On existence of PI-exponent of algebras with involution

Dušan D. Repovš ${ }^{\text {a,* }}$, Mikhail V. Zaicev ${ }^{\text {b,c }}$
${ }^{\text {a }}$ Faculty of Education, and Faculty of Mathematics and Physics, University of
Ljubljana \& Institute of Mathematics and Physics, Ljubljana, 1000, Slovenia
${ }^{\text {b }}$ Department of Algebra, Faculty of Mathematics and Mechanics, Moscow State University, Moscow, 119992, Russia
${ }^{\text {c }}$ Moscow Center of Fundamental and Applied Mathematics, Moscow, 119991, Russia

A R T I C L E I N F O

Article history:

Received 15 July 2022
Available online 3 October 2022
Communicated by Louis Rowen

MSC:

primary 16R10
secondary 16P90
Keywords:
Polynomial identity
Nonassociative algebra
Involution
Exponentially bounded
*-codimension
Fractional *-PI-exponent
Amitsur's conjecture
Numerical invariant

A B S T R A C T

We study polynomial identities of algebras with involution of nonassociative algebras over a field of characteristic zero. We prove that the growth of the sequence of $*$-codimensions of a finite-dimensional algebra is exponentially bounded. We construct a series of finite-dimensional algebras with fractional *-PI-exponent. We also construct a family of infinite-dimensional algebras C_{α} such that $\exp ^{*}\left(C_{\alpha}\right)$ does not exist.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

[^0]
1. Introduction

Let A be an algebra over a field Φ of characteristic zero. One of the modern approaches to the study of polynomial identities of A is to investigate their numerical invariants. The most important numerical characteristic of identities of A is the sequence $\left\{c_{n}(A)\right\}$ of codimensions and its asymptotic behavior. For a wide class of algebras, the growth of the sequence $\left\{c_{n}(A)\right\}$ is exponentially bounded. This class includes associative PI-algebras [1,2], finite-dimensional algebras of arbitrary signature [3,4], affine Kac-Moody algebras [5], infinite-dimensional simple Lie algebras of Cartan type [6], Virasoro algebra, Novikov algebras [7], and many others.

In the case of exponential upper bound, the corresponding sequence of roots $\left\{\sqrt[n]{c_{n}(A)}\right\}$ is bounded and its lower and upper limits

$$
\underline{\exp }(A)=\liminf _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)}, \quad \overline{\exp }(A)=\limsup _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)}
$$

are called the lower and the upper PI-exponent of A, respectively. In the case when $\underline{\exp }(A)=\overline{\exp }(A)$, the ordinary limit

$$
\exp (A)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(A)}
$$

is called the (ordinary) PI-exponent of A.
In the late 1980's, S. Amitsur conjectured that the PI-exponent of any associative PIalgebra exists and is a nonnegative integer. Amitsur's conjecture was confirmed in [8]. It was also proved for finite-dimensional Lie algebras [9], Jordan algebras [10], and some others. The class of algebras for which Amitsur's conjecture was partially confirmed is much wider. Namely, the existence (but not the integrality, in general) was proved in a series of papers.

For example, it was shown in [11] that the PI-exponent exists for any finite-dimensional simple algebra. The question about existence of PI-exponents is one of the main problems of numerical theory of polynomial identities. Until now, only two results about algebras without PI-exponent have been proved. An example of a two-step left-nilpotent algebra without PI-exponent was constructed in [12]. Analogous result for unitary algebras was obtained in [13].

If an algebra A is equipped with an additional structure (like an involution or a group grading), then one may consider identities with involution, graded identities, etc. Recall that in the associative case, the celebrated theorem of Amitsur [14] states that if A is an algebra with involution $*: A \rightarrow A$, satisfying a $*$-polynomial identity, then A satisfies an ordinary (non-involution) polynomial identity. As a consequence, the sequence of $*-$ codimensions $\left\{c_{n}^{*}(A)\right\}$ is exponentially bounded. In $[15,16]$ the existence and integrality of $\exp ^{*}(A)$ was proved for any associative PI-algebra with involution.

In the present paper we shall show that the class of algebras with exponentially bounded $*$-codimension sequence is sufficiently large. In particular, it contains all finitedimensional algebras.

Theorem A (see Theorem 3.1 in Section 3). Let A be a finite-dimensional algebra with involution $*: A \rightarrow A$ and $d=\operatorname{dim} A$. Then $*$-codimensions of A satisfy the following inequality

$$
c_{n}^{*}(A) \leq d^{n+1}
$$

Nevertheless, as it will be shown, the results of $[15,16]$ cannot be generalized to the general nonassociative case. We shall construct a series of finite-dimensional algebras with fractional $*$-PI-exponent. For any integer $T \geq 2$ we shall construct an algebra A_{T} with the following property.

Theorem B (see Theorem 4.1 in Section 4). The *-PI-exponent of algebra A_{T} exists and

$$
\exp ^{*}\left(A_{T}\right)=\frac{1}{\theta_{T}^{\theta_{T}}\left(1-\theta_{T}\right)^{1-\theta_{T}}}
$$

where $\theta_{T}=\frac{1}{2 T+1}$.
We shall also present a family of algebras C_{α} with involution $*$ which has an exponentially bounded sequence $\left\{c_{n}^{*}\left(C_{\alpha}\right)\right\}$ such that $\exp ^{*}\left(C_{\alpha}\right)$ does not exist.

Theorem C (see Theorem 5.1 in Section 5). For any real number $\alpha>1$ there exists an algebra C_{α} such that

$$
\underline{e x p}^{*}\left(C_{\alpha}\right)=1, \quad \overline{e x p}^{*}\left(C_{\alpha}\right)=\alpha .
$$

The necessary background on numerical theory of polynomial identities can be found in [17].

2. Preliminaries

Let A be an algebra with involution $*: A \rightarrow A$ over a field Φ of char $\Phi=0$. Recall that an element $a \in A$ is called symmetric if $a^{*}=a$, whereas an element $b \in A$ is called skew-symmetric if $b^{*}=-b$. Denote

$$
A^{+}=\left\{a \in A \mid a^{*}=a\right\}, \quad A^{-}=\left\{b \in A \mid b^{*}=-b\right\} .
$$

Obviously, we have a vector space decomposition $A=A^{+} \oplus A^{-}$. In order to study *-polynomial identities we need to introduce free objects in the following way.

Let $\Phi\{X, Y\}$ be a free (nonassociative) algebra over Φ with the set of free generators $X \cup Y, X=\left\{x_{1}, x_{2}, \ldots\right\}, Y=\left\{y_{1}, y_{2}, \ldots\right\}$. A map $*: X \cup Y \rightarrow X \cup Y$ such that $x_{i}^{*}=x_{i}, y_{i}^{*}=-y_{i}, i=1,2, \ldots$, can be naturally extended to an involution on $\Phi\{X, Y\}$. A polynomial $f=f\left(x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right) \in \Phi\{X, Y\}$ is said to be $a *$-identity of A if

$$
f\left(a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right)=0, \text { for all } a_{1}, \ldots a_{m} \in A^{+}, b_{1}, \ldots, b_{n} \in A^{-}
$$

Denote by $I d^{*}(A)$ the set of all $*$-identities of A in $\Phi\{X, Y\}$. Then $I d^{*}(A)$ is an ideal of $\Phi\{X, Y\}$ and it is stable under involution $*$ and endomorphisms compatible with $*$.

Given $0 \leq k \leq n$, denote the space of all multilinear polynomials in $\Phi\{X, Y\}$ in k symmetric variables x_{1}, \ldots, x_{k} and $n-k$ skew-symmetric variables y_{1}, \ldots, y_{n-k} by $P_{k, n-k}^{*}$. Denote also

$$
P_{n}^{*}=P_{0, n}^{*} \oplus P_{1, n-1}^{*} \oplus \cdots \oplus P_{n, 0}^{*} .
$$

Clearly, the intersection $P_{k, n-k}^{*} \cap I d^{*}(A)$ is the subspace of all multilinear *-identities of A in k symmetric and $n-k$ skew-symmetric variables.

The following value

$$
c_{k, n-k}^{*}(A)=\operatorname{dim} \frac{P_{k, n-k}^{*}}{P_{k, n-k}^{*} \cap I d^{*}(A)}
$$

is called the partial $(k, n-k) *$-codimension of A, whereas the value

$$
c_{n}^{*}(A)=\sum_{k=0}^{n}\binom{n}{k} c_{k, n-k}^{*}(A)
$$

is called the $($ total $) *$-codimension of A. We shall also use the following notations

$$
P_{k, n-k}^{*}(A)=\frac{P_{k, n-k}^{*}}{P_{k, n-k}^{*} \cap I d^{*}(A)}, \quad P_{n}^{*}(A)=\frac{P_{n}^{*}}{P_{n}^{*} \cap I d^{*}(A)} .
$$

3. *-codimensions of finite-dimensional algebras

Let A be a finite-dimensional algebra with involution $*: A \rightarrow A$, where $\operatorname{dim} A=d$. Recall that A^{+}and A^{-}are the subspaces of symmetric and skew-symmetric elements of A, respectively. In order to get an exponential upper bound for $c_{n}^{*}(A)$, we shall follow the approach of [3]. Choose a basis a_{1}, \ldots, a_{p} of A^{+}and a basis b_{1}, \ldots, b_{q} of A^{-}. If $f\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n-k}\right) \in P_{k, n-k}^{*}$ is a multilinear $*$-polynomial in k symmetric variables x_{1}, \ldots, x_{k} and $n-k$ skew-symmetric variables y_{1}, \ldots, y_{n-k}, then f is a $*$-identity of A if and only if $\varphi(f)=0$, for all evaluations φ such that

$$
\begin{equation*}
\varphi\left(x_{i}\right) \in\left\{a_{1}, \ldots, a_{p}\right\}, 1 \leq i \leq k, \varphi\left(y_{j}\right) \in\left\{b_{1}, \ldots, b_{q}\right\}, 1 \leq j \leq n-k \tag{1}
\end{equation*}
$$

Denote $N=\operatorname{dim} P_{k, n-k}^{*}$. Fix a basis g_{1}, \ldots, g_{N} of $P_{k, n-k}^{*}$ and write f as a linear combination $f=\alpha_{1} g_{1}+\cdots+\alpha_{N} g_{N}$. Then the value $\varphi(f)$ for φ of the type (1) can be written as

$$
\varphi(f)=\lambda_{1} a_{1}+\cdots+\lambda_{p} a_{p}+\mu_{1} b_{1}+\cdots+b_{q} \mu_{q}
$$

where all $\lambda_{1}, \ldots, \lambda_{p}, \mu_{1}, \ldots, \mu_{q}$ are linear combinations of $\alpha_{1}, \ldots, \alpha_{N}$. Hence $\varphi(f)=0$ if and only if

$$
\begin{equation*}
\lambda_{1}=\cdots=\lambda_{p}=\mu_{1}=\cdots \mu_{q}=0 \tag{2}
\end{equation*}
$$

The total number of evaluations φ of type (1) is equal to $p^{k} q^{n-k}$. It follows that $f \equiv 0$ is a $*$-identity of A if and only if the N-tuple $\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ is the solution of system S of $p^{k} q^{n-k}(p+q)$ linear equations of type (2).

Denote by U the subspace of all solutions of system S in the space V of all N-tuples $\left(\alpha_{1}, \ldots, \alpha_{N}\right)$. Then $\operatorname{dim} U=N-r$, where $r=\operatorname{rank} S$ is the rank of S. Clearly,

$$
\begin{equation*}
r \leq p^{k} q^{n-k}(p+q) \tag{3}
\end{equation*}
$$

Since

$$
c_{k, n-k}^{*}(A)=\operatorname{codim}_{\mathrm{V}}(\mathrm{U})=\mathrm{r}
$$

it follows from (3) that

$$
c_{k, n-k}^{*}(A) \leq p^{k} q^{n-k}(p+q)
$$

and

$$
c_{n}^{*}(A)=\sum_{k=0}^{n}\binom{n}{k} c_{k, n-k}^{*}(A) \leq(p+q) \sum_{k=0}^{n}\binom{n}{k} p^{k} q^{n-k}=(p+q)^{n+1}
$$

Recall that $p+q=d=\operatorname{dim} A$. Hence we have proved the first main result of this paper.

Theorem 3.1. Let A be a finite-dimensional algebra with involution $*: A \rightarrow A$ and $d=$ $\operatorname{dim} A$. Then $*$-codimensions of A satisfy the following inequality

$$
c_{n}^{*}(A) \leq d^{n+1}
$$

In the case of exponentially bounded sequence $\left\{c_{n}^{*}(A)\right\}$, the following natural question arises.

Question 3.1. Does the *-PI-exponent

$$
\exp ^{*}(A)=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}^{*}(A)}
$$

exist and what are its possible values?
In Section 1 we mentioned that $c_{n}^{*}(A)$ exists and is a nonnegative integer for any associative *-PI-algebra A. The following hypotheses look very natural.

Conjecture 3.1. For any finite-dimensional algebra A with involution $*$, its $*$-PI-exponent $\exp ^{*}(A)$ exists.

In the light of results of [18], we can assume that *-PI-exponent may take on all real values ≥ 1.

Conjecture 3.2. For any real value $\alpha \geq 1$, there exists an algebra A_{α} with involution such that $*-P I$-exponent of A_{α} exists and $\exp ^{*}\left(A_{\alpha}\right)=\alpha$.

4. Algebras with fractional *-PI-exponent

In this section we shall discuss $*$-codimension growth of algebras A_{T} introduced in [19]. We shall prove the existence of $*-\mathrm{PI}$-exponents of A_{T} and compute the precise value of $\exp ^{*}\left(A_{T}\right)$. In Section 5 we shall use the properties of A_{T} for constructing several counterexamples.

Recall the structure of A_{T}. Given an integer $T \geq 2$, denote by A_{T} the algebra with basis $\left\{a, b, z_{1}, \ldots, z_{2 T+1}\right\}$ and with multiplication

$$
z_{i} a=a z_{i}=z_{i+1}, 1 \leq i \leq 2 t, z_{2 T+1} b=b z_{2 T+1}=z_{1}
$$

where all remaining products are zero. Involution $*: A_{T} \rightarrow A_{T}$ is defined by

$$
a^{*}=-a, b^{*}=b, z_{i}^{*}=(-1)^{i+1} z_{i}
$$

and then

$$
A^{+}=<b, z_{1}, z_{3}, \ldots, z_{2 T+1}>, A^{-}=<a, z_{2}, z_{4}, \ldots, z_{2 T}>
$$

We shall need the following two results from [19].
Lemma 4.1. ([19, Lemma 3.7]) The $*$-codimensions of A_{T} satisfy the inequality $c_{n}^{*}\left(A_{T}\right) \leq$ n^{3}, provided that $n \leq 2 T$.

Lemma 4.2. ([19, Corollary 3.8]) Let $f \equiv 0$ be a multilinear $*$-identity of A_{T} of degree $n \leq 2 T$. Then f is also an identity of A_{T+1}.

Note that algebras A_{T} are commutative and metabelian, i.e. they satisfy the following identity

$$
(x y)(z t) \equiv 0 .
$$

Hence any product of elements $c_{1}, \ldots, c_{n} \in A$ can be written in the left-normed form. We shall omit brackets in the left-normed products, i.e. we shall write $c_{1} c_{2} \cdots c_{n}$ instead of $\left(\ldots\left(c_{1} c_{2}\right) \ldots\right) c_{n}$.

First, we shall find a lower bound for $*$-codimensions.

Lemma 4.3. The following inequality holds for all $n \geq 2 T+2$,

$$
\begin{equation*}
c_{n}^{*}\left(A_{T}\right) \geq \frac{1}{n^{2}}\left(\frac{1}{\theta_{T}^{\theta_{T}}\left(1-\theta_{T}\right)^{1-\theta_{T}}}\right)^{n-2 T-1} \tag{4}
\end{equation*}
$$

where

$$
\theta_{T}=\frac{1}{2 T+1}
$$

Proof. Write n in the form $n=(2 T+1) k+t+1$, where $0 \leq t \leq 2 T$. Then the following product of n basis elements is nonzero

$$
z_{1} \underbrace{a^{2 T} b \cdots a^{2 T} b}_{k} a^{t}=z_{t+1} \neq 0 .
$$

Here, we use the notation $x a^{m}$ for $x \underbrace{a \cdots a}_{m}$. Hence the polynomial

$$
x_{0} y_{1} \cdots y_{2 T} x_{1} \cdots y_{2 t(k-1)+1} \cdots y_{2 T k} x_{k} y_{2 T k+1} \cdots y_{2 T k+t}
$$

is not an identity of A_{T}, that is,

$$
P_{k+1,2 T k+t}^{*}\left(A_{T}\right) \neq 0, \quad c_{k+1,2 T k+t}^{*} \geq 1
$$

In particular,

$$
\begin{equation*}
c_{n}^{*}\left(A_{T}\right) \geq\binom{ n}{k+1} \geq\binom{ n_{0}}{k+1} \geq\binom{ n_{0}}{k} \tag{5}
\end{equation*}
$$

where $n=2 T k+k+t+1, n_{0}=2 T k+k$.
Using the Stirling formula for factorials we get

$$
\begin{equation*}
\binom{(2 T+1) k}{k}>\frac{1}{n^{2}} \frac{((2 T+1) k)^{(2 T+1) k}}{k^{k}(2 T k)^{2 T k}} \tag{6}
\end{equation*}
$$

$$
\begin{gathered}
=\frac{1}{n^{2}}\left(\frac{1}{\left(\frac{1}{2 T+1}\right)^{\frac{1}{2 T+1}}\left(\frac{2 T}{2 T+1}\right)^{\frac{2 T}{2 T+1}}}\right)^{(2 T+1) k}=\frac{1}{n^{2}}\left(\frac{1}{\theta_{T}^{\theta_{T}}\left(1-\theta_{T}\right)^{1-\theta_{T}}}\right)^{n_{0}} \\
\geq \frac{1}{n^{2}}\left(\frac{1}{\theta_{T}^{\theta_{T}}\left(1-\theta_{T}\right)^{1-\theta_{T}}}\right)^{n-2 T-1}
\end{gathered}
$$

where $\theta_{T}=\frac{1}{2 T+1}$.
Finally, combining (5) and (6), we obtain the desired inequality (4).
Next, we shall find an upper bound for $c_{n}^{*}\left(A_{T}\right)$. First, we restrict the number of nonzero components $P_{k, n-k}^{*}\left(A_{T}\right)$ for a fixed n.

Lemma 4.4. Given a positive integer n, there are at most three integers $k, 0 \leq k \leq n$, such that $P_{k, n-k}^{*}\left(A_{T}\right) \neq 0$. Moreover, if $P_{k, n-k}^{*}\left(A_{T}\right) \neq 0$, then

$$
\frac{k-2}{n} \leq \frac{1}{2 T+1}
$$

Proof. Clearly, all nonzero products of the basis elements of A_{T} are of the form

$$
\begin{equation*}
W=z_{2 T+1-i} a^{i} b \underbrace{a^{2 T} b \cdots a^{2 T} b}_{p} a^{j} . \tag{7}
\end{equation*}
$$

The number of symmetric factors k is equal to $p+1$ if i is odd, and $k=p+2$ if i is even. The total number of factors in W is equal to $n=(2 T+1) p+i+j+2$. Moreover, i and j in (7) satisfy inequalities $0 \leq i, j \leq 2 T$. Hence

$$
\begin{equation*}
n-4 T-2 \leq(2 T+1) p \leq n-2 \tag{8}
\end{equation*}
$$

Clearly, there are at most two integers p satisfying (8). Since $k=p+1$ or $p+2$, at most 3 components $P_{k, n-k}^{*}\left(A_{T}\right)$ can be nonzero. Finally, according to (8), we have

$$
\frac{k-2}{n} \leq \frac{p}{n} \leq \frac{n-2}{(2 T+1) n} \leq \frac{1}{2 T+1}
$$

Lemma 4.5. Let $n \leq 2 T+2$. Then $c_{k, n-k}^{*}\left(A_{T}\right) \leq(2 T+1)^{3}$.
Proof. As it was mentioned earlier, all nonzero products of the basis elements of A_{T} are of the form

$$
z_{j} a^{p} b \underbrace{a^{2 T} b \cdots a^{2 T} b}_{k} a^{q}, \quad 1 \leq j \leq 2 T+1, \quad 0 \leq p, q \leq 2 T .
$$

Hence all nonzero modulo $I d^{*}\left(A_{T}\right)$ multilinear monomials are of the form

$$
\begin{gather*}
w y_{\sigma(1)} \cdots y_{\sigma(p)} x_{\tau(1)} y_{\sigma(p+1)} \cdots y_{\sigma(p+2 T)} x_{\tau(2)} \cdots \tag{9}\\
y_{\sigma(2 T k-2 T+p+1)} \cdots y_{\sigma(2 T k+p)} x_{\tau(k+1)} y_{\sigma(2 T k+p+1)} \cdots y_{\sigma(2 T k+p+q)},
\end{gather*}
$$

where $\sigma \in S_{2 T k+p+q}, \tau \in S_{k+1}$, and w is either x_{0} or y_{0}.
Moreover, any monomial (9) coincides (modulo $I d^{*}\left(A_{T}\right)$) with the special case (9) when $\sigma=1, \tau=1$. Hence, we have at most $(2 T+1)^{3}$ linearly independent elements in $P_{k, n-k}^{*}\left(A_{T}\right)$, and so we are done.

Lemma 4.6. For all $n \geq 2 T+2$, we have

$$
c_{n}^{*}\left(A_{T}\right) \leq 3(2 T+1)^{3} n^{3}\left(\frac{1}{\theta_{T}^{\theta_{T}}\left(1-\theta_{T}\right)^{1-\theta_{T}}}\right)^{n}
$$

Proof. First we compute an upper bound for $c_{k, n-k}^{*}\left(A_{T}\right)$, provided that $P_{k, n-k}^{*}\left(A_{T}\right) \neq 0$. Note that

$$
\binom{n}{k} \leq n^{2}\binom{n}{k-2} \leq n^{3} \frac{n^{n}}{m^{m}(n-m)^{n-m}}
$$

by the Stirling formula, where $m=k-2$.
Since the function

$$
\frac{1}{x^{x}(1-x)^{1-x}}
$$

is nondecreasing on $\left(0, \frac{1}{2}\right)$, we have by Lemma 4.4,

$$
\begin{equation*}
\binom{n}{k} \leq n^{3}\left(\frac{1}{(m / n)^{m / n}(1-m / n)^{1-m / n}}\right)^{n} \leq n^{3}\left(\frac{1}{\theta_{T}^{\theta_{T}}\left(1-\theta_{T}\right)^{1-\theta_{T}}}\right)^{n} \tag{10}
\end{equation*}
$$

Now relation (10), Lemma 4.4, and Lemma 4.5 imply

$$
c_{n}^{*}\left(A_{T}\right)=\sum_{k=0}^{n}\binom{n}{k} c_{k, n-k}^{*}\left(A_{T}\right) \leq 3(2 T+1)^{3} n^{3}\left(\frac{1}{\theta_{T}^{\theta_{T}}\left(1-\theta_{T}\right)^{1-\theta_{T}}}\right)^{n}
$$

Finally, Lemma 4.3 and Lemma 4.6 imply the second main result of this paper.

Theorem 4.1. The *-PI-exponent of algebra A_{T} exists and

$$
\exp ^{*}\left(A_{T}\right)=\frac{1}{\theta_{T}^{\theta_{T}}\left(1-\theta_{T}\right)^{1-\theta_{T}}}
$$

where $\theta_{T}=\frac{1}{2 T+1}$.

5. Algebras without *-PI-exponent

We modify construction of the algebra from Section 4. Denote by \widetilde{A}_{T} an infinitedimensional algebra with the basis

$$
a, b_{i}, z_{j}^{i}, \quad 1 \leq j \leq 2 T+1, \quad i=1,2, \ldots
$$

and multiplication table

$$
a z_{j}^{i}=z_{j}^{i} a=z_{j+1}^{i}, 1 \leq j \leq 2 T, \quad b_{i} z_{2 T+1}^{i}=z_{2 T+1}^{i} b_{i}=z_{1}^{i+1}
$$

Involution $*: \widetilde{A}_{T} \rightarrow \widetilde{A}_{T}$ is defined as follows

$$
a^{*}=-a, \quad b_{i}^{*}=b_{i}, \quad\left(z_{j}^{i}\right)^{*}=(-1)^{j+1} z_{j}^{i}, \quad 1 \leq j \leq 2 T+1, \quad i=1,2, \ldots
$$

Lemma 5.1. A multilinear polynomial $f \in P_{k, n-k}^{*}$ of degree $n \leq 2 T$ is a $*$-identity of \widetilde{A}_{T} if and only if f is a *-identity of A_{T}.

Proof. First, note that $P_{k, n-k}^{*}\left(A_{T}\right)=P_{k, n-k}^{*}\left(\widetilde{A}_{T}\right)=0$, when $n \leq 2 T$ and $3 \leq k \leq n$.
Let $k=0$. Then both A_{T} and \widetilde{A}_{T} satisfy the following identity

$$
y_{t+1} y_{\sigma(1)} \cdots y_{\sigma(t)}=y_{t+1} y_{1} \cdots y_{t}
$$

for any $\sigma \in S_{t}$ and $t \leq 2 T-1$. Hence, modulo $I d^{*}\left(A_{T}\right)$ (and modulo $I d^{*}\left(\widetilde{A}_{T}\right)$), the polynomial f coincides with linear combination

$$
f=\lambda_{2} w_{2}+\cdots+\lambda_{n} w_{n}, \quad \text { where } w_{j}=y_{j} y_{1} \cdots y_{j-1} y_{j+1} \cdots y_{n}
$$

Let for example, $\lambda_{n} \neq 0$. Then $\varphi(f) \neq 0$ in A_{T} and $\widetilde{\varphi}(f) \neq 0$ in \widetilde{A}_{T} for evaluations $\varphi, \widetilde{\varphi}$, where
$\varphi\left(y_{n}\right)=z_{1}, \varphi\left(y_{j}\right)=a$ in $A_{T}, 2 \leq j \leq n-1, \widetilde{\varphi}\left(y_{n}\right)=z_{1}^{1}, \widetilde{\varphi}\left(y_{j}\right)=a$ in $\widetilde{A}_{T}, 2 \leq j \leq n-1$.
Now let $k=1$. Then all monomials $y_{1} \cdots y_{j} x_{1} y_{j+1} \cdots y_{t}$ are identities of A_{T} and \widetilde{A}_{T} if $3 \leq j \leq t \leq n-1$. Since

$$
x_{1} y_{\sigma(1)} \cdots y_{\sigma(n-1)} \equiv x_{1} y_{1} \cdots y_{n-1}, \text { for all } \sigma \in S_{n-1}
$$

$\bmod I d^{*}\left(A_{T}\right)$ and $\bmod I d^{*}\left(\widetilde{A}_{T}\right)$, it follows that $f=\lambda x_{1} y_{1} \cdots y_{n-1}$, with $0 \neq \lambda \in \Phi$. Hence $f \notin I d^{*}\left(A_{T}\right)$ and $f \notin I d^{*}\left(\widetilde{A}_{T}\right)$.

Finally, let $k=2$. Then modulo $I d^{*}\left(A_{T}\right)$ and modulo $I d^{*}\left(\widetilde{A}_{T}\right)$, any multilinear $*-$ polynomial is a linear combination of monomials

$$
w_{p}=x_{1} y_{1} \cdots y_{p} x_{2} y_{p+1} \cdots y_{n-2} \quad \text { and } \quad v_{q}=x_{2} y_{1} \cdots y_{q} x_{1} y_{q+1} \cdots y_{n-2}
$$

where $0 \leq p, q, p+q=n-2$.
Suppose that

$$
f=\sum_{p} \lambda_{p} w_{p}+\sum_{q} \mu_{q} v_{q}
$$

and that at least one of the coefficients λ_{p} is nonzero. We may also assume that $\mu_{0}=0$ if $\lambda_{0} \neq 0$. If all $\lambda_{p}=0$ for p even and all $\mu_{q}=0$ for q even, then $f \in I d^{*}\left(A_{T}\right) \cap I d^{*}\left(\widetilde{A}_{T}\right)$.

Denote

$$
t=\max \left\{p \mid p \text { even and } \lambda_{p} \neq 0\right\}
$$

Then there exists odd j such that $j+t=2 T+1$. Hence

$$
\varphi(f)=\lambda_{t} z_{j} a^{t} b a^{m}=\lambda_{t} z_{t+1} \neq 0 \quad \text { in } \quad A_{T}
$$

for the evaluation φ such that $\varphi\left(x_{1}\right)=z_{j}, \varphi\left(x_{2}\right)=b, \varphi\left(y_{1}\right)=\cdots=\varphi\left(y_{n-2}\right)=a$.
Similarly,

$$
\widetilde{\varphi}(f)=\lambda_{t} z_{m+1}^{2} \quad \text { in } \quad \widetilde{A}_{T}
$$

if

$$
\widetilde{\varphi}\left(x_{1}\right)=z_{j}^{1}, \widetilde{\varphi}\left(x_{2}\right)=b_{1}, \widetilde{\varphi}\left(y_{1}\right)=\cdots=\widetilde{\varphi}\left(y_{n-2}\right)=a .
$$

It follows that

$$
I d^{*}\left(A_{T}\right) \cap P_{n}^{*}=I d^{*}\left(\widetilde{A}_{T}\right) \cap P_{n}^{*}
$$

provided that $n \leq 2 T$.
Remark 5.1. It follows from Lemma 4.1, Lemma 4.2, and Lemma 4.5, that *-codimensions of small degree of \widetilde{A}_{T} are polynomially bounded,

$$
c_{n}^{*}\left(\widetilde{A}_{T}\right) \leq n^{3} \text { if } n \leq 2 T
$$

Also, any multilinear $*$-identitiy of \widetilde{A}_{T} of degree $n \leq 2 T$ is an identity of all $\widetilde{A}_{T+1}, \widetilde{A}_{T+2}, \ldots$.

Unlike A_{T}, algebra \widetilde{A}_{T} has an overexponential $*$-codimension growth.
Lemma 5.2. Let $n \geq 4 T+3$. Then

$$
\begin{equation*}
c_{n}^{*}\left(\widetilde{A}_{T}\right)>\left[\frac{n}{2 T+1}-1\right]!, \tag{11}
\end{equation*}
$$

where $[t]$ denotes the integer part of real number $t>0$.
Proof. Denote

$$
w_{\sigma}=x_{0} y_{1} \cdots y_{2 T} x_{\sigma(1)} y_{2 T+1} \cdots y_{4 T} x_{\sigma(2)} \cdots x_{\sigma(m)} y_{2 m T+1} \cdots y_{2 m T+j}
$$

where $\sigma \in S_{m}, 0 \leq j \leq 2 T$. Since

$$
z_{1}^{1} a^{2 T} b_{1} a^{2 T} \cdots a^{2 T} b_{m} a^{j}=z_{j+1}^{m+1} \neq 0
$$

while

$$
z_{1}^{1} a^{2 T} b_{\sigma(1)} a^{2 T} \cdots a^{2 T} b_{\sigma(m)} a^{j}=0
$$

for any $e \neq \sigma \in S_{m}$, all monomials w_{σ} of degree $n=(2 T+1) m+j+1$ are linearly independent modulo $I d^{*}\left(\widetilde{A}_{T}\right)$.

Hence

$$
\begin{equation*}
c_{n}^{*}\left(\widetilde{A}_{T}\right) \geq c_{m+1, n-m-1}^{*}\left(\widetilde{A}_{T}\right) \geq m! \tag{12}
\end{equation*}
$$

Since

$$
(2 T+1) m=n-j-1 \geq n-(2 T+1)
$$

we have

$$
m \geq \frac{n}{2 T+1}-1
$$

and (12) yields inequality (11).
Now, let $\Phi[Z]$ be the polynomial ring over Φ and let $\Phi[Z]_{0}$ be its subring of polynomials with the zero constant term. Given an integer $N \geq 1$, denote by R_{N} the quotient

$$
R_{N}=\frac{\Phi[Z]_{0}}{(Z)^{N+1}}
$$

where $(Z)^{N+1}$ is the ideal of $\Phi[Z]_{0}$ generated by Z^{N+1}.
Denote $B(T, N)=\widetilde{A}_{T} \otimes R_{N}$. Then

$$
\begin{equation*}
P_{k, n-k}^{*}(B(T, N))=P_{k, n-k}^{*}\left(\widetilde{A}_{T}\right), \text { for all } 0 \leq k \leq n \leq N \tag{13}
\end{equation*}
$$

whereas

$$
\begin{equation*}
P_{k, n-k}^{*}(B(T, N))=0, \text { for all } n \geq N+1 \tag{14}
\end{equation*}
$$

Given two infinite series of integers T_{1}, T_{2}, \ldots and N_{1}, N_{2}, \ldots such that

$$
0<T_{1}<N_{1}<\ldots<T_{j}<N_{j}<\ldots
$$

we define an algebra $C\left(T_{1}, T_{2}, \ldots, N_{1}, N_{2}, \ldots\right)$ as the direct sum

$$
C\left(T_{1}, T_{2}, \ldots, N_{1}, N_{2}, \ldots\right)=B\left(T_{1}, N_{1}\right) \oplus B\left(T_{2}, N_{2}\right) \oplus \cdots .
$$

The next statement easily follows from Lemma 4.2, Lemma 5.1, and relations (13), (14).

Lemma 5.3. Let $C=C\left(T_{1}, \cdots, N_{1}, \cdots\right)$. Then

- $c_{n}^{*}(C)=c_{n}^{*}\left(\widetilde{A}_{T_{1}}\right)$, for all $n \leq N_{1}$;
- $c_{n}^{*}(C)=c_{n}^{*}\left(\widetilde{A}_{T_{j}}\right)$, for all $j \geq 2, N_{j-1}+1 \leq n \leq T_{j}$;
- $c_{n}^{*}\left(\widetilde{A}_{T_{j}}\right) \leq c_{n}^{*}(C) \leq c_{n}^{*}\left(\widetilde{A}_{T_{j}}\right)+c^{*}\left(\widetilde{A}_{T_{j+1}}\right)$, for all $j \geq 2, T_{j}<n \leq N_{j}$.

Lemma 5.4. Let $C=C\left(T_{1}, \ldots, N_{1}, \ldots\right)$. Then $c_{n}^{*}(C) \leq 3 n c_{n-1}^{*}(C)$.
Proof. Fix $n \geq 3$ and $1 \leq k \leq n-1$. Denote by f_{1}, \ldots, f_{m} a basis of $P_{k, n-k-1}^{*}$ modulo $I d^{*}(C)$, where $f_{j}, 1 \leq j \leq m$, are monomials in $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{n-k-1}$ and $m=c_{k, n-k-1}^{*}$. Denote also by g_{1}, \ldots, g_{t} a basis consisting of monomials in x_{1}, \ldots, x_{k-1}, y_{1}, \ldots, y_{n-k} of $P_{k-1, n-k}^{*}$ modulo $I d^{*}(C), t=c_{k-1, n-k}^{*}(C)$.

Then modulo $I d^{*}(C)$, the subspace $P_{k, n-k}^{*}$ coincides with the span of products

$$
f_{1}^{i} y_{i}, \ldots, f_{m}^{i} y_{i}, g_{1}^{j} x_{j}, \ldots, g_{t}^{j} x_{j}, 1 \leq i \leq n-k, 1 \leq j \leq k
$$

where

$$
\begin{gathered}
f_{p}^{i}=f_{p}\left(x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{i-1}, y_{i+1}, \ldots, y_{n-k}\right), \\
g_{q}^{j}=g_{q}\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{k}, y_{1}, \ldots, y_{n-k}\right) .
\end{gathered}
$$

Hence

$$
\begin{equation*}
c_{k, n-k}^{*}(C) \leq n\left(c_{k-1, n-k}^{*}(C)+c_{k, n-k-1}^{*}(C)\right) . \tag{15}
\end{equation*}
$$

It follows from (15) and the next inequalities

$$
\binom{n}{k} \leq n\binom{n-1}{k}, \quad\binom{n}{k} \leq n\binom{n-1}{k-1}
$$

that

$$
\begin{equation*}
\binom{n}{k} c_{k, n-k}^{*}(C) \leq n\left[\binom{n-1}{k-1} c_{k-1, n-k}^{*}(C)+\binom{n-1}{k} c_{k, n-k-1}^{*}(C)\right] . \tag{16}
\end{equation*}
$$

Inequality (16) implies that

$$
\sum_{k=1}^{n-1}\binom{n}{k} c_{k, n-k}^{*}(C) \leq 2 \sum_{j=0}^{n-1}\binom{n}{j-1} c_{j, n-j-1}^{*}(C)=2 n c_{n-1}^{*}(C)
$$

Finally, since $c_{0, n}^{*}=1$ and $c_{n, 0}^{*}=1$ for $n \geq 3$, we have

$$
c_{n}^{*}(C) \leq 3 n c_{n-1}^{*}(C)
$$

We are now ready to construct a family of examples of algebras with involution without *-PI-exponent. The following is the third main result of this paper.

Theorem 5.1. For any real number $\alpha>1$, there exists an algebra C_{α} such that

$$
\underline{\exp }^{*}\left(C_{\alpha}\right)=1, \quad \overline{\exp }^{*}\left(C_{\alpha}\right)=\alpha
$$

Proof. Given $\alpha>1$, we construct an algebra C_{α} as $C\left(T_{1}, \ldots, N_{1}, \ldots\right)$ by the special choice of the sequences T_{1}, T_{2}, \ldots and N_{1}, N_{2}, \ldots.

First, we fix T_{1} such that $n^{3}<\alpha^{n}$, for all $n \geq T_{1}$. By Lemmas 4.1, 5.1 and 5.2, there exists N_{1} such that

$$
\left\{\begin{array}{l}
c_{n}^{*}\left(\widetilde{A}_{T}\right)<\alpha^{n} \text { if } n=N_{1}-1 \\
c_{n}^{*}\left(\widetilde{A}_{T}\right) \geq \alpha^{n} \text { if } n=N_{1}
\end{array}\right.
$$

Then by Lemma 5.3 and Lemma 5.4,

$$
\alpha^{n} \leq c_{n}^{*}(C) \leq 3 n \alpha^{n} \text { if } n=N_{1} .
$$

On the other hand, $c_{N_{1}+1}^{*} \leq\left(N_{1}+1\right)^{3}$ by the choice of N_{1}. We now set $T_{2}=2 N_{1}$.
Suppose that $T_{1}, N_{1}, \ldots, T_{k-1}, N_{k-1}, T_{k}$ have already been chosen. Then as before, applying Lemmas 4.1, 5.1, 5.2 and 5.3 , one can find N_{k} such that

$$
\left\{\begin{array}{l}
c_{n}^{*}(C)<\alpha^{n} \text { if } n=N_{k}-1 \tag{17}\\
c_{n}^{*}(C) \geq \alpha^{n} \text { if } n=N_{k}
\end{array}\right.
$$

Moreover,

$$
\left\{\begin{array}{l}
c_{n}^{*}(C) \leq 3 n \alpha^{n} \tag{18}\\
c_{n+1}^{*}(C) \leq(n+1)^{3}
\end{array}\right.
$$

if $n=N_{k}$.
Denote by C_{α} the obtained algebra $C\left(T_{1}, \ldots, N_{1}, \ldots\right)$. Since $c_{n}^{*}\left(C_{\alpha}\right) \neq 0$ for all $n \geq 1$, relations (17), (18) give us the equations

$$
\underline{\exp }^{*}\left(C_{\alpha}\right)=1, \quad \overline{\exp }^{*}\left(C_{\alpha}\right)=\alpha
$$

and we have thus completed the proof.

Data availability

Data will be made available on request.

Acknowledgments

Repovš was supported by the Slovenian Research Agency program P1-0292 and grants N1-0278, N1-0114 and N1-0083. Zaicev was supported by the Russian Science Foundation grant 22-11-00052.

References

[1] A. Regev, Existence of identities in $A \otimes B$, Isr. J. Math. 11 (1972) 131-152.
[2] V.N. Latyshev, On Regev's Theorem on tensor product of PI-algebras, Usp. Mat. Nauk 27 (1973) 213-214 (Russian).
[3] Yu.A. Bahturin, V. Drensky, Graded polynomial identities of matrices, Linear Algebra Appl. 357 (2002) 15-34.
[4] A. Giambruno, M. Zaicev, Codimension growth of special simple Jordan algebras, Trans. Am. Math. Soc. 362 (6) (2010) 3107-3129.
[5] M.V. Zaicev, Varieties of affine Kac-Moody algebras, Mat. Zametki 62 (1) (1997) 95-101 (Russian); Engl. translation in: Math. Notes 62 (1-2) (1998) 80-86.
[6] S.P. Mishchenko, Growth of varieties of Lie algebras, Usp. Mat. Nauk 45 (6) (1990) 25-45 (Russian); Engl. Translation in: Russ. Math. Surv. 45 (6) (1990) 27-52.
[7] A.S. Dzhumadil'daev, Coodimension growth and non-Kozhulity of Novikov operad, Commun. Algebra 39 (8) (2011) 2943-2952.
[8] A. Giambruno, M. Zaicev, Exponential codimensions growth: an exact estimate, Adv. Math. 142 (2) (1999) 145-155.
[9] M.V. Zaitsev, Integrality of exponents of growth of identities of finite-dimensional Lie algebras, Izv. Ross. Akad. Nauk, Ser. Mat. 66 (2002) 23-48 (Russian); Engl. translation in: Izv. Math. 66 (2002) 463-487.
[10] A. Giambruno, I. Shestakov, M. Zaicev, Finite-dimensional non-associative algebras and codimension growth, Adv. Appl. Math. 47 (1) (2011) 125-139.
[11] A. Giambruno, M. Zaicev, On codimension growth of finite-dimensional Lie superalgebras, J. Lond. Math. Soc. (2) 85 (2) (2012) 534-548.
[12] M. Zaicev, On existence of PI-exponent of codimension growth, Electron. Res. Announc. Math. Sci. 21 (2014) 113-119.
[13] D. Repovš, M. Zaicev, On existence of PI-exponents of unital algebras, Electron. Res. Arch. 28 (2) (2020) 853-859.
[14] S.A. Amitsur, Identities in rings with involutions, Isr. J. Math. 7 (1969) 63-68.
[15] A. Giambruno, M. Zaicev, Involution codimensions of finite dimensional algebras and exponential growth, J. Algebra 222 (1999) 4471-4484.
[16] A. Giambruno, C. Polcino Milles, A. Valenti, Star-polynomial identities: computing the exponential growth of codimensions, J. Algebra 469 (2017) 302-322.
[17] A. Giambruno, M. Zaicev, Polynomial Identities and Asymptotic Methods, Mathematical Surveys and Monographs, vol. 122, Amer. Math. Soc., Providence, RI, 2005.
[18] A. Giambruno, S. Mishchenko, M. Zaicev, Codimensions of algebras and growth functions, Adv. Math. 217 (3) (2008) 1027-1052.
[19] I. Shestakov, M. Zaicev, Eventually non-decreasing codimensions of *-identities, Arch. Math. 116 (4) (2021) 413-421.

[^0]: * Corresponding author.

 E-mail addresses: dusan.repovs@guest.arnes.si (D.D. Repovš), zaicevmv@mail.ru (M.V. Zaicev).

