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1. Introduction

Let A be an algebra over a field ® of characteristic zero. One of the modern approaches
to the study of polynomial identities of A is to investigate their numerical invariants.
The most important numerical characteristic of identities of A is the sequence {¢,(A4)} of
codimensions and its asymptotic behavior. For a wide class of algebras, the growth of the
sequence {cp,(A)} is exponentially bounded. This class includes associative PI-algebras
[1,2], finite-dimensional algebras of arbitrary signature [3,4], affine Kac-Moody algebras
[5], infinite-dimensional simple Lie algebras of Cartan type [6], Virasoro algebra, Novikov
algebras [7], and many others.

In the case of exponential upper bound, the corresponding sequence of roots
{/cn(A)} is bounded and its lower and upper limits

exp(A) = liminf {/¢,(A4), exp(A) = limsup {/c,(A)

n—00 n—00

are called the lower and the upper Pl-exponent of A, respectively. In the case when
exp(A) = exp(A), the ordinary limit

exp(A) = lim V¢, (A)

n—oo

is called the (ordinary) Pl-ezponent of A.

In the late 1980’s, S. Amitsur conjectured that the PI-exponent of any associative PI-
algebra exists and is a nonnegative integer. Amitsur’s conjecture was confirmed in [8].
It was also proved for finite-dimensional Lie algebras [9], Jordan algebras [10], and some
others. The class of algebras for which Amitsur’s conjecture was partially confirmed is
much wider. Namely, the existence (but not the integrality, in general) was proved in a
series of papers.

For example, it was shown in [11] that the PI-exponent exists for any finite-dimensional
simple algebra. The question about existence of PI-exponents is one of the main problems
of numerical theory of polynomial identities. Until now, only two results about algebras
without PI-exponent have been proved. An example of a two-step left-nilpotent algebra
without Pl-exponent was constructed in [12]. Analogous result for unitary algebras was
obtained in [13].

If an algebra A is equipped with an additional structure (like an involution or a group
grading), then one may consider identities with involution, graded identities, etc. Recall
that in the associative case, the celebrated theorem of Amitsur [14] states that if A is an
algebra with involution % : A — A, satisfying a *-polynomial identity, then A satisfies
an ordinary (non-involution) polynomial identity. As a consequence, the sequence of -
codimensions {c}(A)} is exponentially bounded. In [15,16] the existence and integrality
of exp*(A) was proved for any associative PI-algebra with involution.
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In the present paper we shall show that the class of algebras with exponentially
bounded *-codimension sequence is sufficiently large. In particular, it contains all finite-
dimensional algebras.

Theorem A (see Theorem 3.1 in Section 3). Let A be a finite-dimensional algebra with
involution *: A — A and d = dim A. Then *-codimensions of A satisfy the following
inequality

¢t (A) < dnt.

Nevertheless, as it will be shown, the results of [15,16] cannot be generalized to the
general nonassociative case. We shall construct a series of finite-dimensional algebras
with fractional x-Pl-exponent. For any integer 7" > 2 we shall construct an algebra Ap
with the following property.

Theorem B (see Theorem 4.1 in Section /). The x-Pl-exponent of algebra Ar exists and

1

o ) = G gy

where O = Tlﬂ

We shall also present a family of algebras C, with involution * which has an expo-
nentially bounded sequence {c},(C,)} such that exp*(C,) does not exist.

Theorem C (see Theorem 5.1 in Section 5). For any real number oo > 1 there exists an
algebra Cy, such that

exp*(ca) =1, m*(ca) = Q.

The necessary background on numerical theory of polynomial identities can be found
in [17].

2. Preliminaries

Let A be an algebra with involution *x: A — A over a field ® of char ® = 0. Recall
that an element a € A is called symmetric if a* = a, whereas an element b € A is called
skew-symmetric if b* = —b. Denote

At ={a € Ala* =a}, A” ={bec Ap* = —b}.

Obviously, we have a vector space decomposition A = AT @& A~. In order to study
x-polynomial identities we need to introduce free objects in the following way.
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Let ®{X,Y} be a free (nonassociative) algebra over ® with the set of free generators
XUY, X ={z,29,...},Y = {y1,92,...}. Amap x : XUY — X UY such that

xf = x,yf = —y;,t =1,2,..., can be naturally extended to an involution on ®{X,Y}.

A polynomial f = f(z1,...,Zm,Y1,.--,Yn) € P{X,Y} is said to be a *-identity of A if
f(al,...,am,bl,...,bn) =0, for all ay,...a, € A+,b1,...,bn cA”.

Denote by Id*(A) the set of all «-identities of A in ®{X,Y}. Then Id*(A) is an ideal
of ®{X,Y} and it is stable under involution * and endomorphisms compatible with x.

Given 0 < k < n, denote the space of all multilinear polynomials in ®{X,Y} in
k symmetric variables x1,...,z; and n — k skew-symmetric variables yi,...,¥n—x by
By k- Denote also

P;:Pg,n@Pin—l@”'@P:,O'

Clearly, the intersection Py, , N1d*(A) is the subspace of all multilinear *-identities of
A in k symmetric and n — k skew-symmetric variables.
The following value

¢ n_i(A) = dim _ Bene
= Py, N 1d*(A)

is called the partial (k,n — k) =-codimension of A, whereas the value
" /n
=3 () et s
k=0
is called the (total) *-codimension of A. We shall also use the following notations

_ Pl;k,nfk
Pl 0 Id*(A)’

Py

Fu(4) = Prld(A)

Bin—i(4)

3. *-codimensions of finite-dimensional algebras

Let A be a finite-dimensional algebra with involution *: A — A, where dim A = d.
Recall that AT and A~ are the subspaces of symmetric and skew-symmetric elements
of A, respectively. In order to get an exponential upper bound for ¢} (A), we shall follow
the approach of [3]. Choose a basis ai,...,a, of AT and a basis by,...,b; of A7. If
fl@r, oo 2, Y1, ooy Yn—k) € Py ,,—k is a multilinear *-polynomial in k symmetric vari-
ables z1,...,z; and n — k skew-symmetric variables y, ..., yn_, then f is a x-identity
of A if and only if ¢(f) = 0, for all evaluations ¢ such that

o(x;) €{ar,...,apt, 1<i <k, o(y;) € {b1,...,b}, 1<j<n—k. (1)
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Denote N = dim Py, ;. Fix a basis g1,...,gn of Py, , and write f as a linear
combination f = ajg1 + -+ angn. Then the value ¢(f) for ¢ of the type (1) can be
written as

o(f) = a1 + -+ Apap + pabr + - - + bypig,

where all A1,...,\p, t1,. .., fig are linear combinations of a1, ..., ay. Hence ¢(f) = 0 if
and only if

M= =Xy =puy =iy =0. (2)

The total number of evaluations ¢ of type (1) is equal to pFq"~*. It follows that f =0
is a x-identity of A if and only if the N-tuple (ay,...,ay) is the solution of system S of
pPq"*(p + q) linear equations of type (2).

Denote by U the subspace of all solutions of system S in the space V of all N-tuples
(a1,...,an). Then dimU = N — r, where r = rank S is the rank of S. Clearly,

r<pF¢" F(p+q). (3)

Since
ke n—k(A) = codimy (U) =,
it follows from (3) that
Chnr(A) <P (p+a)

and

i()cknk p-l-qki:() PR = (p+ )"

k=0

Recall that p + ¢ = d = dim A. Hence we have proved the first main result of this
paper.

Theorem 3.1. Let A be a finite-dimensional algebra with involution x: A — A and d =
dim A. Then x-codimensions of A satisfy the following inequality

¢ (A) <dl. O

In the case of exponentially bounded sequence {c;(A)}, the following natural question
arises.
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Question 3.1. Does the x-PIl-exponent

exp’(4) = lim 3/e;(4)

exist and what are its possible values?

In Section 1 we mentioned that ¢} (A) exists and is a nonnegative integer for any
associative x-PI-algebra A. The following hypotheses look very natural.

Conjecture 3.1. For any finite-dimensional algebra A with involution *, its x- PI-exponent
exp*(A) exists.

In the light of results of [18], we can assume that *-PI-exponent may take on all real
values > 1.

Conjecture 3.2. For any real value oo > 1, there exists an algebra A, with involution such
that *-Pl-exponent of A, exists and exp*(A,) = a.

4. Algebras with fractional *-PI-exponent

In this section we shall discuss *-codimension growth of algebras Ar introduced in
[19]. We shall prove the existence of x-PI-exponents of A7 and compute the precise value
of exp*(Ar). In Section 5 we shall use the properties of Ar for constructing several
counterexamples.

Recall the structure of Ap. Given an integer T' > 2, denote by Ar the algebra with
basis {a,b, z1,. .., zar+1} and with multiplication

20 = a2y = Zi41,1 <1 <2t 2o 41b = bzorq1 = 21,
where all remaining products are zero. Involution * : Ap — Ap is defined by
a* = —a,b* =b,z2 = (—1)”121-
and then
AT =< b,21,23,..., 20041 >, A" =< a,20,24,..., 271 > .
We shall need the following two results from [19].

Lemma 4.1. ([19, Lemma 3.7]) The *-codimensions of Ar satisfy the inequality ¢ (Ar) <
n3, provided that n < 2T.

Lemma 4.2. ([19, Corollary 3.8]) Let f = 0 be a multilinear x-identity of Ar of degree
n < 2T. Then f is also an identity of Ariq.



D.D. Repovs, M.V. Zaicev / Journal of Algebra 614 (2023) 5-19 11

Note that algebras A7 are commutative and metabelian, i.e. they satisfy the following
identity

(xy)(zt) = 0.

Hence any product of elements cy,...,¢, € A can be written in the left-normed form.
We shall omit brackets in the left-normed products, i.e. we shall write cics - - - ¢, instead
of (...(c1c2)...)en.

First, we shall find a lower bound for *-codimensions.

Lemma 4.3. The following inequality holds for all n > 2T + 2,
1 1 n—2T-1
* > - -
CTL(AT) — nQ (92—?—‘(1 _ 0T)1_9T> ’ (4)

where

1
2T+ 17

Or

Proof. Write n in the form n = (2T + 1)k +t+ 1, where 0 < ¢ < 2T. Then the following
product of n basis elements is nonzero

2102 a?That = ze41 # 0.
—_———

k

Here, we use the notation xa™ for z a---a. Hence the polynomial
——

m

ToY1 - Y211 - You(k—1)+1 " Y2TkTRY2Tk+1 " " Y2Tk+t

is not an identity of Ar, that is,

PI:+1,2Tk+t(AT) # 0, CZ+1,2Tk+t > 1

= (1,)= (1) (2)

where n =2Tk+k+t+1,n9g =2Tk + k.
Using the Stirling formula for factorials we get

In particular,

(2T + 1)k 1 (2T + 1)k)@T+1E
( k ) 7 nE T RR(2Tk)7TE (6)
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(2T+1)k

1 1 1 1 "
o ( 1 )ﬁ( 2T )% -\ 6 (1 - br)i0r

2T+1
n—2T-1
S 1 1
= n2 G%T(l _ QT)keT ’
1
2T+1"

Finally, combining (5) and (6), we obtain the desired inequality (4). O

where O =

Next, we shall find an upper bound for ¢} (Ar). First, we restrict the number of
(Ar) for a fixed n.

nonzero components Py .

Lemma 4.4. Given a positive integer n, there are at most three integers k, 0 < k < n,
such that Py, (Ar) # 0. Moreover, if P, (Ar) # 0, then

k—2 1
< .
n — 2T+1

Proof. Clearly, all nonzero products of the basis elements of A are of the form
W = 22T+1_¢aib a?Th---a*Tval. (7)
p

The number of symmetric factors k is equal to p+ 1 if 7 is odd, and k = p+ 2 if i is even.
The total number of factors in W is equal to n = (2T + 1)p + i + j + 2. Moreover, i and
j in (7) satisfy inequalities 0 < 4,5 < 2T'. Hence

n—4T —2< (2T +1)p<n—2. (8)

Clearly, there are at most two integers p satisfying (8). Since k = p+1 or p + 2, at
most 3 components Py, « (A7) can be nonzero. Finally, according to (8), we have

k—2 p n—2 1
n

< < < .
n —n~ 2T+1)n ~ 2T +1

Lemma 4.5. Let n < 21"+ 2. Then ¢}, (A7) < (2T + 1)3.

Proof. As it was mentioned earlier, all nonzero products of the basis elements of A7 are
of the form

2;aPba®Th---a*Thal, 1<j<2T+1, 0<p,q<?2T.
N———’
k

Hence all nonzero modulo Id*(Ar) multilinear monomials are of the form
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wyd(l) e yd(p)xﬂr(l)yg(p_,’_l) e yU(p—‘rQT)CET(Q) . (9)

Yo (2Tk—2T4p+1) " Yo (2Tk+p) L7 (k+1)Yo (2Tk+p+1) * " Yo (2Tk+p+q)»

where 0 € Sorktprq: T € Sk+1, and w is either xy or yo.

Moreover, any monomial (9) coincides (modulo Id*(Ar)) with the special case (9)
when o0 = 1,7 = 1. Hence, we have at most (27 + 1)3 linearly independent elements in
Py, (Ar), and so we are done. O

Lemma 4.6. For alln > 2T + 2, we have

1 n
¢ (Ap) <32T+1)°n° | ———— | .
(Ar) <327 +1) ( T 9T>1_9T>

Proof. First we compute an upper bound for ¢ ,,_; (A7), provided that P, (Ar) # 0.

Note that
n of M 3 n"
< < _—
(k) =" (k - 2> =" — mym

by the Stirling formula, where m =k — 2.
Since the function

1
(1 —x)t—=

is nondecreasing on (0, %), we have by Lemma 4.4,

<Z> =n ((m/n)m/n(l - m/n)lm/”>n <n® (W)n (10)

Now relation (10), Lemma 4.4, and Lemma 4.5 imply

* — (n * 1 '
cn(Ar) = Z <k>ck,nk(AT) < 3(2T +1)°n® (W) - U

k=0

Finally, Lemma 4.3 and Lemma 4.6 imply the second main result of this paper.

Theorem 4.1. The x-Pl-exponent of algebra Ar exists and

1

* A = -
exp ( T) 93}“(1 —9T)1_9T

where O = O

_1
2T+1"
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5. Algebras without *-PI-exponent

We modify construction of the algebra from Section 4. Denote by Ar an infinite-
dimensional algebra with the basis

1
a, bi7 Zja

1<j<2T+1, i=1,2,...
and multiplication table
+1

i i i ; i i i
az; = zja =254, 1 < j < 2T, bizypyq = 25p41bi = 2

Involution * : AT — ﬁT is defined as follows

a* = —a, b =b;, () =(-1)"2l, 1<j<2T+1, i=1.2,...

Lemma 5.1. A multilinear polynomial f € Py, _, of degree n < 2T is a x-identity of Ar
if and only if f is a *-identity of Ar.

Proof. First, note that PE,n,k(AT) = ngnik(gT) =0, whenn <27 and 3 <k <n.
Let k = 0. Then both A and Ay satisfy the following identity

Yt+1Y5(1) " Yo(t) = Yt+1Y1 - Yt,

for any o € S, and ¢ < 2T — 1. Hence, modulo Id*(Az) (and modulo Id*(Ar)), the
polynomial f coincides with linear combination

f=Xowy + -+ Apwy, where wj = y;y1 - Yi—1Yj41 " YUn-

Let for example, A\, # 0. Then ¢(f) # 0 in Ay and @(f) # 0 in Ar for evaluations
©, P, where

eyn) = 21,0(y;) =ain Ap,2 <j<n—1, @(ys) = 21,¢(y;) =ain Ap,2 < j <n—1.

Now let £ = 1. Then all monomials y; - - - y;Z1y;+1 - - - Y+ are identities of Az and Ar
if 3<j<t<n-—1. Since

T1Y5(1) """ Yo(n—1) = T1Y1 " " Yn—1, for all o€ 5,1

mod Id*(Ar) and mod Id*(gT), it follows that f = Aziy1 - Yn_1, with 0 # X € .
Hence f ¢ Id*(Ag) and f ¢ Id*(Ar).

Finally, let k¥ = 2. Then modulo Id*(Ar) and modulo I d*(/IT), any multilinear *-
polynomial is a linear combination of monomials

Wp = T1Y1 " YpTaYp+1 - Yn—2 and vy = Toyi - YgT1Yq+1 " Yn—2,
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where 0 < p,q, p+qg=n—2.
Suppose that

f= Z Apwp + Zﬂqvq
P q

and that at least one of the coefficients A, is nonzero. We may also assume that ;o =0
if A\g # 0. If all A\, = 0 for p even and all u, = 0 for g even, then f € Id*(Ar)NId*(Ar).
Denote
t = max{p|p even and A, # 0}.
Then there exists odd j such that j + ¢ = 27 + 1. Hence

@(f) = Atzjatbﬁlm =M2zir1 #0 in Ap

for the evaluation ¢ such that ¢(z1) = 2z, p(z2) = b, ¢(y1) = - = P(Yn—2) = a.
Similarly,

PN =Nzmyr i Ar
if
P(x1) = zj, @) = b1, @(y1) = -+ = P(yn—2) = a.
It follows that
Id*(Ap) N P = Id*(Ar) N P},
provided that n < 27. 0O

Remark 5.1. It follows from Lemma 4.1, Lemma 4.2, and Lemma 4.5, that *-codimensions
of small degree of Ay are polynomially bounded,

¢t (Ap) <n® if n <2T.

Also, any multilinear *-identitiy of Ar of degree n < 2T is an identity of all
Ari1,Arqa, ...

Unlike Arp, algebra ET has an overexponential *-codimension growth.

Lemma 5.2. Let n > 4T + 3. Then

¢ (Ar) > {%ﬂ - 1}!, (11)
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where [t] denotes the integer part of real number t > 0.
Proof. Denote
Wo = ToY1 " Y21 To(1)Y2T+1 " " Y4T Lo (2) """ Lo(m)Y2mT+1 " " Y2mT+j>

where o € S,,,0 < j < 2T Since

2Aa?Tb1a®" - a?Tba’ = ;’r{l #0,
while
1 2T 2T 2T j
2107 by(1ya™ - a” bymya’ =0,

for any e # o € Sy, all monomials w, of degree n = (2T + 1)m + j + 1 are linearly
independent modulo Id*(Ar).

Hence
n(Ar) > Cytnem1(Ar) = m! . (12)
Since
2T+ 1)m=n—j—-1>n—-(2T+1),
we have
= 2Tn+ .

and (12) yields inequality (11). O

Now, let ®[Z] be the polynomial ring over ® and let ®[Z]; be its subring of polynomials
with the zero constant term. Given an integer N > 1, denote by Ry the quotient

®[Zo

v =gver

where (Z)V*1 is the ideal of ®[Z]y generated by ZN*1.
Denote B(T,N) = Ar ® Ry. Then

Py (B(T,N)) =P, _i(Ar), forall0<k <n < N, (13)
whereas

Py x(B(T,N)) =0, foralln > N + 1. (14)
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Given two infinite series of integers 11,73, ... and Ny, Na,... such that
O0<Th <N <...<Tj; <N;<...,
we define an algebra C(T1,T5,..., N1, Na,...) as the direct sum
C(Ty,Ts,...,N1,No,...) = B(T1,N1) ® B(To, N2) @ - - -

The next statement easily follows from Lemma 4.2, Lemma 5.1, and relations (13),

(14).

Lemma 5.3. Let C = C(T1, -+ ,N1,--+). Then

o ¢;(C) =ci(Ar), for alln < Ny;
o ¢, (C)=cy (A1), forall j >2,N; 1 +1<n<Tj;
o ci(Ar) < ci(C) < e (Ary) + ¢*(Aqy,,), forall j >2,T; <n < N;. O

Lemma 5.4. Let C = C(Ty,...,Ny,...). Then ¢ (C) < 3nc},_,(C).

Proof. Fix n > 3 and 1 < k
modulo Id*(C), where f;,1 < j
m = ¢, ,_p_1- Denote also by g1,..., g a basis consisting of monomials in x1,...,25_1,
Yly- vy Yn_g Of P,f:_l)n_k modulo Id*(C), t = CZ—l,n—k(C)~

Then modulo Id*(C), the subspace Py, coincides with the span of products

n — 1. Denote by fi,..., fr a basis of Py, ,

<
< m, are monomials in x1,..., Tk, Y1,---,Yn_k_1 and

where
L= p\Llyeees Ly Y1y Yi—1yYit+ls--+HrYn—k)»
fo= Iz Ti, Y Yi-1,Y Yn—k)
gé:gq(xla"'axj—laxj—‘rla'"7mkay17"'7yn—k)-
Hence
n—1(C) nlcg_1.0 1 (C) +ctpr1(C)). (15)

It follows from (15) and the next inequalities

() =) ()=G5)

(Z) Crn-k(C) <n KZ: D Cro1n—k(C) + (n; 1) CZ,nkl(C)] . (16)

that
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Inequality (16) implies that

n—1 n—1
n\ . no\ L .
Z Ck,n—k(c) <2 Z - Cj,n—j—l(c) = 2nc;,_1(0).
k —\J—1
k=1 7=0
Finally, since ¢j,, =1 and ¢;, o = 1 for n > 3, we have
¢ (C) < 3nc,,_1(C). DO

We are now ready to construct a family of examples of algebras with involution without
x-PI-exponent. The following is the third main result of this paper.

Theorem 5.1. For any real number a > 1, there exists an algebra C, such that

exp*(Ca) =1, W*(Ca) = Q.

Proof. Given « > 1, we construct an algebra C, as C(T1,...,Ny,...) by the special
choice of the sequences 17,75, ... and Ny, No,... .
First, we fix T3 such that n® < a”, for all n > T;. By Lemmas 4.1, 5.1 and 5.2, there

exists N7 such that

¢ (Ar) <a™ifn=N; —1
i (Ar) > a™ if n = Ny.

Then by Lemma 5.3 and Lemma 5.4,
a™ < (C) < 3na™ if n=Nj.

On the other hand, ¢}y, ,; < (N1 4 1)? by the choice of Ni. We now set Th = 2N,
Suppose that 71, Ny,...,Tx—1, Np_1, T} have already been chosen. Then as before,
applying Lemmas 4.1, 5.1, 5.2 and 5.3, one can find Ny such that

g (C)<a™ifn=N, -1
" 1
{C:;(C’) > a" if n = Nj. (17)
Moreover,
¢t (C) < 3na™
" 18
{ G (0) < (n+17 1
if n = Nk.

Denote by C, the obtained algebra C(T4,..., Ny,...). Since ¢} (Cy) # 0 for all n > 1,
relations (17), (18) give us the equations
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exp*<Ca) =1, W*(Ca) =a

and we have thus completed the proof. O
Data availability

Data will be made available on request.
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