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Abstract We consider a parametric Dirichlet problem driven by the anisotropic 
.(p, q)-Laplacian and with a reaction which exhibits the combined effects of a 
superlinear (convex) term and of a negative sublinear term. Using variational tools 
and critical groups we show that for all small values of the parameter, the problem 
has at least three nontrivial smooth solutions, two of which are of constant sign 
(positive and negative). 
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1 Introduction 

Let .� ⊆ RN be a bounded domain with a .C2-boundary . ∂�. In this paper we study 
the following parametric anisotropic Dirichlet problem 

.

⎧
⎨

⎩

−�p(z)u(z) − �qu(z) = f (z, u(z)) − λ|u(z)|τ(z)−2u(z) in �,

u

∣
∣
∣
∂�

= 0, 1 < τ(z) < q < p(z) < N for all z ∈ �, λ > 0.
(Pλ) 
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Given .r ∈ C0,1(�) (= the space of Lipschitz continuous functions on . �) with . 1 <

r− = min
�

r , by .�r(z) we denote the anisotropic r-Laplacian defined by 

.�r(z)u = div (|∇u|r(z)−2∇u) for all u ∈ W
1,r(z)
0 (�)(see Sect. 2). 

If .r(·) is constant, then we have the standard r-Laplacian denoted by . �r . In  
problem (Pλ) above, we have the sum of two such operators, one with variable 
exponent and the other with constant exponent. In the reaction (the right hand side 
of (Pλ)), we have the combined effects of two distinct nonlinearities. 

One is the Carathéodory function .f (z, x) (that is, for all .x ∈ R, .z → f (z, x) is 
measurable and for a.a. .z ∈ �, .x → f (z, x) is continuous). We assume that . f (z, ·)
is .(p+ − 1)-superlinear (.p+ = max

�

p) but it needs not satisfy the (common in such 

cases) Ambrosetti-Rabinowitz condition, see also Papageorgiou-Rădulescu-Repovš 
[19] (Robin problem). This term represents a “convex” contribution to the reaction. 

The other nonlinearity is the parametric function .x → −λ|x|τ(z)−2x with . τ ∈
C(�) such that .1 < τ(z) < q for all .z ∈ �. Therefore this term is .(q − 1)-
sublinear (“concave” term). Thus the reaction of (Pλ) corresponds to a “concave-
convex” problem, but with an essential difference. The concave (sublinear) term 
enters in the equation with a negative sign and this changes the geometry of the 
problem. 

In the past, problems with a negative concave term were studied by Perera [25], 
de Paiva-Massa [3], Papageorgiou-Rădulescu-Repovš [15] (Robin problems) for 
semilinear equations driven by the Laplacian, and by Papageorgiou-Winkert [12] 
for resonant .(p, 2)-equations. All the aforementioned works deal with isotropic 
equations and the perturbation .f (z, ·) is .(p − 1)-linear. 

Using variational tools from the critical point theory and critical groups (see 
Sect. 2), we show that for all sufficiently small .λ > 0, problem (Pλ) has at least 
three nontrivial smooth solutions. Two of these solutions have constant sign (one 
is positive and the other negative). It is an interesting open question, whether this 
multiplicity theorem still holds when the exponent q is also variable and whether 
we can show that the third solution is nodal (sign-changing). 

For the hypotheses . H0 and . H1 involved in our theorem, we refer to Sect. 2. Also  
.C+ = {u ∈ C1

0(�) : u(z) ≥ 0 for all z ∈ �}. 
Theorem 1.1 If hypotheses . H0 and . H1 hold, then for all sufficiently small .λ > 0, 
problem (Pλ) has at least three nontrivial solutions .u0 ∈ C+\{0}, .v0 ∈ (−C+)\{0}, 
and .y0 ∈ C1

0(�) \ {0}. 
To have a more complete picture of the relevant literature, we mention that 

the standard isotropic concave-convex problems (the concave term having a pos-
itive sign), were first considered by Ambrosetti-Brezis-Cerami [1] for semilinear 
equations driven by Dirichlet Laplacian. Their work was extended to nonlinear 
equations driven by the p-Laplacian by Garcia Azorero-Peral Alonso-Manfredi 
[8]. Since then appeared several works with further generalizations. Just to quote
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a few we mention the works of Gasiński-Papageorgiou [10, 11], Papageorgiou-
Repovš-Vetro [20, 23], Papageorgiou-Vetro-Vetro [21, 24], Papageorgiou-Winkert 
[13], and the recent papers of Papageorgiou-Qin-Rădulescu [17] and Papageorgiou-
Rădulescu-Repovš [18] on anisotropic equations. In all these works the concave 
term enters in the equation with a positive sign and this permits the use of the 
strong maximum principle which provides more structural information concerning 
the solution. This extra information allows us to use the result relating Sobolev and 
Hölder minimizers. In the present setting this is no longer possible and the geometry 
changes requiring a new approach. 

2 Preliminaries 

The analysis of problem (Pλ) uses variable Lebesgue and Sobolev spaces. A detailed 
presentation of these spaces can be found in the books of Cruz Uribe-Fiorenza [2] 
and of Diening-Hajulehto-Hästö-Ru̇žička [4]. 

Let .E1 = {r ∈ C(�) : 1 < r− = min
�

r}. In general, for any . r ∈ E1, we set  

. r− = min
�

r and r+ = max
�

r.

Also let .M(�) = {u : � → R measurable}. We identify two such functions 
which differ only on a Lebesgue null set. Given .r ∈ E1, we define the variable 
Lebesgue space .Lr(z)(�) by 

. Lr(z)(�) =
{

u ∈ M(�) :
∫

�

|u(z)|r(z)dz < +∞
}

.

This space is equipped with the so-called “Luxemburg norm”, defined by 

. ‖u‖r(z) = inf

{

λ > 0 :
∫

�

( |u(z)|
λ

)r(z)

dz ≤ 1

}

.

The space .Lr(z)(�) endowed with this norm becomes a Banach space which is 
separable and uniformly convex (hence reflexive) (see [4], p. 67). For .r ∈ E1 by 
.r ′(·) we denote the variable conjugate exponent to . r(·), that is, . 1

r(z)
+ 1

r ′(z) = 1 for 

all .z ∈ �. Evidently, .r ′ ∈ E1 and 

.(Lr(z)(�))∗ = Lr ′(z)(�).
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Moreover, we have a Hölder-type inequality, namely 

. 

∫

�

|u(z)v(z)|dz ≤
[

1

r−
+ 1

r ′−

]

‖u‖r(z)‖v‖r ′(z)

for all .u ∈ Lr(z)(�), .v ∈ Lr ′(z)(�) (see [2], p. 27). In addition, if .r, r̂ ∈ E1 and 
.r(z) ≤ r̂(z) for all .z ∈ �, then .Lr̂(z)(�) ↪→ Lr(z)(�) continuously (see [2], pp. 
37–38). 

Using the variable Lebesgue spaces, we can define the corresponding variable 
Sobolev spaces. Taken .r ∈ E1, then 

. W 1,r(z)(�) =
{
u ∈ Lr(z)(�) : |∇u| ∈ Lr(z)(�)

}
,

where .∇u denotes the weak gradient of u. This space is equipped with the norm 

. ‖u‖1,r(z) = ‖u‖r(z) + ‖∇u‖r(z) for all u ∈ W 1,r(z)(�),

with .‖∇u‖r(z) = ‖|∇u|‖r(z). If .r ∈ E1 ∩ C0,1(�), then we define also 

. W
1,r(z)
0 (�) = C∞

c (�)
‖·‖1,r(z)

.

Both .W 1,r(z)(�) and .W 1,r(z)
0 (�) are Banach spaces which are separable and 

uniformly convex (thus reflexive) (see [4], p. 245). The critical Sobolev exponent 
.r∗(·) is defined by 

. r∗(z) =
⎧
⎨

⎩

Nr(z)

N − r(z)
if r(z) < N,

+∞ if N ≤ r(z).

For .r, p ∈ C(�) with .1 < r−, p+ < N and .1 ≤ p(z) ≤ r∗(z) for all . z ∈ �

(resp. .1 ≤ p(z) < r∗(z) for all .z ∈ �), then we have 

. W 1,r(z)(�) ↪→ Lp(z)(�) continuously

. (resp. W 1,r(z)(�) ↪→ Lp(z)(�) compactly),

(see [4], p. 259). The same embeddings are also valid for .W 1,r(z)
0 (�). We mention 

that on .W 1,r(z)
0 (�) (.r ∈ C0,1(�)), the Poincaré inequality holds. Recall that the 

Poincaré inequality says that there exists .c = c(�) > 0 such that . ‖u‖r(z) ≤
c‖∇u‖r(z) for all .u ∈ W

1,r(z)
0 (�) (see [4], p. 249). So, on .W 1,r(z)

0 (�) we can use 
the following norm 

.‖u‖ = ‖∇u‖r(z) for all u ∈ W
1,r(z)
0 (�).
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In what follows, we shall denote by .ρr(·) the modular function 

. ρr(u) =
∫

�

|u(z)|r(z)dz for all u ∈ Lr(z)(�).

If .u ∈ W 1,r(z)(�) or .u ∈ W
1,r(z)
0 (�), then .ρr(∇u) = ρr(|∇u|). The norm . ‖·‖r(z)

and the modular function .ρr(·) are closely related (see [6], Proposition 2.1). 

Proposition 2.1 If .r ∈ E1 and .u ∈ Lr(z)(�) \ {0}, then the following statements 
hold: 

(a) .‖u‖r(z) = θ ⇔ ρr

(
u
θ

) = 1 for all .θ > 0; 
(b) .‖u‖r(z) < 1 (resp. = 1,> 1) ⇔ ρr(u) < 1 (resp. = 1,> 1); 
(c) .‖u‖r(z) < 1 ⇒ ‖u‖r+

r(z) ≤ ρr(u) ≤ ‖u‖r−
r(z); 

(d) .‖u‖r(z) > 1 ⇒ ‖u‖r−
r(z) ≤ ρr(u) ≤ ‖u‖r+

r(z); 
(e) .‖u‖r(z) → 0 (resp. ‖u‖r(z) → +∞) ⇔ ρr(u) → 0 (resp. ρr(u) → +∞). 

We know that for .r ∈ E1 ∩ C0,1(�), we have  

W
1,r(z) 
0 (�)∗ = W−1,r ′(z) (�) (see [4], pp. 378–379). 

Consider the operator .Ar(z) : W
1,r(z)
0 (�) → W−1,r ′(z)(�) defined by 

.〈Ar(z)(u), h〉 =
∫

�

|∇u(z)|r(z)−2(∇u,∇h)
R

N dz for all u, h ∈ W
1,r(z)
0 (�), (1) 

where .(·, ·)
R

N is the inner product in . RN . This operator has the following properties 
(see [7], Proposition 2.9). 

Proposition 2.2 If .r ∈ E1 ∩ C0,1(�), then the operator .Ar(z)(·) is bounded . (that 
is, it maps bounded sets to bounded sets. ), continuous, strictly monotone . (thus 
also maximal monotone. ) and of type .(S)+ . (that is, .un

w−→ u in .W 1,r(z)
0 (�) and 

.lim sup
n→∞

〈Ar(z)(un), un − u〉 ≤ 0 imply that .un → u in . W
1,r(z)
0 (�)).

Let X be a Banach space, .ϕ ∈ C1(X,R) and . c ∈ R. We set  

. Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),

ϕc = {u ∈ X : ϕ(u) ≤ c}.

Let .(Y1, Y2) be a topological pair such that .Y2 ⊆ Y1 ⊆ X and .k ∈ N0. 
By .Hk(Y1, Y2) we denote the kth-relative singular homology group with integer 
coefficients. If .u ∈ Kϕ is isolated and .c = ϕ(u), then the critical groups of . ϕ at u 
are defined by 

.Ck(ϕ, u) = Hk(ϕ
c ∩ U, ϕc ∩ U \ {u}) for all k ∈ N0,
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with U a neighborhood of u such that .Kϕ ∩ ϕc ∩ U = {u} (see [16], Chapter 
6). The excision property of singular homology implies that the above definition is 
independent of the choice of the isolating neighborhood U . For details we refer to 
Papageorgiou-Rădulescu-Repovš [16], Chapter 6, where the reader can find explicit 
computations of the critical groups for various kinds of critical points. 

3 Conditions and Hypotheses 

Definition 3.1 We say that ϕ ∈ C1(X, R) satisfies the C-condition, if it has the 
following property: Every sequence {un}n∈N ⊆ X such that

• {ϕ(un)}n∈N ⊆ R is bounded; and
• (1 + ‖un‖X)ϕ′(un) → 0 in  X∗ as n → ∞  (X∗ denotes the dual of X), 

admits a strongly convergent subsequence (see [16], p. 366). 

Our hypotheses on the data of problem (Pλ) will be the following: 

H0: p ∈ C0,1(�), τ ∈ C(�) and 1 < τ(z) < q  <  p(z)  < N  for all z ∈ �. 
H1: f : �× R → R is a Carathéodory function such that f (z, 0) = 0 for a.a. z ∈ �

and 

(i) |f (z,  x)| ≤  a(z)[1 + |x|r(z)−1] for a.a. z ∈ �, all  x ∈ R, with a ∈ L∞(�), 
r ∈ C(�) with p(z) < r(z) < p∗− for all z ∈ �; 

(ii) if F(z,  x)  = ∫ x 
0 f (z,  s)ds, then lim 

x→±∞ 
F(z,x)  
|x|p+ = +∞  uniformly for a.a. z ∈

�; 
(iii) there exist μ ∈ C(�) with μ(z) ∈

(
(r+ − p−) N 

p− 
, p∗−

)
for all z ∈ �, 

τ+ < μ− and a constant β0 > 0 such that 

. β0 ≤ lim inf
x→±∞

f (z, x)x − p+F(z, x)

|x|μ(z)
uniformly for a.a. z ∈ �;

(iv) there exist η ∈ L∞(�) and η̂ >  0 such that 

. ̂λ1(q) ≤ η(z) for a.a. z ∈ �, η �≡ λ̂1(q),

η(z) ≤ lim inf
x→0

qF(z, x)

|x|q ≤ lim sup
x→0

qF(z, x)

|x|q ≤ η̂ uniformly for a.a. z ∈ �,

(by λ̂1(q) we denote the principal eigenvalue of (−�q,W
1,q 
0 (�)); we know

λ̂1(q) > 0, see [9], p. 741). 

Remark 3.1 Hypotheses H1 (ii), (iii) imply that for a.a. z ∈ �, f (z, ·) is (p+ −1)-
superlinear. We do not employ the AR-condition and this way we incorporate in 
our framework superlinear nonlinearities with “slower” growth as x → ±∞. The
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following function satisfies hypothesis H1 but it fails to satisfy the AR-condition: 

. f (z, x) =
{

η[|x|q−2x − |x|θ(z)−2x] if |x| ≤ 1,

|x|p+−2x ln |x| if 1 < |x|,

with θ ∈ C(�) and q <  θ(z)  for all z ∈ �. 

For λ >  0, let ϕλ : W 1,p(z) 
0 (�) → R be the energy functional for problem (Pλ) 

defined by 

. ϕλ(u) =
∫

�

1

p(z)
|∇u(z)|p(z)dz + 1

q
‖∇u‖q

q +
∫

�

λ

τ(z)
|u(z)|τ(z)dz −

∫

�

F(z, u)dz

for all u ∈ W 1,p(z) 
0 (�). Evidently, ϕλ ∈ C1(W

1,p(z) 
0 (�)). 

We also introduce the positive and negative truncations of ϕλ(·), namely the C1-
functionals ϕ± 

λ : W
1,p(z) 
0 (�) → R defined by 

. ϕ±
λ (u) =

∫

�

1

p(z)
|∇u(z)|p(z)dz + 1

q
‖∇u‖q

q +
∫

�

λ

τ(z)
(u±(z))τ(z)dz −

∫

�

F(z,±u±)dz

for all u ∈ W 1,p(z) 
0 (�). Recall u+ = max{u, 0}, u− = max{−u, 0}. 

We can show that the functionals ϕ± 
λ (·) and ϕλ(·) satisfy the C-condition. 

Proposition 3.1 If hypotheses H0 and H1 hold and λ >  0, then the functionals 
ϕ± 

λ (·) and ϕλ(·) satisfy the C-condition. 

Proof We shall present the proof for the functional ϕ+ 
λ (·), the proofs for ϕ− 

λ (·) and 

ϕλ(·) are similar. So, consider a sequence {un}n∈N ⊆ W 1,p(z) 
0 (�) such that 

.|ϕ+
λ (un)| ≤ c1 for some c1 > 0 and all n ∈ N, . (2) 

(1 + ‖un‖)(ϕ+ 
λ )

′(un) → 0 in  W−1,p′(z) (�) as n → ∞. (3) 

Referring to (1), by  (3) we have 

. 

∣
∣
∣
∣〈Ap(z)(un), h〉 + 〈Aq(un), h〉 +

∫

�

λ(u+
n )τ(z)−1hdz −

∫

�

f (z, u+
n )hdz

∣
∣
∣
∣

≤ εn‖h‖
1 + ‖un‖ (4) 

for all h ∈ W 1,p(z) 
0 (�), with εn → 0+.
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In (4) we choose h = −u−
n ∈ W 1,p(z) 

0 (�) and obtain 

. ρp(∇u−
n ) ≤ εn for all n ∈ N,

⇒ u−
n → 0 in W

1,p(z)

0 (�) as n → ∞ (see Proposition 2.1). (5) 

From (2) and (5) we have 

.ρp(∇u+
n ) + p+

q
‖∇u+

n ‖q
q +

∫

�

λp+
τ(z)

(u+
n )τ(z)dz −

∫

�

p+F(z, u+
n )dz ≤ c2 (6) 

for some c2 > 0 and all n ∈ N. 
Also, if in (4) we use the test function h = u+

n ∈ W 1,p(z) 
0 (�), we obtain 

. − ρp(∇u+
n ) − ‖∇u+

n ‖q
q −

∫

�

λ(u+
n )τ(z)dz +

∫

�

f (z, u+
n )u+

n dz ≤ εn (7) 

for all n ∈ N. We add (6) and (7) and obtain 

. 

∫

�

[f (z, u+
n )u+

n − p+F(z, u+
n )]dz ≤ c3 for some c3 > 0 and all n ∈ N.

From hypothesis H1 (iii) we see that we can always assume that μ− < r−. 
Hypotheses H1 (i), (iii) imply that there exist β̂0 ∈ (0, β0) and c4 > 0 such that 

.β̂0|x|μ− − c4 ≤ f (z, x)x − p+F(z, x) for a.a. z ∈ � and all x ∈ R. (8) 

We use (8) in (7) and obtain 

. ‖u+
n ‖μ−

μ− ≤ c5 for some c5 > 0 and all n ∈ N,

⇒ {u+
n }n∈N ⊆ Lμ−(�) is bounded. (9) 

Recall that μ− < r− ≤ r+ < p∗−. So, we can find t ∈ (0, 1) such that 

.
1

r+
= 1 − t

μ−
+ t

p∗−
. (10) 

Using the interpolation inequality (see Papageorgiou-Winkert [14], p. 116), we 
have 

. ‖u+
n ‖r+ ≤ ‖un‖1−t

μ− ‖un‖t
p∗− for all n ∈ N,

⇒ ‖u+
n ‖r+

r+ ≤ c6‖u+
n ‖tr+ for some c6 > 0, all n ∈ N (see (9)). (11)
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Also, from (4) with h = u+
n ∈ W 1,p(z) 

0 (�), we have  

. ρp(∇u+
n ) ≤ c7 +

∫

�

f (z, u+
n )u+

n dz for some c7 > 0 and all n ∈ N.

Without loss of generality, we may assume that ‖u+
n ‖ ≥  1. Using hypothesis 

H1(i) and Proposition 2.1, we have  

. ‖u+
n ‖p− ≤ c8[1 + ‖u+

n ‖r+
r+] for some c8 > 0,

≤ c9[1 + ‖u+
n ‖tr+] for some c9 > 0 and all n ∈ N (see (11)). (12) 

From (10) we have 

. tr+ = p∗−(r+ − μ−)

p∗− − μ−
< p− (see hypothesis H1 (iii)),

⇒ {u+
n }n∈N ⊆ W

1,p(z)

0 (�) is bounded (see (12)), 

⇒ {un}n∈N ⊆ W 1,p(z) 
0 (�) is bounded (see (5)). 

So, we may assume that 

.un
w−→ u in W

1,p(z)

0 (�) and un → u in Lr(z)(�). (13) 

In (4) we choose h = un − u ∈ W 1,p(z) 
0 (�), pass to the limit as n → ∞, and use 

(13). We obtain 

. lim
n→∞

[〈Ap(z)(un), un − u〉 + 〈Aq(un), un − u〉] = 0,

⇒ lim sup
n→∞

[〈Ap(z)(un), un − u〉 + 〈Aq(u), un − u〉] ≤ 0,

(since Aq(·) is monotone),

⇒ lim sup
n→∞

〈Ap(z)(un), un − u〉 ≤ 0 (see (13)), 

⇒ un → u in W 1,p(z) 
0 (�) (see Proposition 2.2). 

This proves that the functional ϕ+ 
λ (·) satisfies the C-condition. In a similar 

fashion we show that ϕ− 
λ (·) and ϕλ(·) also satisfy the C-condition. ��
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4 Auxiliary Propositions 

We shall prove two propositions needed for the proof of the main result. 

Proposition 4.1 If hypotheses . H0 and . H1 hold and .λ > 0, then there exist . ρ0, c0 >

0 such that .ϕ±
λ (u) ≥ c0 > 0 for all .u ∈ W

1,p(z)

0 (�), .‖u‖ = ρ0. 

Proof On account of hypothesis .H1 (iv), we have  

. lim
x→0+

F(z, x)

xτ(z)
= lim

x→0+

[
F(z, x)

xq
xq−τ(z)

]

= 0 (recall that τ+ < q). (14) 

Then (14) and hypothesis .H1 (i) imply that given .ε > 0, we can find . c10 =
c10(ε) > 0 such that 

. F+(z, x) ≤ ε

τ+
|x|τ(z) + c10|x|r− for a.a. z ∈ � and all x ∈ R.

For .u ∈ W
1,p(z)

0 (�) with .‖u‖ ≤ 1, we have  

. ϕ+
λ (u) ≥ 1

p+
ρp(∇u) + 1

τ+
[λ − ε]ρτ (u) − c11‖u‖r− for some c11 > 0

(since .‖u‖τ(z) ≤ 1). Choosing .ε ∈ (0, λ) and recalling that .‖u‖ ≤ 1, we have  

.ϕ+
λ (u) ≥ 1

p+
‖u‖p+ − c11‖u‖r− (see Proposition 2.1). 

Recall that .p+ < r−. So, by choosing .ρ0 ∈ (0, 1) sufficiently small, we obtain 

. ϕ+
λ (u) ≥ c0 > 0 for all u ∈ W

1,p(z)

0 (�), ‖u‖ = ρ0.

Similarly for .ϕ−
λ (·). ��

Recall that .̂λ1(q) > 0 is the principal eigenvalue of .(−�q,W
1,q

0 (�)). Also, by 
.̂u1 = û1(q) we denote the corresponding positive .Lq -normalized (that is, . ‖û1‖q =
1) eigenfunction. We know that .̂u1 ∈ C1

0(�) and .̂u1(z) > 0 for all .z ∈ � (see [9], 
Theorem 6.2.9, p. 739). 

Proposition 4.2 If hypotheses . H0 and . H1 hold, then there exist .λ∗ > 0 and . t± > 0
such that .ϕ±

λ (±t±û1) < 0 for all .λ ∈ (0, λ∗). 

Proof On account of hypotheses .H1 (i), (iv), given .ε > 0, we can find . c12 =
c12(ε) > 0 such that 

.F+(z, x) ≥ 1

q
[η(z) − ε]|x|q − c12|x|r− for a.a. z ∈ � and all x ≥ 0.



Anisotropic .(p, q)-Equations 435 

Then for .t ∈ (0, 1] we have 

. ϕ+
λ (tû1)

≤ tp−

p−
ρp(∇û1) + tq

q

[∫

�

(̂λ1(q) − η(z))̂u
q

1dz + ε

]

+ λtτ−

τ−
ρτ (̂u1) + c12t

r−‖û1‖r−
r− .

As we have mentioned earlier, .̂u1(z) > 0 for all .z ∈ �. This fact, combined with 
hypothesis .H1 (iv), implies that 

. ̂μ =
∫

�

(η(z) − λ̂1(q))̂u
q

1dz > 0.

So, choosing .ε ∈ (0, μ̂), we obtain 

. ϕλ(tû1) ≤ c13[tp− + λtτ−] − c14t
q for some c13, c14 > 0

= [c13(t
p−−q + λtτ−−q) − c14]tq . (15) 

Consider the function 

. ξλ(t) = tp−−q + λtτ−−q for t > 0.

Since .τ− < q < p−, we see that 

. ξλ(t) → +∞ as t → 0+ and as t → +∞.

Therefore there exists .t+ > 0 such that 

. ξλ(t+) = inf{ξλ(t) : t > 0},
⇒ ξ ′

λ(t+) = 0,

⇒ (p−q)t
p−−τ−+ = λ(q − τ−),

⇒ t+ =
[
λ(q − τ−)

p− − q

] 1
p−−τ−

. (16) 

Using (16), we see that 

.ξλ(t+) → 0+ as λ → 0+.
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Hence we can find .λ∗
1 > 0 such that 

. ξλ(t+) <
c14

c13
for all λ ∈ (0, λ∗

1),

⇒ ϕ+
λ (t+û1) < 0 for all λ ∈ (0, λ∗

1) (see (15)). 

Similarly working with .ϕ−
λ (·), we produce .λ∗

2 > 0 and .t− > 0 such that 

. ϕ−
λ (−t−û1) < 0 for all λ ∈ (0, λ∗

2).

Finally let .λ∗ = min{λ∗
1, λ

∗
2}. ��

Remark 4.1 We can always choose .λ∗ > 0 small so that 

.t± = t±(λ) ∈ (0, ρ0) for all λ ∈ (0, λ∗)(ρ0 > 0 is as in Proposition 4.1). (17) 

5 Proof of Main Theorem 

We shall break down the proof of Theorem 1.1 into two steps (5.1 and 5.2). 

5.1 Existence of Two Solutions 

First, we shall produce two nontrivial constant sign solutions. In what follows, we 
shall denote .C+ = {u ∈ C1

0(�) : 0 ≤ u(z) for all z ∈ �}. 
Proposition 5.1 If hypotheses . H0 and . H1 hold and .λ ∈ (0, λ∗), then problem (Pλ) 
has at least two constant sign solutions .u0 ∈ C+ \ {0}, .v0 ∈ (−C+) \ {0} and both 
are local minimizers of the energy functional .ϕλ(·). 
Proof We introduce the closed ball 

. Bρ0 = {u ∈ W
1,p(z)

0 (�) : ‖u‖ ≤ ρ0}

with .ρ0 > 0 as in Proposition 4.1 and consider the minimization problem 

. inf{ϕ+
λ (u) : u ∈ Bρ0} = m+

λ . (18) 

The anisotropic Sobolev embedding theorem (see Sect. 2), implies that . ϕ+
λ (·)

is sequentially weakly lower semicontinuous. Also the reflexivity of . W 1,p(z)

0 (�)

and the Eberlein-Smulian theorem (see [14], p. 221) imply that .Bρ0 is sequentially
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weakly compact. So, by the Weierstrass-Tonelli theorem (see [14], p. 78), we can 
find .u0 ∈ Bρ0 such that 

.ϕ+
λ (u0) = m+

λ ≤ ϕ+
λ (t+û1) < 0 = ϕ+

λ (0) (19) 

(see (17), (18) and Proposition 4.2), 

⇒ u0 �= 0. 

From (19) and Proposition 4.1, we have  

. 0 < ‖u0‖ < ρ0.

Hence we have 

. (ϕ+
λ )′(u0) = 0,

⇒ 〈Ap(z)(u0), h〉 + 〈Aq(u0), h〉 =
∫

�

f (z, u+
0 )hdz − λ

∫

�

(u+
0 )τ(z)−1hdz

(20) 

for all .h ∈ W
1,p(z)

0 (�). In  (20) we choose .h = −u−
0 ∈ W

1,p(z)

0 (�) and obtain 

. ρp(∇u−
0 ) + ‖∇u−

0 ‖q
q = 0,

⇒ u0 ≥ 0, u0 �= 0.

By Papageorgiou-Rădulescu-Zhang [22, Proposition A.1], we know that . u0 ∈
L∞(�). Then the anisotropic regularity theory (see Fan [5, Theorem 1.3] and Tan-
Fang [26, Corollary 3.1]) implies .u0 ∈ C+ \ {0}. So, we have produced a positive 
smooth solution of (Pλ) for .λ ∈ (0, λ∗). Similarly working with functional .ϕ−

λ (·), 
we produce a negative solution . v0 of (Pλ) (.λ ∈ (0, λ∗)) such that 

. v0 ∈ (−C+) \ {0}.

Finally, we show that . u0 and . v0 are both local minimizers of the energy functional 
.ϕλ(·). We shall present the proof for . u0, the proof for . v0 is similar. From the first 
part of the proof, we know that . u0 is a local .C1

0(�)-minimizer of .ϕ+
λ (·). So, we can 

find .ρ1 > 0 such that 

. ϕ+
λ (u0) ≤ ϕ+

λ (u) for all u ∈ B
C1

0
ρ1

(u0) = {u ∈ C1
0(�) : ‖u − u0‖C1

0 (�) ≤ ρ1}.
(21)
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For .u ∈ B
C1

0
ρ1

(u0) we have 

. ϕλ(u) − ϕλ(u0)

= ϕλ(u) − ϕ+
λ (u0) (since ϕλ

∣
∣
C+ = ϕ+

λ

∣
∣
C+)

≥ϕλ(u) − ϕ+
λ (u) (see (21)) 

≥ 
λ 
τ+

∫

�

[|u|τ(z)  − (u+)τ(z)]dz −
∫

�

[F(z,  u)  − F(z,  u+)]dz 

= 
λ 
τ+ 

ρτ (u
−) −

∫

�

F(z,−u−)dz. (22) 

On account of hypotheses .H1 (i), (iv) we can find .c15 > 0 such that 

.F(z, x) ≤ c15[|x|q + |x|r+] for a.a. z ∈ � and all x ∈ R. (23) 

Using (23) in (22), we obtain 

. ϕλ(u) − ϕλ(u0)

≥ λ

τ+
ρτ (u

−) − c15

∫

�

[(u−)q + (u−)r+]dz

≥ λ

τ+
ρτ (u

−) − c15

∫

�

[‖u−‖q−τ(z)∞ + ‖u−‖r+−τ(z)∞ ](u−)τ(z)dz. (24) 

Recall that .u0 ∈ C+ \{0} and .u ∈ B
C1

0
ρ1

(u0). So, by choosing .ρ1 > 0 even smaller 
if necessary, we can have that .‖u−‖∞ ≤ 1. Hence 

.‖u−‖q−τ(z)∞ ≤ ‖u−‖q−τ+∞ , ‖u−‖r+−τ(z)∞ ≤ ‖u−‖r+−τ+∞ . (25) 

We return to (24) and use (25). We obtain 

. ϕλ(u) − ϕλ(u0) ≥
[

λ

τ+
− c15(‖u−‖q−τ+∞ + ‖u−‖r+−τ+∞ )

]

ρτ (u
−).

Note that .‖u−‖∞ → 0+ as .ρ1 → 0+. Therefore we can choose .ρ1 > 0 so small 
that 

. ϕλ(u) ≥ ϕλ(u0) for all u ∈ B
C1

0
ρ1

(u0).

This means that . u0 is a local .C1
0(�)-minimizer of .ϕλ(·). Then Proposition A.3 

of Papageorgiou-Rădulescu-Zhang [22], implies that . u0 is a local .W 1,p(z)

0 (�)-
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minimizer of .ϕλ(·). Similarly we show that .v0 ∈ (−C+) \ {0} is a local minimizer 
of the energy functional .ϕλ(·). ��
Proposition 5.2 If hypotheses . H0 and . H1 hold and .λ > 0, then .u = 0 is a local 
minimizer of the energy functional .ϕλ(·). 
Proof Let .u ∈ C1

0(�) with .‖u‖C1
0 (�) ≤ 1. We have  

. ϕλ(u) − ϕλ(0) = ϕλ(u)

≥ λ

τ+
ρτ (u) −

∫

�

F(z, u)dz

≥
[

λ

τ+
− c15(‖u‖q−τ+∞ + ‖u‖r+−τ+∞ )

]

ρτ (u) (see (23)). 

Choosing .ρ > 0 small enough, we see that 

ϕλ(u) ≥ 0 = ϕλ(0) for all u ∈ B C
1 
0 

ρ (0), 

⇒ u = 0 is a local C1 
0(�)-minimizer of ϕλ(·), 

⇒ u = 0 is a local W 1,p(z) 
0 (�) − minimizer of ϕλ(·)(see [22]). 

��

5.2 Existence of Third Solution 

Now we are ready to produce the third nontrivial solution for problem (Pλ), . λ ∈
(0, λ∗). 

Proposition 5.3 If hypotheses . H0 and . H1 hold and .λ ∈ (0, λ∗), then problem (Pλ) 
has the third solution .y0 ∈ C1

0(�) and .y0 �∈ {0, u0, v0}. 
Proof From the anisotropic regularity theory (see [5], [26]), we have that . Kϕλ ⊆
C1

0(�). Since the critical points of .ϕλ(·) are the weak solutions of (Pλ), we may  
assume that .Kϕλ is finite or otherwise we would already have an infinity of nontrivial 
smooth solutions for (Pλ) and so we would be done. Then Proposition 5.2 and [16, 
Theorem 5.7.6, p. 449], imply that we can find .ρ̂ > 0 such that 

.ϕλ(0) = 0 < inf{ϕλ(u) : ‖u‖ = ρ̂} = m̂λ. (26) 

Also, if .u ∈ C+ with .u(z) > 0 for all .z ∈ �, then on account of hypothesis 
. H1 (ii), we have  

.ϕλ(tu) → −∞ as t → +∞. (27)
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Then (26), (27) and Proposition 3.1, permit the use of the Mountain Pass 
Theorem (see [16], p. 401). So, we can find .y0 ∈ W

1,p(z)

0 (�) such that 

. y0 ∈ Kϕλ, ϕλ(0) = 0 < m̂λ ≤ ϕλ(y0),

⇒ y0 �= 0.

Moreover, [16, Corollary 6.6.9, p. 533] implies that 

.C1(ϕλ, y0) �= 0. (28) 

On the other hand from Proposition 5.1, we infer that 

.Ck(ϕλ, u0) = Ck(ϕλ, v0) = δk,0Z for all k ∈ N0. (29) 

Comparing (28) and (29), we conclude that 

. y0 �= u0, y0 �= v0.

The anisotropic regularity theory implies that .y0 ∈ C1
0(�). 

��
This also completes the proof of Theorem 1.1. ��
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