58))

⇒ un → u in W 1,p(z)(Ω) (see Proposition 2.3).

Therefore γλ( · ) satisfies the C-condition and we have proved the Claim. Then

(3.39), (3.40) and the Claim permit the use of the mountain pass theorem. So,

we can find û ∈W 1,p(z)(Ω) such that

(3.59)

û ∈ Kγλ ⊆ [uµ) ∩ intC+ (see (3.35))

mλ ≤ γλ(û) (see (3.39)).
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From (3.59), (3.34), (3.39), we infer that

û ∈ S+
λ ⊆ intC+ and û 6= u0 (for λ ∈ (λ∗,+∞)). �

We have to determine what happens with the critical parameter λ∗. We show

that λ∗ is also admissible and so L+ = [λ∗,+∞).

Proposition 3.13. If hypotheses (H0), (H′1) hold, then λ∗ ∈ L+.

Proof. Let {λn}n∈N ⊆ L+ be such that λn ↓ λ∗. For each n ∈ N, let η ∈
(λ∗, λn). From Proposition 3.3 we know that η ∈ L+ and so we can find uη ∈
S+
η ⊆ intC+. From Corollary 3.4, we know that we can find un = uλn ∈ S+

λn
⊆

intC+ with uη − un ∈ D+.

Consider the energy functional ϕλ : W 1,p(z)(Ω) → R for problem (Pλ) de-

fined by

ϕλ(u) =

∫
Ω

1

p(z)
|Du|p(z) dz +

∫
Ω

1

q(z)
|Du|q(z) dz

+

∫
Ω

λ

p(z)
|u|p(z) dz −

∫
Ω

F (z, u) dz

for all u ∈ W 1,p(z)(Ω). We know that ϕλ ∈ C1
(
W 1,p(z)(Ω)

)
and from the first

part of this proof (see also the proof of Proposition 3.3), we have

ϕλn(un) < ϕλn(0) = 0 for all n ∈ N,

then, for all n ∈ N,

(3.60)

∫
Ω

p+

p(z)
|Dun|p(z) dz +

∫
Ω

p+

q(z)
|Dun|q(z) dz

+

∫
Ω

λnp+

p(z)
|un|p(z) dz −

∫
Ω

p+F (z, un) dz ≤ 0.

On the other hand, since un ∈ S+
n for all n ∈ N, we have

ϕ′λn(un) = 0 for all n ∈ N,

then, for all n ∈ N,

(3.61) ρp(Dun) + ρq(Dun) + λnρp(un) =

∫
Ω

f(z, un)un dz

From (3.60) and (3.61), as in the proof of Proposition 3.12 (see the Claim), via

a contradiction argument, we show that

{un}n∈N ⊆W 1,p(z)(Ω) is bounded.

We may assume that

(3.62) un
w→ u∗ in W 1,p(z)(Ω), un → u∗ in Lr(z)(Ω).

We know that 〈ϕ′λn(un), h〉 = 0 for all h ∈ W 1,p(z)(Ω) and all n ∈ N. Choosing

h = un − u∗ ∈ W 1,p(z)(Ω), passing to the limit as n → ∞ and using (3.62), as
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before (see the proof of Proposition 2.3), exploiting the (S)+-property of Ap( · )
(see Proposition 2.3), we obtain

lim sup
n→∞

〈Ap(z)(un),un − u∗〉 ≤ 0,

⇒ un → u∗ in W 1,p(z)(Ω).(3.63)

Let µ > λn for all n ∈ N. Then µ ∈ L+ and using Proposition 3.10, we can find

u∗µ ∈ intC+ such that

(3.64) u∗µ ≤ un for all n ∈ N ⇒ u∗µ ≤ u∗.

From (3.63) it follows that

〈ϕ′λ(u∗), h〉 = 0 for all h ∈W 1,p(z)(Ω)

⇒ u∗ ∈ S+
λ and so λ∗ ∈ L+ (see (3.64)).

The proof is now complete. �

So, we have proved that L = [λ∗,∞).

Summarizing, we can state the following global (with respect to the param-

eter λ ∈ R) multiplicity theorem for problem (Pλ) (a bifurcation-type theorem).

Theorem 3.14. If hypotheses (H0), (H1) hold, then there exists λ∗ ∈ R such

that :

(a) for all λ > λ∗, problem (Pλ) has at least two positive solutions u0, û ∈
intC+, u0 6= û;

(b) for λ = λ∗, problem (Pλ) has at least one positive solution u∗ ∈ intC+;

(c) if λ < λ∗, problem (Pλ) has no positive solutions.

4. Minimal positive solution

In this section we show that for every λ ∈ L+ = [λ∗,∞), problem (Pλ) has

a smallest positive solution.

Proposition 4.1. If hypotheses (H0), (H1) hold and λ ∈ L+ = [λ∗,+∞), then

problem (Pλ) has a smallest positive solution û∗λ (that is, û∗λ ∈ S
+
λ and û∗λ ≤ u

for all u ∈ S+
λ ).

Proof. From Papageorgiou, Rădulescu and Repovš [13, Proposition 7] we know

that S+
λ is downward directed (that is, if u1, u2 ∈ S+

λ , then we can find u ∈ S+
λ

such that u ≤ u1, u ≤ u2). Invoking Lemma 3.10 of Hu and Papageorgiou [8,

p. 178], we can find {un}n∈N ⊆ S+
λ decreasing such that inf S+

λ = inf
n∈N

un.

We have that

(4.1) 〈ϕ′λ(un), h〉 = 0 for all h ∈W 1,p(z)(Ω), all n ∈ N.
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Choosing h = un ∈W 1,p(z)(Ω), we obtain

ρp(Dun) + ρq(Dun) + λρp(un)

=

∫
Ω

f(z, un)un dz ≤
∫

Ω

|f(z, un)|u1 dz (since 0 ≤ un ≤ u1 for all n ∈ N)

≤ C14 for some C14 > 0, all n ∈ N (see hypothesis (H1) (i))

⇒ {un}n∈N ⊆W 1,p(z)(Ω) is bounded (see Proposition 2.2).

We may assume that

(4.2) un
w→ û∗λ in W 1,p(z)(Ω), un → û∗λ in Lr(z)(Ω).

Choosing h = un − û∗λ ∈W 1,p(z)(Ω) in (4.1), passing to the limit as n→∞ and

using (4.2) and the (S)+-property of Ap( · ) we obtain un → û∗λ in W 1,p(z)(Ω)

hence

(4.3) 〈ϕ′(û∗λ), h〉 = 0 for all h ∈W 1,p(z)(Ω)

(see (4.1)). Also, if µ > λ, then we have

(4.4) u∗µ ≤ û∗λ
(see Proposition 3.10). From (4.3) and (4.4), we infer that

û∗λ ∈ S+
λ ⊆ intC+, û∗λ = inf S+

λ . �

5. Nodal solutions

In this section we prove the existence of a nodal solution (sign-changing

solution) for problem (Pλ).

If the conditions on f(z, · ) are bilateral (that is, they are valid for all x ∈ R
and not only for x ≥ 0 as in (H1), then we can have similar results for the negative

solutions of (Pλ). So, now we impose the following conditions of f(z, · ):

(H′′1) f : Ω × R → R is a Carathéodory function such that f(z, 0) = 0 for

almost all z ∈ Ω and

(i) |f(z, x)| ≤ a(z)
[
1 + |x|r(z)−1

]
for almost all z ∈ Ω, all x ∈ R with

a ∈ L∞(Ω), r ∈ C(Ω), p+ < r(z) < p∗(z) for all z ∈ Ω;

(ii) if

F (z, x) =

∫ x

0

f(z, s) ds,

then

lim
x→±∞

F (z, x)

xp+
= +∞ uniformly for a.a. z ∈ Ω;

(iii) if e(z, x) = f(z, x)x − p+F (z, x), then there exists µ ∈ L1(Ω) such

that

e(z, x) ≤ e(z, y)+µ(z) for a.a. z ∈ Ω, all 0 ≤ x ≤ y and y ≤ x ≤ 0;
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(iv) there exist τ ∈ C(Ω) and C0, δ0, Ĉ > 0 such

1 < τ+ < q−,

C0|x|τ(z) ≤ f(z, x)x for a.a. z ∈ Ω, all |x| ≤ δ0,

−Ĉ|x|p(z) ≤ f(z, x)x for a.a. z ∈ Ω, all x ∈ R;

(v) for every ρ > 0, there exists ξ̂ρ > 0 such that for almost all z ∈ Ω

the function

x 7→ f(z, x) + ξ̂ρ|x|p(z)−2x

is nondecreasing on [−ρ, ρ].

Let L− be the set of admissible parameters for negative solutions and let

S−λ be the set of negative solutions. Then as in Section 3, we can establish the

existence of a critical parameter value λ∗ > −∞ such that

L− = [λ∗,+∞) and ∅ 6= S−λ ⊆ −intC+ for all λ ∈ L−.

We have a global multiplicity result for negative solutions (see Theorem 3.14).

Moreover, for every λ ∈ L− = [λ∗,+∞) there exists a maximal negative solution

v̂∗λ ∈ S
−
λ ⊆ intC+ (that is, v̂∗λ ≤ v for all v ∈ S−λ ).

We set λ̃0 = max{λ∗, λ∗}. For every λ ≥ λ̃0 the problem has extremal

constant sign solutions

û∗λ ∈ S∗λ ⊆ intC+, v̂∗λ ⊆ −intC+.

Let λ ≥ λ̃0 and ϑ > −λ. We introduce the Carathéodory function k̂(z, x)

defined by

(5.1) k̂(z, x) =


f
(
z, v̂∗λ(z)

)
+ ϑ

∣∣v̂∗λ(z)
∣∣p(z)−2

v̂∗λ(z) if x < v̂∗λ(z),

f(z, x) + ϑ|x|p(z)−2x if v̂∗λ(z) ≤ x ≤ û∗λ(z),

f
(
z, û∗λ(z)

)
+ ϑû∗λ(z)p(z)−1 if û∗λ(z) < x.

We also consider the positive and negative truncations of k̂(z, · ), namely the

Carathéodory functions

(5.2) k̂±(z, x) = k̂
(
z,±x±

)
.

We set

K̂(z, x) =

∫ x

0

k̂(z, s) ds and K̂±(z, x) =

∫ x

0

k̂±(z, s) ds

and introduce the C1-functionals ŵλ, ŵ
±
λ : W 1,p(z)(Ω)→ R defined by

ŵλ(u) =

∫
Ω

1

p(z)
|Du|p(z) dz +

∫
Ω

1

q(z)
|Du|q(z) dz,

+

∫
Ω

ϑ+ λ

p(z)
|u|p(z) dz −

∫
Ω

K̂(z, u) dz
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ŵ±λ (u) =

∫
Ω

1

p(z)
|Du|p(z) dz +

∫
Ω

1

q(z)
|Du|q(z) dz

+

∫
Ω

ϑ+ λ

p(z)
|u|p(z) dz −

∫
Ω

K̂±(z, u) dz,

for all u ∈W 1,p(z)(Ω). Using (5.1) and (5.2), we can show easily that

Kŵλ ⊆ [v̂∗λ, û
∗
λ] ∩ C1(Ω), Kŵ+

λ
⊆ [0, û∗λ] ∩ C+, Kŵ−λ

⊆ [v̂∗λ, 0] ∩ (−C+).

The extremality of û∗λ, v̂∗λ implies that

(5.3) Kŵλ ⊆ [v̂∗λ, û
∗
λ] ∩ C1(Ω), Kŵ+

λ
= {0, û∗λ}, Kŵ−λ

= {0, v̂∗λ}.

Working with these functionals, we produce a nodal (sign-changing) solution.

Proposition 5.1. If hypotheses (H0), (H′′1) hold and λ ≥ λ̃0, then problem (Pλ)

admits a nodal solution y0 ∈ [v̂∗λ, û
∗
λ] ∩ C1(Ω).

Proof. First we show that û∗λ ∈ intC+ and v̂∗λ ∈ −intC+ are local minimizers

of the functional ŵλ( · ). From (5.1) and (5.2), we see that ŵ+
λ is coercive. Also,

it is sequentially weakly lower semicontinuous. So, we can find u∗λ ∈W 1,p(z)(Ω)

such that

(5.4) ŵ+
λ (u∗λ) = inf

{
ŵ+
λ (u) : u ∈W 1,p(z)(Ω)

}
.

If u ∈ intC+ and we choose t ∈ (0, 1) small so that at least we have tu ≤ û∗λ
(recall that û∗λ ∈ intC+). Then on account of hypothesis (H′′1) (iv) and, since

τ+ < q−, for t ∈ (0, 1) even smaller, we have

ŵ+
λ (tu) < 0 ⇒ ŵ+

λ (u∗λ) < 0 = ŵ+
λ (0) (see (5.4))

⇒ u∗λ 6= 0.

Since u∗λ ∈ Kw+
λ

(see (5.4)), from (5.3) we infer that u∗λ = û∗λ ∈ intC+. It is

clear from (5.1) and (5.2) that

ŵλ
∣∣
C+

= ŵ+
λ

∣∣
C+
⇒ û∗λ is a local C1(Ω)-minimizer of wλ( · )

⇒ û∗λ is a local W 1,p(z)(Ω)-minimizer of wλ( · ) (see [7]).

Similarly we show that v̂∗λ ∈ −intC+ is a local minimizer of ŵ( · ). This time we

work with ŵ−λ ( · ). We may assume that

(5.5) Kŵλ is finite.

Otherwise, on account of (5.3) and the extremality of û∗λ and v̂∗λ, we have a whole

sequence of distinct nodal solutions and so we are done. We may assume that

ŵλ(v̂∗λ) ≤ ŵλ(û∗λ).

The reasoning is similar, if the opposite inequality holds. From the fact that

û∗λ is a local minimizer of wλ( · ), from (5.5) and by using Theorem 5.7.6 of
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Papageorgiou, Rădulescu and Repovš [14, p. 449], we can find ρ ∈ (0, 1) small

such that

(5.6)

ŵλ(v̂∗λ) ≤ ŵλ(û∗λ) < inf
{
ŵ(u) : ‖u− û∗λ‖ = ρ

}
= m̂λ,

‖v̂∗λ − û∗λ‖ > ρ.

Evidently, the functional ŵλ( · ) is coercive (see (5.1) and recall that ϑ > −λ). So,

it satisfies the C-condition (see Proposition 5.1.15 of [14, p. 369]). Then, using

also (5.6), we see that we can apply the mountain pass theorem and produce

y0 ∈W 1,p(z)(Ω) such that

y0 ∈ Kwλ ⊆ [v̂∗λ, û
∗
λ] ∩ C1(Ω) (see (5.3)),

ŵλ(v̂∗λ) ≤ ŵλ(û∗λ) < m̂λ ≤ ŵλ(y0) (see (5.6)).

From the above we see that y0 6∈
{
û∗λ, v̂

∗
λ

}
. From Theorem 6.5.8 of [14, p. 527]

we have

(5.7) C1(ŵλ, y0) 6= 0.

On the other hand, hypothesis (H1) (iv) and Proposition 3.7 of Papageorgiou

and Rădulescu [12], imply that

(5.8) Ck(ŵλ, 0) = 0 for all k ∈ N0.

Comparing (5.7) and (5.8), we conclude that

(5.9) y0 6= 0 ⇒ y0 6∈ {0, û∗λ, v̂∗λ}.

Since y0 ∈ [v̂∗λ, û
∗
λ] ∩ C1(Ω), the extremality of û∗λ, v̂∗λ and (5.9) imply that

y0 ∈ C1(Ω) is a nodal solution of (Pλ). �

So, we can state the following multiplicity theorem for our problem.

Theorem 5.2. If hypotheses (H0), (H′′1) hold, then there exists λ̃0 ∈ R such that

(a) for λ = λ̃0, problem (Pλ) has at least three nontrivial solutions

u0 ∈ intC+, v0 ∈ −intC+,

y0 ∈ [v0, u0] ∩ C1(Ω) nodal.

(b) for all λ > λ̃0, problem (Pλ) has at least five nontrivial solutions

u0, û ∈ intC+, u0 ≤ û, u0 6= û,

v0, v̂ ∈ −intC+, v̂ ≤ v0, v0 6= v̂,

y0 ∈ [v0, u0] ∩ C1(Ω) nodal.
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