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1. Introduction

Let A be an algebra over a field Φ of characteristic zero. One of the modern approaches 
to the study of polynomial identities of A is to investigate their numerical invariants. 
The most important numerical characteristic of identities of A is the sequence {cn(A)} of 
codimensions and its asymptotic behavior. For a wide class of algebras, the growth of the 
sequence {cn(A)} is exponentially bounded. This class includes associative PI-algebras 
[1,2], finite-dimensional algebras of arbitrary signature [3,4], affine Kac-Moody algebras 
[5], infinite-dimensional simple Lie algebras of Cartan type [6], Virasoro algebra, Novikov 
algebras [7], and many others.

In the case of exponential upper bound, the corresponding sequence of roots 
{ n
√
cn(A)} is bounded and its lower and upper limits

exp(A) = lim inf
n→∞

n
√

cn(A), exp(A) = lim sup
n→∞

n
√
cn(A)

are called the lower and the upper PI-exponent of A, respectively. In the case when 
exp(A) = exp(A), the ordinary limit

exp(A) = lim
n→∞

n
√
cn(A)

is called the (ordinary) PI-exponent of A.
In the late 1980’s, S. Amitsur conjectured that the PI-exponent of any associative PI-

algebra exists and is a nonnegative integer. Amitsur’s conjecture was confirmed in [8]. 
It was also proved for finite-dimensional Lie algebras [9], Jordan algebras [10], and some 
others. The class of algebras for which Amitsur’s conjecture was partially confirmed is 
much wider. Namely, the existence (but not the integrality, in general) was proved in a 
series of papers.

For example, it was shown in [11] that the PI-exponent exists for any finite-dimensional 
simple algebra. The question about existence of PI-exponents is one of the main problems 
of numerical theory of polynomial identities. Until now, only two results about algebras 
without PI-exponent have been proved. An example of a two-step left-nilpotent algebra 
without PI-exponent was constructed in [12]. Analogous result for unitary algebras was 
obtained in [13].

If an algebra A is equipped with an additional structure (like an involution or a group 
grading), then one may consider identities with involution, graded identities, etc. Recall 
that in the associative case, the celebrated theorem of Amitsur [14] states that if A is an 
algebra with involution ∗ : A → A, satisfying a ∗-polynomial identity, then A satisfies 
an ordinary (non-involution) polynomial identity. As a consequence, the sequence of ∗-
codimensions {c∗n(A)} is exponentially bounded. In [15,16] the existence and integrality 
of exp∗(A) was proved for any associative PI-algebra with involution.
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In the present paper we shall show that the class of algebras with exponentially 
bounded ∗-codimension sequence is sufficiently large. In particular, it contains all finite-
dimensional algebras.

Theorem A (see Theorem 3.1 in Section 3). Let A be a finite-dimensional algebra with 
involution ∗ : A → A and d = dimA. Then ∗-codimensions of A satisfy the following 
inequality

c∗n(A) ≤ dn+1.

Nevertheless, as it will be shown, the results of [15,16] cannot be generalized to the 
general nonassociative case. We shall construct a series of finite-dimensional algebras 
with fractional ∗-PI-exponent. For any integer T ≥ 2 we shall construct an algebra AT

with the following property.

Theorem B (see Theorem 4.1 in Section 4). The ∗-PI-exponent of algebra AT exists and

exp∗(AT ) = 1
θθTT (1 − θT )1−θT

,

where θT = 1
2T+1 .

We shall also present a family of algebras Cα with involution ∗ which has an expo-
nentially bounded sequence {c∗n(Cα)} such that exp∗(Cα) does not exist.

Theorem C (see Theorem 5.1 in Section 5). For any real number α > 1 there exists an 
algebra Cα such that

exp∗(Cα) = 1, exp∗(Cα) = α.

The necessary background on numerical theory of polynomial identities can be found 
in [17].

2. Preliminaries

Let A be an algebra with involution ∗ : A → A over a field Φ of char Φ = 0. Recall 
that an element a ∈ A is called symmetric if a∗ = a, whereas an element b ∈ A is called 
skew-symmetric if b∗ = −b. Denote

A+ = {a ∈ A|a∗ = a}, A− = {b ∈ A|b∗ = −b}.

Obviously, we have a vector space decomposition A = A+ ⊕ A−. In order to study 
∗-polynomial identities we need to introduce free objects in the following way.
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Let Φ{X, Y } be a free (nonassociative) algebra over Φ with the set of free generators 
X ∪ Y , X = {x1, x2, . . .}, Y = {y1, y2, . . .}. A map ∗ : X ∪ Y → X ∪ Y such that 
x∗
i = xi, y∗i = −yi, i = 1, 2, . . ., can be naturally extended to an involution on Φ{X, Y }. 

A polynomial f = f(x1, . . . , xm, y1, . . . , yn) ∈ Φ{X, Y } is said to be a ∗-identity of A if

f(a1, . . . , am, b1, . . . , bn) = 0, for all a1, . . . am ∈ A+, b1, . . . , bn ∈ A−.

Denote by Id∗(A) the set of all ∗-identities of A in Φ{X, Y }. Then Id∗(A) is an ideal 
of Φ{X, Y } and it is stable under involution ∗ and endomorphisms compatible with ∗.

Given 0 ≤ k ≤ n, denote the space of all multilinear polynomials in Φ{X, Y } in 
k symmetric variables x1, . . . , xk and n − k skew-symmetric variables y1, . . . , yn−k by 
P ∗
k,n−k. Denote also

P ∗
n = P ∗

0,n ⊕ P ∗
1,n−1 ⊕ · · · ⊕ P ∗

n,0.

Clearly, the intersection P ∗
k,n−k ∩ Id∗(A) is the subspace of all multilinear ∗-identities of 

A in k symmetric and n − k skew-symmetric variables.
The following value

c∗k,n−k(A) = dim
P ∗
k,n−k

P ∗
k,n−k ∩ Id∗(A)

is called the partial (k, n − k) ∗-codimension of A, whereas the value

c∗n(A) =
n∑

k=0

(
n

k

)
c∗k,n−k(A)

is called the (total) ∗-codimension of A. We shall also use the following notations

P ∗
k,n−k(A) =

P ∗
k,n−k

P ∗
k,n−k ∩ Id∗(A) , P ∗

n(A) = P ∗
n

P ∗
n ∩ Id∗(A) .

3. ∗-codimensions of finite-dimensional algebras

Let A be a finite-dimensional algebra with involution ∗ : A → A, where dimA = d. 
Recall that A+ and A− are the subspaces of symmetric and skew-symmetric elements 
of A, respectively. In order to get an exponential upper bound for c∗n(A), we shall follow 
the approach of [3]. Choose a basis a1, . . . , ap of A+ and a basis b1, . . . , bq of A−. If 
f(x1, . . . , xk, y1, . . . , yn−k) ∈ P ∗

k,n−k is a multilinear ∗-polynomial in k symmetric vari-
ables x1, . . . , xk and n − k skew-symmetric variables y1, . . . , yn−k, then f is a ∗-identity 
of A if and only if ϕ(f) = 0, for all evaluations ϕ such that

ϕ(xi) ∈ {a1, . . . , ap}, 1 ≤ i ≤ k, ϕ(yj) ∈ {b1, . . . , bq}, 1 ≤ j ≤ n− k. (1)
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Denote N = dimP ∗
k,n−k. Fix a basis g1, . . . , gN of P ∗

k,n−k and write f as a linear 
combination f = α1g1 + · · · + αNgN . Then the value ϕ(f) for ϕ of the type (1) can be 
written as

ϕ(f) = λ1a1 + · · · + λpap + μ1b1 + · · · + bqμq,

where all λ1, . . . , λp, μ1, . . . , μq are linear combinations of α1, . . . , αN . Hence ϕ(f) = 0 if 
and only if

λ1 = · · · = λp = μ1 = · · ·μq = 0. (2)

The total number of evaluations ϕ of type (1) is equal to pkqn−k. It follows that f ≡ 0
is a ∗-identity of A if and only if the N -tuple (α1, . . . , αN ) is the solution of system S of 
pkqn−k(p + q) linear equations of type (2).

Denote by U the subspace of all solutions of system S in the space V of all N -tuples 
(α1, . . . , αN ). Then dimU = N − r, where r = rank S is the rank of S. Clearly,

r ≤ pkqn−k(p + q). (3)

Since

c∗k,n−k(A) = codimV(U) = r,

it follows from (3) that

c∗k,n−k(A) ≤ pkqn−k(p + q)

and

c∗n(A) =
n∑

k=0

(
n

k

)
c∗k,n−k(A) ≤ (p + q)

n∑
k=0

(
n

k

)
pkqn−k = (p + q)n+1.

Recall that p + q = d = dimA. Hence we have proved the first main result of this 
paper.

Theorem 3.1. Let A be a finite-dimensional algebra with involution ∗ : A → A and d =
dimA. Then ∗-codimensions of A satisfy the following inequality

c∗n(A) ≤ dn+1. �
In the case of exponentially bounded sequence {c∗n(A)}, the following natural question 

arises.
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Question 3.1. Does the ∗-PI-exponent

exp∗(A) = lim
n→∞

n
√

c∗n(A)

exist and what are its possible values?

In Section 1 we mentioned that c∗n(A) exists and is a nonnegative integer for any 
associative ∗-PI-algebra A. The following hypotheses look very natural.

Conjecture 3.1. For any finite-dimensional algebra A with involution ∗, its ∗-PI-exponent 
exp∗(A) exists.

In the light of results of [18], we can assume that ∗-PI-exponent may take on all real 
values ≥ 1.

Conjecture 3.2. For any real value α ≥ 1, there exists an algebra Aα with involution such 
that ∗-PI-exponent of Aα exists and exp∗(Aα) = α.

4. Algebras with fractional ∗-PI-exponent

In this section we shall discuss ∗-codimension growth of algebras AT introduced in 
[19]. We shall prove the existence of ∗-PI-exponents of AT and compute the precise value 
of exp∗(AT ). In Section 5 we shall use the properties of AT for constructing several 
counterexamples.

Recall the structure of AT . Given an integer T ≥ 2, denote by AT the algebra with 
basis {a, b, z1, . . . , z2T+1} and with multiplication

zia = azi = zi+1, 1 ≤ i ≤ 2t, z2T+1b = bz2T+1 = z1,

where all remaining products are zero. Involution ∗ : AT → AT is defined by

a∗ = −a, b∗ = b, z∗i = (−1)i+1zi

and then

A+ =< b, z1, z3, . . . , z2T+1 >,A− =< a, z2, z4, . . . , z2T > .

We shall need the following two results from [19].

Lemma 4.1. ([19, Lemma 3.7]) The ∗-codimensions of AT satisfy the inequality c∗n(AT ) ≤
n3, provided that n ≤ 2T .

Lemma 4.2. ([19, Corollary 3.8]) Let f ≡ 0 be a multilinear ∗-identity of AT of degree 
n ≤ 2T . Then f is also an identity of AT+1.
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Note that algebras AT are commutative and metabelian, i.e. they satisfy the following 
identity

(xy)(zt) ≡ 0.

Hence any product of elements c1, . . . , cn ∈ A can be written in the left-normed form. 
We shall omit brackets in the left-normed products, i.e. we shall write c1c2 · · · cn instead 
of (. . . (c1c2) . . .)cn.

First, we shall find a lower bound for ∗-codimensions.

Lemma 4.3. The following inequality holds for all n ≥ 2T + 2,

c∗n(AT ) ≥ 1
n2

(
1

θθTT (1 − θT )1−θT

)n−2T−1

, (4)

where

θT = 1
2T + 1 .

Proof. Write n in the form n = (2T + 1)k+ t + 1, where 0 ≤ t ≤ 2T . Then the following 
product of n basis elements is nonzero

z1 a
2T b · · · a2T b︸ ︷︷ ︸

k

at = zt+1 �= 0.

Here, we use the notation xam for x a · · · a︸ ︷︷ ︸
m

. Hence the polynomial

x0y1 · · · y2Tx1 · · · y2t(k−1)+1 · · · y2Tkxky2Tk+1 · · · y2Tk+t

is not an identity of AT , that is,

P ∗
k+1,2Tk+t(AT ) �= 0, c∗k+1,2Tk+t ≥ 1.

In particular,

c∗n(AT ) ≥
(

n

k + 1

)
≥

(
n0

k + 1

)
≥

(
n0

k

)
, (5)

where n = 2Tk + k + t + 1, n0 = 2Tk + k.
Using the Stirling formula for factorials we get(

(2T + 1)k
)

>
1
2

((2T + 1)k)(2T+1)k

k 2Tk
(6)
k n k (2Tk)
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= 1
n2

⎛⎜⎝ 1(
1

2T+1

) 1
2T+1

(
2T

2T+1

) 2T
2T+1

⎞⎟⎠
(2T+1)k

= 1
n2

(
1

θθTT (1 − θT )1−θT

)n0

≥ 1
n2

(
1

θθTT (1 − θT )1−θT

)n−2T−1

,

where θT = 1
2T+1 .

Finally, combining (5) and (6), we obtain the desired inequality (4). �
Next, we shall find an upper bound for c∗n(AT ). First, we restrict the number of 

nonzero components P ∗
k,n−k(AT ) for a fixed n.

Lemma 4.4. Given a positive integer n, there are at most three integers k, 0 ≤ k ≤ n, 
such that P ∗

k,n−k(AT ) �= 0. Moreover, if P ∗
k,n−k(AT ) �= 0, then

k − 2
n

≤ 1
2T + 1 .

Proof. Clearly, all nonzero products of the basis elements of AT are of the form

W = z2T+1−ia
ib a2T b · · · a2T b︸ ︷︷ ︸

p

aj . (7)

The number of symmetric factors k is equal to p +1 if i is odd, and k = p +2 if i is even. 
The total number of factors in W is equal to n = (2T + 1)p + i + j + 2. Moreover, i and 
j in (7) satisfy inequalities 0 ≤ i, j ≤ 2T . Hence

n− 4T − 2 ≤ (2T + 1)p ≤ n− 2. (8)

Clearly, there are at most two integers p satisfying (8). Since k = p + 1 or p + 2, at 
most 3 components P ∗

k,n−k(AT ) can be nonzero. Finally, according to (8), we have

k − 2
n

≤ p

n
≤ n− 2

(2T + 1)n ≤ 1
2T + 1 . �

Lemma 4.5. Let n ≤ 2T + 2. Then c∗k,n−k(AT ) ≤ (2T + 1)3.

Proof. As it was mentioned earlier, all nonzero products of the basis elements of AT are 
of the form

zja
pb a2T b · · · a2T b︸ ︷︷ ︸

k

aq, 1 ≤ j ≤ 2T + 1, 0 ≤ p, q ≤ 2T.

Hence all nonzero modulo Id∗(AT ) multilinear monomials are of the form
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wyσ(1) · · · yσ(p)xτ(1)yσ(p+1) · · · yσ(p+2T )xτ(2) · · · (9)

yσ(2Tk−2T+p+1) · · · yσ(2Tk+p)xτ(k+1)yσ(2Tk+p+1) · · · yσ(2Tk+p+q),

where σ ∈ S2Tk+p+q, τ ∈ Sk+1, and w is either x0 or y0.
Moreover, any monomial (9) coincides (modulo Id∗(AT )) with the special case (9)

when σ = 1, τ = 1. Hence, we have at most (2T + 1)3 linearly independent elements in 
P ∗
k,n−k(AT ), and so we are done. �

Lemma 4.6. For all n ≥ 2T + 2, we have

c∗n(AT ) ≤ 3(2T + 1)3n3

(
1

θθTT (1 − θT )1−θT

)n

.

Proof. First we compute an upper bound for c∗k,n−k(AT ), provided that P ∗
k,n−k(AT ) �= 0. 

Note that (
n

k

)
≤ n2

(
n

k − 2

)
≤ n3 nn

mm(n−m)n−m
,

by the Stirling formula, where m = k − 2.
Since the function

1
xx(1 − x)1−x

is nondecreasing on (0, 12), we have by Lemma 4.4,

(
n

k

)
≤ n3

(
1

(m/n)m/n(1 −m/n)1−m/n

)n

≤ n3

(
1

θθTT (1 − θT )1−θT

)n

. (10)

Now relation (10), Lemma 4.4, and Lemma 4.5 imply

c∗n(AT ) =
n∑

k=0

(
n

k

)
c∗k,n−k(AT ) ≤ 3(2T + 1)3n3

(
1

θθTT (1 − θT )1−θT

)n

. �

Finally, Lemma 4.3 and Lemma 4.6 imply the second main result of this paper.

Theorem 4.1. The ∗-PI-exponent of algebra AT exists and

exp∗(AT ) = 1
θθTT (1 − θT )1−θT

,

where θT = 1 . �
2T+1
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5. Algebras without ∗-PI-exponent

We modify construction of the algebra from Section 4. Denote by ÃT an infinite-
dimensional algebra with the basis

a, bi, z
i
j , 1 ≤ j ≤ 2T + 1, i = 1, 2, . . .

and multiplication table

azij = zija = zij+1, 1 ≤ j ≤ 2T, biz
i
2T+1 = zi2T+1bi = zi+1

1 .

Involution ∗ : ÃT → ÃT is defined as follows

a∗ = −a, b∗i = bi, (zij)∗ = (−1)j+1zij , 1 ≤ j ≤ 2T + 1, i = 1, 2, . . . .

Lemma 5.1. A multilinear polynomial f ∈ P ∗
k,n−k of degree n ≤ 2T is a ∗-identity of ÃT

if and only if f is a ∗-identity of AT .

Proof. First, note that P ∗
k,n−k(AT ) = P ∗

k,n−k(ÃT ) = 0, when n ≤ 2T and 3 ≤ k ≤ n.
Let k = 0. Then both AT and ÃT satisfy the following identity

yt+1yσ(1) · · · yσ(t) = yt+1y1 · · · yt,

for any σ ∈ St and t ≤ 2T − 1. Hence, modulo Id∗(AT ) (and modulo Id∗(ÃT )), the 
polynomial f coincides with linear combination

f = λ2w2 + · · · + λnwn, where wj = yjy1 · · · yj−1yj+1 · · · yn.

Let for example, λn �= 0. Then ϕ(f) �= 0 in AT and ϕ̃(f) �= 0 in ÃT for evaluations 
ϕ, ϕ̃, where

ϕ(yn) = z1, ϕ(yj) = a in AT , 2 ≤ j ≤ n− 1, ϕ̃(yn) = z1
1 , ϕ̃(yj) = a in ÃT , 2 ≤ j ≤ n− 1.

Now let k = 1. Then all monomials y1 · · · yjx1yj+1 · · · yt are identities of AT and ÃT

if 3 ≤ j ≤ t ≤ n − 1. Since

x1yσ(1) · · · yσ(n−1) ≡ x1y1 · · · yn−1, for all σ ∈ Sn−1

mod Id∗(AT ) and mod Id∗(ÃT ), it follows that f = λx1y1 · · · yn−1, with 0 �= λ ∈ Φ. 
Hence f /∈ Id∗(AT ) and f /∈ Id∗(ÃT ).

Finally, let k = 2. Then modulo Id∗(AT ) and modulo Id∗(ÃT ), any multilinear ∗-
polynomial is a linear combination of monomials

wp = x1y1 · · · ypx2yp+1 · · · yn−2 and vq = x2y1 · · · yqx1yq+1 · · · yn−2,
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where 0 ≤ p, q, p + q = n − 2.
Suppose that

f =
∑
p

λpwp +
∑
q

μqvq

and that at least one of the coefficients λp is nonzero. We may also assume that μ0 = 0
if λ0 �= 0. If all λp = 0 for p even and all μq = 0 for q even, then f ∈ Id∗(AT ) ∩ Id∗(ÃT ).

Denote

t = max{p|p even and λp �= 0}.

Then there exists odd j such that j + t = 2T + 1. Hence

ϕ(f) = λtzja
tbam = λtzt+1 �= 0 in AT

for the evaluation ϕ such that ϕ(x1) = zj , ϕ(x2) = b, ϕ(y1) = · · · = ϕ(yn−2) = a.
Similarly,

ϕ̃(f) = λtz
2
m+1 in ÃT

if

ϕ̃(x1) = z1
j , ϕ̃(x2) = b1, ϕ̃(y1) = · · · = ϕ̃(yn−2) = a.

It follows that

Id∗(AT ) ∩ P ∗
n = Id∗(ÃT ) ∩ P ∗

n ,

provided that n ≤ 2T . �
Remark 5.1. It follows from Lemma 4.1, Lemma 4.2, and Lemma 4.5, that ∗-codimensions 
of small degree of ÃT are polynomially bounded,

c∗n(ÃT ) ≤ n3 if n ≤ 2T.

Also, any multilinear ∗-identitiy of ÃT of degree n ≤ 2T is an identity of all 
ÃT+1, ÃT+2, . . ..

Unlike AT , algebra ÃT has an overexponential ∗-codimension growth.

Lemma 5.2. Let n ≥ 4T + 3. Then

c∗n(ÃT ) >
[

n − 1
]
!, (11)
2T + 1
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where [t] denotes the integer part of real number t > 0.

Proof. Denote

wσ = x0y1 · · · y2Txσ(1)y2T+1 · · · y4Txσ(2) · · ·xσ(m)y2mT+1 · · · y2mT+j ,

where σ ∈ Sm, 0 ≤ j ≤ 2T . Since

z1
1a

2T b1a
2T · · · a2T bmaj = zm+1

j+1 �= 0,

while

z1
1a

2T bσ(1)a
2T · · · a2T bσ(m)a

j = 0,

for any e �= σ ∈ Sm, all monomials wσ of degree n = (2T + 1)m + j + 1 are linearly 
independent modulo Id∗(ÃT ).

Hence

c∗n(ÃT ) ≥ c∗m+1,n−m−1(ÃT ) ≥ m! . (12)

Since

(2T + 1)m = n− j − 1 ≥ n− (2T + 1),

we have

m ≥ n

2T + 1 − 1

and (12) yields inequality (11). �
Now, let Φ[Z] be the polynomial ring over Φ and let Φ[Z]0 be its subring of polynomials 

with the zero constant term. Given an integer N ≥ 1, denote by RN the quotient

RN = Φ[Z]0
(Z)N+1 ,

where (Z)N+1 is the ideal of Φ[Z]0 generated by ZN+1.
Denote B(T, N) = ÃT ⊗RN . Then

P ∗
k,n−k(B(T,N)) = P ∗

k,n−k(ÃT ), for all 0 ≤ k ≤ n ≤ N, (13)

whereas

P ∗
k,n−k(B(T,N)) = 0, for all n ≥ N + 1. (14)
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Given two infinite series of integers T1, T2, . . . and N1, N2, . . . such that

0 < T1 < N1 < . . . < Tj < Nj < . . . ,

we define an algebra C(T1, T2, . . . , N1, N2, . . .) as the direct sum

C(T1, T2, . . . , N1, N2, . . .) = B(T1, N1) ⊕B(T2, N2) ⊕ · · · .

The next statement easily follows from Lemma 4.2, Lemma 5.1, and relations (13), 
(14).

Lemma 5.3. Let C = C(T1, · · · , N1, · · · ). Then

• c∗n(C) = c∗n(ÃT1), for all n ≤ N1;
• c∗n(C) = c∗n(ÃTj

), for all j ≥ 2, Nj−1 + 1 ≤ n ≤ Tj;
• c∗n(ÃTj

) ≤ c∗n(C) ≤ c∗n(ÃTj
) + c∗(ÃTj+1), for all j ≥ 2, Tj < n ≤ Nj. �

Lemma 5.4. Let C = C(T1, . . . , N1, . . .). Then c∗n(C) ≤ 3nc∗n−1(C).

Proof. Fix n ≥ 3 and 1 ≤ k ≤ n − 1. Denote by f1, . . . , fm a basis of P ∗
k,n−k−1

modulo Id∗(C), where fj , 1 ≤ j ≤ m, are monomials in x1, . . . , xk, y1, . . . , yn−k−1 and 
m = c∗k,n−k−1. Denote also by g1, . . . , gt a basis consisting of monomials in x1, . . . , xk−1, 
y1, . . . , yn−k of P ∗

k−1,n−k modulo Id∗(C), t = c∗k−1,n−k(C).
Then modulo Id∗(C), the subspace P ∗

k,n−k coincides with the span of products

f i
1yi, . . . , f

i
myi, g

j
1xj , . . . , g

j
txj , 1 ≤ i ≤ n− k, 1 ≤ j ≤ k,

where

f i
p = fp(x1, . . . , xk, y1, . . . , yi−1, yi+1, . . . , yn−k),

gjq = gq(x1, . . . , xj−1, xj+1, . . . , xk, y1, . . . , yn−k).

Hence

c∗k,n−k(C) ≤ n(c∗k−1,n−k(C) + c∗k,n−k−1(C)). (15)

It follows from (15) and the next inequalities(
n

k

)
≤ n

(
n− 1
k

)
,

(
n

k

)
≤ n

(
n− 1
k − 1

)
that (

n
)
c∗k,n−k(C) ≤ n

[(
n− 1

)
c∗k−1,n−k(C) +

(
n− 1

)
c∗k,n−k−1(C)

]
. (16)
k k − 1 k
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Inequality (16) implies that

n−1∑
k=1

(
n

k

)
c∗k,n−k(C) ≤ 2

n−1∑
j=0

(
n

j − 1

)
c∗j,n−j−1(C) = 2nc∗n−1(C).

Finally, since c∗0,n = 1 and c∗n,0 = 1 for n ≥ 3, we have

c∗n(C) ≤ 3nc∗n−1(C). �
We are now ready to construct a family of examples of algebras with involution without 

∗-PI-exponent. The following is the third main result of this paper.

Theorem 5.1. For any real number α > 1, there exists an algebra Cα such that

exp∗(Cα) = 1, exp∗(Cα) = α.

Proof. Given α > 1, we construct an algebra Cα as C(T1, . . . , N1, . . .) by the special 
choice of the sequences T1, T2, . . . and N1, N2, . . . .

First, we fix T1 such that n3 < αn, for all n ≥ T1. By Lemmas 4.1, 5.1 and 5.2, there 
exists N1 such that {

c∗n(ÃT ) < αn if n = N1 − 1
c∗n(ÃT ) ≥ αn if n = N1.

Then by Lemma 5.3 and Lemma 5.4,

αn ≤ c∗n(C) ≤ 3nαn if n = N1.

On the other hand, c∗N1+1 ≤ (N1 + 1)3 by the choice of N1. We now set T2 = 2N1.
Suppose that T1, N1, . . . , Tk−1, Nk−1, Tk have already been chosen. Then as before, 

applying Lemmas 4.1, 5.1, 5.2 and 5.3, one can find Nk such that{
c∗n(C) < αn if n = Nk − 1
c∗n(C) ≥ αn if n = Nk.

(17)

Moreover, {
c∗n(C) ≤ 3nαn

c∗n+1(C) ≤ (n + 1)3
(18)

if n = Nk.
Denote by Cα the obtained algebra C(T1, . . . , N1, . . .). Since c∗n(Cα) �= 0 for all n ≥ 1, 

relations (17), (18) give us the equations
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exp∗(Cα) = 1, exp∗(Cα) = α

and we have thus completed the proof. �
Data availability

Data will be made available on request.

Acknowledgments

Repovš was supported by the Slovenian Research Agency program P1-0292 and grants 
N1-0278, N1-0114 and N1-0083. Zaicev was supported by the Russian Science Foundation 
grant 22-11-00052.

References

[1] A. Regev, Existence of identities in A ⊗B, Isr. J. Math. 11 (1972) 131–152.
[2] V.N. Latyshev, On Regev’s Theorem on tensor product of PI-algebras, Usp. Mat. Nauk 27 (1973) 

213–214 (Russian).
[3] Yu.A. Bahturin, V. Drensky, Graded polynomial identities of matrices, Linear Algebra Appl. 357 

(2002) 15–34.
[4] A. Giambruno, M. Zaicev, Codimension growth of special simple Jordan algebras, Trans. Am. Math. 

Soc. 362 (6) (2010) 3107–3129.
[5] M.V. Zaicev, Varieties of affine Kac-Moody algebras, Mat. Zametki 62 (1) (1997) 95–101 (Russian);

Engl. translation in: Math. Notes 62 (1–2) (1998) 80–86.
[6] S.P. Mishchenko, Growth of varieties of Lie algebras, Usp. Mat. Nauk 45 (6) (1990) 25–45 (Russian);

Engl. Translation in: Russ. Math. Surv. 45 (6) (1990) 27–52.
[7] A.S. Dzhumadil’daev, Coodimension growth and non-Kozhulity of Novikov operad, Commun. Al-

gebra 39 (8) (2011) 2943–2952.
[8] A. Giambruno, M. Zaicev, Exponential codimensions growth: an exact estimate, Adv. Math. 142 (2) 

(1999) 145–155.
[9] M.V. Zaitsev, Integrality of exponents of growth of identities of finite-dimensional Lie algebras, Izv. 

Ross. Akad. Nauk, Ser. Mat. 66 (2002) 23–48 (Russian);
Engl. translation in: Izv. Math. 66 (2002) 463–487.

[10] A. Giambruno, I. Shestakov, M. Zaicev, Finite-dimensional non-associative algebras and codimen-
sion growth, Adv. Appl. Math. 47 (1) (2011) 125–139.

[11] A. Giambruno, M. Zaicev, On codimension growth of finite-dimensional Lie superalgebras, J. Lond. 
Math. Soc. (2) 85 (2) (2012) 534–548.

[12] M. Zaicev, On existence of PI-exponent of codimension growth, Electron. Res. Announc. Math. Sci. 
21 (2014) 113–119.

[13] D. Repovš, M. Zaicev, On existence of PI-exponents of unital algebras, Electron. Res. Arch. 28 (2) 
(2020) 853–859.

[14] S.A. Amitsur, Identities in rings with involutions, Isr. J. Math. 7 (1969) 63–68.
[15] A. Giambruno, M. Zaicev, Involution codimensions of finite dimensional algebras and exponential 

growth, J. Algebra 222 (1999) 4471–4484.
[16] A. Giambruno, C. Polcino Milles, A. Valenti, Star-polynomial identities: computing the exponential 

growth of codimensions, J. Algebra 469 (2017) 302–322.
[17] A. Giambruno, M. Zaicev, Polynomial Identities and Asymptotic Methods, Mathematical Surveys 

and Monographs, vol. 122, Amer. Math. Soc., Providence, RI, 2005.
[18] A. Giambruno, S. Mishchenko, M. Zaicev, Codimensions of algebras and growth functions, Adv. 

Math. 217 (3) (2008) 1027–1052.
[19] I. Shestakov, M. Zaicev, Eventually non-decreasing codimensions of ∗-identities, Arch. Math. 116 (4) 

(2021) 413–421.

http://refhub.elsevier.com/S0021-8693(22)00461-6/bibE1E1D3D40573127E9EE0480CAF1283D6s1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bibD20CAEC3B48A1EEF164CB4CA81BA2587s1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bibD20CAEC3B48A1EEF164CB4CA81BA2587s1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib87A47565BE4714701A8BC2354CBAEA36s1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib87A47565BE4714701A8BC2354CBAEA36s1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib45B66AFD324EB127F0CA36379D04EF3Cs1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib45B66AFD324EB127F0CA36379D04EF3Cs1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib21C2E59531C8710156D34A3C30AC81D5s1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib21C2E59531C8710156D34A3C30AC81D5s2
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib69691C7BDCC3CE6D5D8A1361F22D04ACs1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib69691C7BDCC3CE6D5D8A1361F22D04ACs2
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib0BAE38FD6ABC27A8A0C33CBF689EDDBFs1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib0BAE38FD6ABC27A8A0C33CBF689EDDBFs1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib4C05376469B9004B491F8F2ED77442D1s1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib4C05376469B9004B491F8F2ED77442D1s1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib2871A030D5F4D04037A9B6F405E19C5As1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib2871A030D5F4D04037A9B6F405E19C5As1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib2871A030D5F4D04037A9B6F405E19C5As2
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib921CD50BB205522F9B43D35B2C9DFA12s1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib921CD50BB205522F9B43D35B2C9DFA12s1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib6F2CEEA315B9DA574461E59F238546ADs1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib6F2CEEA315B9DA574461E59F238546ADs1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib7431ECA4EA0C7844DEEC80BB479DE72Bs1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib7431ECA4EA0C7844DEEC80BB479DE72Bs1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib25E29A048984CDA66521F1EAB1182666s1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib25E29A048984CDA66521F1EAB1182666s1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib7FC56270E7A70FA81A5935B72EACBE29s1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib331C39BCDA33B06D3DE8118E07F67971s1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib331C39BCDA33B06D3DE8118E07F67971s1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib3AABC1BF2D06C8BAD9C4276396C6F90Bs1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib3AABC1BF2D06C8BAD9C4276396C6F90Bs1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib6521DA9786B7E1E5B4F4CD94FB1CAC6Bs1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib6521DA9786B7E1E5B4F4CD94FB1CAC6Bs1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bibA619BA6FFD990991B9CE403EF83987A1s1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bibA619BA6FFD990991B9CE403EF83987A1s1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib715F9A16AD2C8290EFE57B63D279D8FAs1
http://refhub.elsevier.com/S0021-8693(22)00461-6/bib715F9A16AD2C8290EFE57B63D279D8FAs1

	On existence of PI-exponent of algebras with involution
	1 Introduction
	2 Preliminaries
	3 ∗-codimensions of finite-dimensional algebras
	4 Algebras with fractional ∗-PI-exponent
	5 Algebras without ∗-PI-exponent
	Data availability
	Acknowledgments
	References


