
Applied Mathematics Letters 141 (2023) 108595

Y
a
b
c
d

λ

(

h
0
(

Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

On the Schrödinger–Poisson system with (p, q)–Laplacian

ueqiang Song a, Yuanyuan Huo a, Dušan D. Repovš b,c,d,∗

College of Mathematics, Changchun Normal University, Changchun, 130032, PR China
Faculty of Education, University of Ljubljana, Ljubljana, 1000, Slovenia
Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, 1000, Slovenia
Institute of Mathematics, Physics and Mechanics, Ljubljana, 1000, Slovenia

a r t i c l e i n f o

Article history:
Received 20 December 2022
Received in revised form 19 January
2023
Accepted 19 January 2023
Available online 24 January 2023

Keywords:
Double phase operator
Schrödinger–Poisson systems
(p,q)–Laplacian
Fixed point theory

a b s t r a c t

We study a class of Schrödinger–Poisson systems with (p, q)–Laplacian. Using fixed
point theory, we obtain a new existence result for nontrivial solutions. The main
novelty of the paper is the combination of a double phase operator and the nonlocal
term. Our results generalize some known results.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this article, we shall study the following Schrödinger–Poisson system with (p, q)–Laplacian{
−∆pu− ∆qu+ (|u|p−2 + |u|q−2)u− ϕ|u|q−2

u = h(x, u) + λg(x) in R3,
−∆ϕ = |u|q in R3,

(1.1)

where ∆ς =div(|∇u|p−2∇u) is the ς-Laplacian (ς = p, q), 3
4 < p < q < 3, λ is a positive parameter, the

nonnegative function g ∈ L
3q

4q−3 (R3) is a perturbation term, and g(x) ̸≡ 0. Here, h : R3 × R → R is a
Carathéodory function and it satisfies certain assumptions.

Our study of problem (1.1) was motivated by two main reasons. On the one hand, when p = q = 2 and
≡ 0, problem (1.1) becomes the following nonlinear Schrödinger–Poisson system{

−∆u+ u− ϕu = h(x, u) in R3,

−∆ϕ = |u|2 in R3.
(1.2)
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System (1.2) depicts how charged particles interact with the motion electromagnetic field. While the nonlocal
term ϕu describes interactions with the electric field, the nonlinear term models interactions between the
particles. By virtue of its strong physical background, system (1.2) has drawn wide attention in recent
decades. For p = q ̸= 2, system (1.1) was studied for the first time by Du et al. [1] and the existence of
ontrivial solutions of the system was obtained by invoking the Mountain Pass Theorem. For the quasilinear
chrödinger–Poisson system, we refer to Du et al. [2]. Readers interested in learning more about the results
n the Schrödinger–Poisson system using the variational methods, are referred to Ambrosetti–Ruiz [3],
’Aprile–Mugnai [4], Ruiz [5] and the references therein.
On the other hand, when p ̸= q, problem (1.1) is driven by a differential operator with unbalanced growth.
hen problem (1.1) without the nonlocal term ϕu becomes a p&q-Laplacian equation

− ∆pu− ∆qu+ (|u|p−2 + |u|q−2)u− ϕ|u|q−2
u = h(x, u) in RN , (1.3)

his problem has a rich physical background, since the double phase operator has been applied to describe
teady-state solutions of reaction diffusion problems in biophysics, plasma physics, and chemical reaction
nalysis. Using the variational methods, some results for problem (1.3) can be found in Bartolo et al. [6],
igueiredo [7], Papageorgiou et al. [8], and the references therein.
Inspired by the above references, we prove in this paper the existence of nontrivial solutions for problem

1.1) by using fixed point theory. Although some authors have already used fixed point theory, see Carl–
eikkilä [9], de Souza [10], and Tao–Zhang [11,12], as far as we know, problem (1.1) has not been studied
efore. Because of the occurrence of a nonhomogeneous term, we can prove that a weak solution to problem
1.1) exists by the fixed point theory. The results in this paper can be regarded as an extension of results in
u et al. [1,2] and Tao–Zhang [11,12]. In some sense, our results are new, even in the p = q case.
Our existence result, which is the main result of this paper, can be stated as follows.

heorem 1.1. Assume that h(x, u) : R3 × R+ → R+ := [0,+∞) is a nondecreasing function in u, and
h(x, u) = 0 when u < 0. Moreover, assume that it satisfies the following condition

|h(x, t)| ≤ d1(x)|t|τ−1 + d2(x)|t|q
∗−1

, for all (x, t) ∈ R3 × R, (1.4)

here q ≤ τ < q∗ := 3p
3−p , 0 ≤ d1 ∈ Lη(R3), 0 ≤ d2 ∈ L∞(R3), and η = 6

6−τ . Then there exists λ0 > 0 such
that for every 0 < λ ⩽ λ0, problem (1.1) has a positive solution.

Remark 1.1. We point out that there are many functions that satisfy the assumptions of Theorem 1.1.
For example, we can take h(x, t) = 1

1+x2 |t|q
∗−1.

2. Preliminaries

In this section, we shall present some preliminary results, as well as some notations and useful results.
To this end, let W be the subspace of W 1,p(R3) and W 1,q(R3), defined by W = W 1,p(R3)

⋂
W 1,q(R3), with

respect to the norm ∥u∥ = ∥u∥W 1,p(R3) + ∥u∥W 1,q(R3). Since W 1,r(R3), with 1 < r < ∞, is a separable
reflexive Banach space, we deduce that W is a separable reflexive Banach space. Moreover, we also know
that the embeddings W ↪→ Lp(R3), Lq(R3) are continuous. On the other hand, according to Du et al. [2],
for any given u ∈ W 1,q(R3), there exists a unique

ϕu(x) = 1
4π

∫
R3

|u(y)|q

|x− y|
dy, ϕu ∈ D1,2(R3),

satisfying −∆ϕu = |u|q.
We now summarize the properties of ϕ which will be used later.
u
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Lemma 2.1 (Du et al. [2]). Let u ∈ W 1,q(R3). Then the following properties hold:
(1) ϕu ⩾ 0, for all x ∈ R3;
(2) For any t ∈ R+, ϕtu = tqϕu, and ϕutt

kq−2ϕu(tx) with ut(x) = tku(tx);
(3) ∥ϕu∥D1,2 ⩽ C∥u∥q, where C is independent of u;
(4) If un ⇀ u in W 1,q(R3), then ϕun ⇀ ϕu in D1,2(R3), and

∫
R3 ϕun |un|q−2

unφdx →
∫
R3 ϕu|u|q−2

uφdx,
for all φ ∈ W 1,q(R3).

Substituting ϕ = ϕu into system (1.1), we can rewrite (1.1) as a single equation

− ∆pu− ∆qu+ (|u|p−2
u+ |u|q−2

u) − ϕu|u|q−2
u = h(x, u) + λg(x), for all u ∈ W. (2.1)

e define the energy functional I on W by

I(u) = 1
p

∫
R3

(
|∇u|p + |u|p

)
dx+ 1

q

∫
R3

(
|∇u|q + |u|q

)
dx− 1

2q

∫
R3
ϕu|u|qdx−

∫
R3

(
H(x, u) + λg(x)

)
dx,

here H(x, t) =
∫ t

0 h(x, s)ds. It is straightforward to show that I ∈ C1(W,R) and

⟨I ′(u), ψ⟩ =
∫
R3

(
|∇u|p−2∇u∇ψ + |u|p−2

uψ
)
dx+

∫
R3

(
|∇u|q−2∇u∇ψ + |u|q−2

uψ
)
dx

−
∫
R3
ϕu|u|q−2

uψdx−
∫
R3

(
h(x, u) + λg(x)

)
ψdx.

It is easy to verify that (u, ϕu) ∈ W ×D1,2(R3) is a solution of system (1.1) if and only if u ∈ W is a critical
point of I.

Now, we introduce the necessary fixed-point theorem due to Carl–Heikkilä [9], which plays a crucial role
in proving our conclusions. For this, let E be a real Banach space. A nonempty subset E+ ̸= {0} of E is
called an order cone if it satisfies the following conditions: (a) E+ is closed and convex; (b) if v ∈ E+ and
δ ⩾ 0, then δv ∈ E+; (c) if v ∈ E+ and −v ∈ E+, then v = 0. An order cone E+ induces a partial order in
W in the following way: x ⪯ y and only if y − x ∈ E+, and (W,⪯) is called an ordered Banach space. If
inf{x, y} and sup{x, y} exist for all x, y ∈ W with respect to ⪯, then (W, ∥ ·∥) is called a lattice. In addition,
if ∥x±∥ ⩽ ∥x∥ for each x ∈ W , where x+ := sup{0, x} and x− := − inf{0, x}, then (W, ∥ · ∥) is a Banach
semilattice. We also note that the dual space W ′ of W has the following partial order:

φ1, φ2 ∈ W ′, φ1 ◁ φ2 ⇔ ⟨φ1, v⟩ ⩽ ⟨φ2, w⟩, for all w ∈ E+.

Next, we give the definition of fixed point property, which, according to Carl–Heikkilä [9], is the following
one: P is said to have a fixed point property if each increasing mapping G : P → P has a fixed point.

Proposition 2.1 (Carl–Heikkilä [9, Corollary 2.2]). Let W be a reflexive Banach semilattice. Then every
closed ball in W has the fixed point property.

3. Proof of Theorem 1.1

In order to prove Theorem 1.1, we first prove some key lemmas. To begin, we define the functional
B : W → W ′ by ⟨Bu, v⟩ =

∫
R3(|∇u|p−2∇u∇v+ |u|p−2

uv)dx+
∫
R3(|∇u|q−2∇u∇v+ |u|q−2

uv)dx. Clearly, Bu
is linear for all u ∈ W . This means that the Hölder inequality holds

|⟨Bu, v⟩| ⩽ C1∥u∥p−1∥v∥ + C2∥u∥q−1∥v∥, for some C1, C2 > 0.

′
Therefore Bu ∈ W and B are well-defined. In addition, we have the following property of B.
3
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Lemma 3.1. The operator B : W → W ′ is continuous and invertible.

roof. Let {uk} in W be such that uk → u in W . Using the Hölder inequality for v ∈ W with ∥v∥ ⩽ 1,
e have

∥Buk − Bu∥W ′ = sup
v∈W,∥v∥⩽1

|⟨Buk − Bu, v⟩| ⩽ ∥uk − u∥p

W 1,p(R3) + ∥uk − u∥q

W 1,q(R3) → 0.

This means that the operator B is continuous. Considering p, q ⩾ 2 and ⟨Bu, u⟩ = ∥u∥p +∥u∥q for all u ∈ W ,
e have lim∥u∥→∞

⟨Bu,u⟩
∥u∥ = ∞. It well-known that

(|a|s−2
a− |b|s−2

b)(a− b) ⩾ Cp|a− b|s−2
, for all s ≥ 2, a, b ∈ R,

nd we have ⟨Bu1−Bu2, u1−u2⟩ > 0, for all u1, u2 ∈ W, u1 ̸= u2. Therefore, by the Minty–Browder Theorem
see [13, Theorem 5.16]), we obtain that the operator W is reversible. Hence the proof of Lemma 3.1 is

complete. □

Similar to the proof of Lemma 3.2 in [11], we can show that B−1 : (W ′,◁) → (W,⪯) is increasing.
Next, inspired by [14], let the operator T : W → W ′ be defined by

⟨T u, v⟩ =
∫
R3

(
ϕu+ |u+|q−2

u+ + h(x, u+) + λg(x)
)
vdx, for all u, v ∈ W,

here u+ := max{u, 0} and u− := − min{u, 0}. By the Hölder inequality, the Sobolev Embedding Theorem,
and the Hardy–Littlewood–Sobolev inequality, there exist some positive constants C∗, C∗∗ and C∗∗∗ such
that

|⟨T u, v⟩| ≤
(
C∗∥u+∥2q−1 + C∗∗∥d1∥η∥u+∥τ−1 + C∗∗∗∥d2∥∞∥u+∥q∗−1 + λ∥g∥ 3q

4q−3

)
∥v∥. (3.1)

Let G := B−1 ◦ T . Then we have the following result.

Lemma 3.2. Under the hypotheses of Theorem 1.1, for any 0 < λ ⩽ λ0, there exists R > 0, such that
G(BW [0, R]) ⊂ BW [0, R], where BW [0, R] = {u ∈ W : ∥u∥ ⩽ R}.

roof. Let u ∈ W , v = (B−1 ◦ T )u = Gu. We note that ⟨Bv, v⟩ = ∥v∥p

W 1,p(R3) + ∥v∥q

W 1,q(R3). We consider
possible cases:

ase 1. ∥v∥W 1,q(R3) ≥ 1. Then ∥v∥q

W 1,q(R3) ≥ ∥v∥p

W 1,q(R3), hence

⟨Bv, v⟩ ⩾ ∥v∥p

W 1,p(R3) + ∥v∥p

W 1,q(R3) ⩾ 21−p(∥v∥W 1,q(R3) + ∥v∥W 1,p(R3))p = 21−p∥v∥p. (3.2)

Case 2. ∥v∥W 1,q(R3) < 1 and ∥v∥W 1,p(R3) ≥ 1. Then ∥v∥W 1,p(R3) ≥ 1 > ∥v∥W 1,q(R3). Since ∥v∥ =
∥v∥W 1,q(R3) + ∥v∥W 1,p(R3), we get 2∥v∥W 1,q(R3) ≤ ∥v∥ ≤ 2∥v∥W 1,p(R3), therefore

⟨Bv, v⟩ = ∥v∥p

W 1,p(R3) + ∥v∥q

W 1,q(R3) ⩾ ∥v∥p

W 1,p(R3) ⩾
1
2p

∥v∥p. (3.3)

ase 3. ∥v∥W 1,q(R3) < 1 and ∥v∥W 1,p(R3) < 1. Then ∥v∥q

W 1,p(R3) ⩽ ∥v∥p

W 1,p(R3), therefore

⟨Bv, v⟩ ⩾ ∥v∥q

W 1,p(R3) + ∥v∥q

W 1,q(R3) ⩾ 21−q(∥v∥W 1,q(R3) + ∥v∥W 1,p(R3))q = 21−q∥v∥q. (3.4)

From (3.2), (3.3) and (3.4), we have

−p p 1−q q
⟨Bv, v⟩ ⩾ 2 ∥v∥ or ⟨Bv, v⟩ ⩾ 2 ∥v∥ . (3.5)
4
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On the other hand, we have

∥Gu∥p

W 1,p(R3) + ∥Gu∥q

W 1,q(R3) = ⟨T u,Gu⟩ ≤ ∥T u∥W ′∥Gu∥. (3.6)

If ∥u∥ ⩽ R, then by (3.1), (3.5) and (3.6), one has

2−p∥Gu∥p−1 ⩽ ∥T u∥W ′ ⩽ C∗∥u∥2q−1 + C∗∗∥d1∥η∥u∥τ−1 + C∗∗∗∥d2∥∞∥u∥q∗−1 + λ∥g∥ 3q
4q−3

⩽ C∗R2q−1 + C∗∗∥d1∥ηR
τ−1 + C∗∗∗∥d2∥∞R

q∗−1 + λ∥g∥ 3q
4q−3

nd
21−q∥Gu∥q−1 ⩽ C∗R2q−1 + C∗∗∥d1∥ηR

τ−1 + C∗∗∗∥d2∥∞R
q∗−1 + λ∥g∥ 3q

4q−3
.

From this, we obtain

∥Gu∥p−1

Rp−1 ⩽ 2pC∗R2q−p + 2pC∗∗∥d1∥ηR
τ−p + 2pC∗∗∗∥d2∥∞∥d2∥∞R

q∗−p + 2pλ
∥g∥ 3q

4q−3

Rp−1 . (3.7)

Similarly, we can also get

∥Gu∥q−1

Rq−1 ⩽ 2q−1C∗Rq + 2q−1C∗∗∥d1∥ηR
τ−q + 2q−1C∗∗∗∥d2∥∞R

q∗−q + 2q−1λ
∥g∥ 3q

4q−3

Rq−1 . (3.8)

e now take R > 0 sufficiently small so that

2pC∗R2q−p + 2pC∗∗∥d1∥ηR
τ−p + 2pC∗∗∗∥d2∥∞∥d2∥∞R

q∗−p ⩽
1
2

nd
2q−1C∗Rq + 2q−1C∗∗∥d1∥ηR

τ−q + 2q−1C∗∗∗∥d2∥∞R
q∗−q <

1
2 .

et

λ0 := min

⎧⎨⎩ Rp−1

2p+1∥g∥ 3q
4q−3

,
Rq−1

2q∥g∥ 3q
4q−3

⎫⎬⎭ .

Then for all 0 < λ ⩽ λ0, we can derive from (3.7) and (3.8) that ∥Gu∥ ⩽ R. This completes the proof of
Lemma 3.2. □

Proof of Theorem 1.1. It suffices to show that G : (W,⪯) → (W,⪯) is an increasing operator, since
y Proposition 2.1 and Lemma 3.2, we can then obtain the existence of the weak solutions. So let us show
hat the operator T : (W,⪯) → (W ′,◁) is increasing. In fact, take u1, u2 ∈ W such that u1 ⩽ u2 almost

everywhere on R3. Due to the assumptions on h in Theorem 1.1 and the definition of operator T , we get

⟨T u1, v⟩ =
∫
R3

(
ϕ

u+
1

|u+
1 |q−2

u+
1 + h(x, u+

1 ) + λg(x)
)
vdx

⩽
∫
R3

(
ϕ

u+
2

|u+
2 |q−2

u+
2 + h(x, u+

2 ) + λg(x)
)
vdx = ⟨T u2, v⟩, for all v ∈ E+. (3.9)

Therefore, the operator G : (W,⪯) → (W,⪯) is indeed increasing. By Proposition 2.1 and Lemma 3.2, the
operator G has a fixed point, that is, there exists u0 ∈ BW [0, R] such that Gu0 = u0. Since G = B−1 ◦ T , we
have ⟨Bu0, v⟩ = ⟨T u0, v⟩, for all v ∈ W . That is,∫

R3
(|∇u0|p−2∇u0∇v + |u0|p−2

u0v)dx+
∫
R3

(|∇u0|q−2∇u0∇v + |u0|q−2
u0v)dx

=
∫
R3
ϕ

u+
0

|u+
0 |q−2

u+
0 vdx−

∫
R3

(
h(x, u+

0 ) + λg(x)
)
vdx. (3.10)

Letting v = u−
0 in (3.10), we can get ∥u−

0 ∥p

W 1,p(R3) + ∥u−
0 ∥q

W 1,q(R3) = 0, which means that u−
0 = 0 and

is a nontrivial nonnegative weak solution of problem (1.1). According to the well-known Strong Maximum

Principle, u0 is a positive solution to problem (1.1). This completes the proof of Theorem 1.1. □

5
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[9] S. Carl, S. Heikkilä, Elliptic problems with lack of compactness via a new fixed point theorem, J. Differ. Equ. 186 (2002)

122–140.
[10] M. de Souza, On a class of nonhomogeneous fractional quasilinear equations in RN with exponential growth, Nonlinear

Differential Equations Appl. 22 (2015) 499–511.
[11] M. Tao, B. Zhang, Solutions for nonhomogeneous singular fractional p-Laplacian equations via fixed point theorem,

Complex Var. Elliptic Equ. (2022) 1–21, http://dx.doi.org/10.1080/17476933.2021.2021894.
[12] M. Tao, B. Zhang, Solutions for nonhomogeneous fractional (p, q)-Laplacian systems with critical nonlinearities, Adv.

Nonlinear Anal. 11 (2022) 1332–1351.
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