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ON SELECTION THEOREMS WITH DECOMPOSABLE VALUES

Sergei M. Ageev — Dušan Repovš

Abstract. The main result of the paper asserts that for every separable

measurable space (T, F, µ), where F is the σ-algebra of measurable subsets
of T and µ is a nonatomic probability measure on F, every Banach space

E and every paracompact space X, each dispersible closed-valued mapping

F : x  L1(T, E) of X into the Banach space L1(T, E) of all Bochner
integrable functions u : T → E, admits a continuous selection. Our work

generalizes some results of Gončarov and Tol’stonogov.

1. Introduction

Let (T,F, µ) be a separable measurable space, where F is the σ-algebra of
measurable subsets of T and µ is a nonatomic probability measure on F. For an
arbitrary Banach space E we shall denote by L1(T,E) the Banach space of all
Bochner integrable functions u : T → E.

By the classical isomorphism theorem [6], each separable measurable space
(T,F, µ) with a nonatomic probability measure µ is isomorphic to the space
(I,L,m) of Lebesgue measurable sets on the interval I = [0, 1]. Therefore all sep-
arable measurable spaces (T,F, µ) and the corresponding Banach spaces L1(T,E)
will be hereafter identified with the space (I,L,m) of Lebesgue measurable sets
on the interval I and the corresponding Banach space L1(I, E).
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A subset K ⊂ L1(T,E) is said to be decomposable, if for each measurable set
A ∈ F the following holds:

(1) uχA + vχT\A ∈ K for all u, v ∈ K.

A typical example of a decomposable set is

L1(T,E0) = {g ∈ L1(T,E) | g(t) ⊂ E0},

where E0 is any subset of E. The open ball B(f, a) is an example of an indecom-
posable set: if T0 ⊂ T and e ∈ E are such that µ(T0) = 1/2 and |e| = 3a/2, then
the functions u = f + eχT0 and v = f + eχT\T0 belong to B(f, a), however the
distance between the functions uχT0 +vχT\T0 = f + eχT and f equals 3a/2 > a.

Decomposable sets appear in the theory of differential inclusions [10], where
the problem of existence of solutions in many cases reduces to the problem of
existence of selections of multivalued mappings with decomposable values. In
the pioneering work [3] an original method for studying such selection problems
was proposed, via an application of the Michael convex-valued selection theorem,
because a certain relationship was observed between the notions of convexity and
decomposability.

Nevertheless, it is impossible to adapt the proof of the convex-valued selec-
tion theorem directly to our situation. The reason is a big difference between the
mapping which associates to each set its convex hull (it is continuous in the Haus-
dorff metric on sets), and the one which associates to each set its decomposable
hull (it fails to be continuous).

For example, the decomposable hull Dec(B(f, a)) of any ball B(f, a) coincides
with the entire space L1(T,E). Therefore the Michael selection theorem was used
in [3] indirectly, via the Lyapunov theorem [7] on convexity of the set of values
of vector measures. It turned out that this method was inconvenient, mainly
because of very complicated proofs. Subsequently, stronger results on selections
of mappings with decomposable images were obtained [1], [2], [5], [8]. However,
the proofs remained very complicated.

In an attempt to return to the original idea of the convex-valued Michael
selection theorem we choose here a more economical construction of the de-
composable hull Dec(A) of sets A, namely the dispersibly decomposable hull
Disp(A) ⊂ Dec(A) using the notion of the dispersibly decomposable sets.

All decomposable sets belong to the class of dispersibly decomposable sets
and also (which is more important) all open and closed balls are dispersibly
decomposable, since Disp(B(f, a)) = B(f, a) and Disp(ClB(f, a)) = ClB(f, a).
Precisely the latter fact enables us to apply the well–developed techniques devel-
oped for the Michael convex-valued selection theorem and to prove the following
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selection theorem for the multivalued mappings with uniformly dispersed values
(the so-called dispersible multivalued mappings):

Theorem 1.1. Let (T,F, µ) be a separable measurable space, E a Banach
space, X a paracompact space and L1(T,E) the space of all Bochner integrable
functions u : T → E. Then each dispersible closed-valued mapping F : X  
L1(T,E) admits a continuous selection.

Remarks. (1) The proof of this theorem does not use the difficult Lyapunov
theorem and follows only the classical scheme of the proof of the Michael theorem.
This theorem holds also beyond the class of separable (measurable spaces) T if
X is separable and paracompact. However, in this case the proof becomes very
complicated. Moreover, in the applications we usually have the separability of T .
Therefore the nonseparable case will be considered in a separate paper.

(2) In earlier works a notion of weakly decomposable sets was defined, which
lies between the notions of the decomposable sets and the dispersible sets, intro-
duced in the present paper.

Since every lower semicontinuous multivalued mapping with decomposable
values is dispersible, the proof of the theorem [3] for the case of separable measur-
able space (T,F, µ) can be simplified. Moreover, all known multivalued mappings
applicable in the theory of differential inclusions [1], [3], [5], are dispersible. In
the present paper we construct new classes of dispersible multivalued mappings.

The following theorem, which substantially generalizes [5], is an easy conse-
quence of Theorem 1.1:

Theorem 1.2. Let (T,F, µ) be a separable measurable space and X a para-
compact space. Let F : X  L1(T,E) be a dispersible closed-valued mapping
and {Gi : X  L1(T,E)}i∈N a sequence of dispersible multivalued mappings
with open graphs such that N(Gi(x); ai) ⊂ Gi+1(x), where the sequence {ai}
does not depend on x. If for every point x ∈ X, Φ(x) = F (x)∩G(x) 6= ∅, where
G(x) =

⋃∞
i=1Gi(x), then the multivalued mapping Φ : X  L1(T,E), x 7→ Φ(x),

admits a continuous selection.

The class of dispersibly convex sets is substantially bigger than the classes of
decomposable and weakly decomposable sets. This fact enables further applica-
tions of Theorems 1.1 and 1.2. We add the following to already listed dispersibly
convex sets:

(i) the closed and open balls corresponding to the so-called dispersible semi-
norms in L1(T,E). This class of seminorms contains decomposable
seminorms as well as the most useful scalar compact seminorms [4];

(ii) the sets {u ∈ L1([0, 1], E) |
∫
π(|u|) dt ≤ 1}, where π( · ) : R → R is

a continuous mapping such that π(x) ≤ x, if x ≤ 1.
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2. Dispersible partitions of the interval

By a partition P of the interval I = [0, 1] we mean its representation as a
union

⋃n
i=0 Pi, where Pi are measurable subsets of I such that m(Pi ∩ Pj) = 0

for all i 6= j. The mesh of the partition P is the number mesh(P) = sup{m(Pi) |
1 ≤ i ≤ n}. Each sequence of points 0 = t0 < t1 < . . . < tm = 1 divides the
interval [0, 1] into m smaller subintervals Ik and generates the so–called linear
partition L = {Ik}m−1

k=0 .

Definition 2.1. A partition P = {Pi}ni=0 of the interval I is said to be
s-dispersible where s = (κ0, . . . , κn),

∑n
i=0 κi = 1, κi ≥ 0, is a point of the

n-simplex ∆n, if

(1) m(Pi ∩ J) = κim(J) for every subinterval J ⊂ I.

Proposition 2.2. P is an s-dispersible partition of the interval I if and
only if s ∈ (∆n)(0).

In this way the notion of an s-dispersible partition of the interval is trivial-
ized. However, changing equality (1) by an approximate equality leads to useful
constructions which substantially simplify proofs of Theorems 1.1 and 1.2.

Definition 2.3. Let σ > 0 and s = (κ0, . . . , κn) ∈ ∆n be fixed. A partition
P = {Pi}ni=0 of the interval I is said to be σ-approximatively s-dispersible if

(2) |m(Pi∩J)−κim(J)| < σ for each 0 ≤ i ≤ n and each subinterval J ⊂ I.

We shall denote the equality (2) by m(Pi ∩ J)
σ
≈κim(J). Note that in order

to prove (2) it suffices to verify (2) only for a finite number of intervals J . The
following theorem supplies a sufficient amount of σ-approximatively s-dispersible
partitions.

Theorem 2.4. For every σ > 0 and s ∈ ∆n there exists a σ-approximatively
s-dispersible partition of the interval I.

The basic geometric idea of the proof of this theorem is to divide each interval
[k, k + 1], lying in a sufficiently large interval [0, N ], into n + 1 subintervals of
length equal to the corresponding barycentric coordinates of the point s ∈ ∆n.
Then the ith subintervals of all intervals [k, k + 1] are joint into a union and
subsequently shrunk to the origin by a factor 1/N , to obtain the ith element of
the desired partition.

Proof of Theorem 2.4. Let L be the linear partition of interval I, deter-
mined by the points 0 = t0 < t1 < . . . < tm = 1 with mesh(L) < σ. Divide each
interval [tk, tk+1] by the points tk = tk0 ≤ tk1 ≤ . . . ≤ tkn ≤ tk(n+1) = tk+1 so
that the lengths are proportional to (κ0, . . . , κn):

(tk1 − tk0)/κ0 = (tk2 − tk1)/κ1 = . . . = (tk+1 − tkn)/κn.
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In particular, this means that if κi = 0, then tki = tk(i+1). Then the elements
Pi of the desired partition P are defined as the union of m pairwise disjoint
subintervals

Pi =
m−1∐
k=0

[tki, tk(i+1)], i = 0, . . . , n.

Since the partition P depends on L, s ∈ ∆n and σ, we shall denote P = L(s;σ)
and shall call L(s;σ) the special partition, generated by the linear partition L
and s ∈ ∆n, σ > 0.

The verification of (2) consists of two steps:
(a) J = [tl, tp] ⊂ I:

m(Pi ∩ J) = m

( p−1∐
k=l

[tki, tk(i+1)]
)

=
p−1∑
k=l

m([tki, tk(i+1)]) = κi

p−1∑
k=l

m([tk, tk+1]) = κim(J).

(b) J = [a, b], tl−1 < a < tl, tp < b < tp+1:

m(Pi ∩ J)
2σ
≈m(Pi ∩ [tl, tp])

2σ
≈ κim(J). �

We now introduce new notions to generalize the preceeding theorem. Let Λ
be a linearly ordered set. A family P = {Pλ}λ∈Λ of measurable subsets Pλ ⊂ I

is said to be a Λ-partition if the set {λ | Pλ 6= ∅} is finite and m(Pλ ∩ Pλ′) = 0
for all λ 6= λ′. Equip the set P of all Λ-partitions with the metric d(P,P ′) =
supλm(Pλ M P ′λ).

Let ∆ be a full polyhedron equipped with a metric topology. Let the vertices
of ∆ be indexed by the linearly ordered set Λ. If ∆(0) = {vλ}λ∈Λ, then

∆ =
{
s =

∑
λ∈Λ

κλvλ

∣∣∣∣ all κλ ≥ 0,
∑
λ∈Λ

κλ = 1

and there exist finitely many indices λ0 < . . . < λp

such that κλi
> 0 and

p∑
i=0

κλi
= 1

}
.

For a given point s = {κλ} ∈ ∆ and σ > 0, a Λ-partition P = {Pλ} of the
interval I is said to be σ-approximatively s-dispersible if m(Pλ∩J)

σ
≈κλm(J) for

arbitrary λ ∈ Λ and any subinterval J ⊂ I.

Theorem 2.5. For each σ > 0 and s =
∑p
i=0 κλivλi ∈ ∆, where λ0 < . . . <

λp,
∑p
i=0 κλi

= 1, there exists a σ-approximatively s-dispersible Λ-partition of
the interval I.
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Proof. The verification of the assertion is analogous to the proof of Theo-
rem 2.4 and we shall thus give only an outline. Fix the linear partition L of in-
terval I, defined by points 0 = t0 < t1 < . . . < tm = 1 with mesh(L) < σ. Divide
each interval [tk, tk+1] by points tk = tkλ0 ≤ tkλ1 ≤ . . . ≤ tkλp

≤ tkλp+1 = tk+1,
proportionally to the numbers (κλ0 , . . . , κλp):

(tkλ1 − tkλ0)/κλ0 = (tkλ2 − tkλ1)/κλ1 = . . . = (tk+1 − tkλp)/κλp .

Then the elements Pλ of the desired Λ-partition P = L(s;σ) are defined by the
following formula;

(∗) Pλ =


∅ if λ 6= λi for all 0 ≤ i ≤ p,
m−1∐
k=0

[tkλi
, tkλi+1 ] if λ = λi. �

Theorem 2.6. Let X be a paracompact space and σ : X → (0,∞) a continu-
ous function. Let the index set Λ of a locally finite covering ω = {Vλ}λ∈Λ ∈ covX
be linearly ordered. Denote by s : X → N〈ω〉 the canonical mapping of the nerve
of the covering ω, which lies in the polyhedron ∆.Then there exists a continuous
mapping Π : X → P into the space P of all Λ-partitions, such that:

(c) Π(x) = {Π(x)λ}λ∈Λ is a σ(x)-approximatively s(x)-dispersible Λ-parti-
tion of the interval I, for all x ∈ X;

(d) If x 6∈ Uλ, then m(Π(x)λ) = 0.

Proof. For each point x ∈ X denote by mx the integer part of the number
1/σ(x) > 0 and introduce the linear partition Lx of the interval I, defined by
the points 0 = tx0 < tx1 < . . . < txmx

= 1 such that

(3) |tx1 − tx0| = . . . = |tx(mx−1) − tx(mx−2)| = σ(x),
(4) |txmx − tx(mx−1)| ≤ σ(x).

Clearly, meshLx ≤ σ. It is easy to prove that

(5) if 1/σ(x0) is not an integer then mx = mx0 , and the functions txk, k ≤
mx0 are continuous in a sufficiently small neighbourhood O(x0) of the
point x0; and

(6) if 1/σ(x0) is an integer mx0 , then mx ≤ mx0 + 1, and the function txk
is continuous in a sufficiently small neighbourhood O(x0) of the point
x0, for all k ≤ mx0 .

Let Π(x) = Lx(s(x);σ(x)), the latter given by the formula (∗). Since the
preimage of the open star of vertex 〈Vλ〉 under the mapping s lies in Vλ, it
follows by Theorem 2.5 that the partition Π(x) satisfies conditions (c) and (d).

To verify that Π is continuous at the point x0 ∈ X it suffices, because of the
local finiteness of the covering ω, to construct a neighbourhoodO(x0) and finitely
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many indices λ0 < λ1 < . . . < λp such that O(x0) ∩ Vλi
6= ∅ for all 0 ≤ i ≤ p,

and O(x0) ∩ Vλi = ∅ for all λ 6∈ {λ0, . . . , λp}. Then s(x) =
∑p
i=0 κλi(x)〈Vλi〉.

Divide the interval [txk, tx(k+1)] by points txk = txkλ0 ≤ txkλ1 ≤ . . . ≤
txkλp

≤ txkλp+1 = txk+1 into subintervals with lengths proportional to the num-
bers (κλ0(x), . . . , κλp(x)). It is easy to verify that

(7) the functions txkλi
are continuous in a sufficiently small neighbourhood

O(x0) of the point x0 for all k ≤ mx0 and i ≤ p.

By definition (∗) we have

Π(x)λi
=
mx−1∐
k=0

[txkλi
, txkλi+1 ] and Π(x0)λi

=
mx−1∐
k=0

[tx0kλi
, tx0kλi+1 ].

Denote
mx0−1∐
k=0

([txkλi
, tx0kλi

] ∪ [txkλi+1 , tx0kλi+1 ])

by D(x0, x). It follows from (7) that

(8) the values of D(x0, x) can be made arbitrarily small in a sufficiently
small neighbourhood O(x0) of the point x0.

Observe that if 1/σ(x0) is not an integer, then Π(x)λi
4Π(x0)λi

⊂ D(x0, x)
for a sufficiently small neighbourhood O(x0) of the point x0. If on the other
hand, the number 1/σ(x0) is an integer mx0 , then

Π(x)λi
4Π(x0)λi

⊂

{
D(x0, x) if mx = mx0 ,

D(x0, x) ∪ [tx(mx−1), 1] if mx = mx0 + 1,

for a sufficiently small neighbourhood O(x0) of the point x0. By (8) the value
of m(Π(x)λi 4Π(x0)λi) can be made to be arbitrarily close to zero by choosing
an even smaller neighbourhood O(x0). Therefore, the value of d(Π(x),Π(x0)) =
supλi

m(Π(x)λi
4Π(x0)λi

) can also be made arbitrarily close to zero. The con-
tinuity of Π at the point x0 is thus proved. �

Consider the map Π : X → P, constructed in Theorem 2.6. It follows
by the definition of metric on P that the characteristic function χΠ(x)λ

is a
continuous mapping of the space X into L1([0, 1], E) for all λ. By the local
finiteness of ω, it is easy to prove that the map Ψ : X → L1([0, 1], E), defined
by Ψ(x) =

∑
λ∈Λ ψ(λ)χΠ(x)λ

, where ψ : Λ → L1([0, 1], E) is an arbitrary map,
is continuous. Two remarks concerning the definition of map Ψ:

(e) since the measure of the intersection Π(x)λ ∩Π(x)λ′ is zero, the map Ψ
can be defined there to be arbitrary, and

(f) since Π(x)λ 6= ∅ only for finitely many λ ∈ Λ, the sum in the definition
of Ψ is finite.
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3. Dispersible sets

Definition 3.1. A subset K ⊂ L1([0, 1], E) is said to be dispersibly convex if
for each ε > 0 and for arbitrary functions ui ∈ K, i = 0, . . . , n, there exists σ > 0
such that for any point s ∈ ∆n and for each σ-approximatively s-dispersible
partition P = {Pi}ni=0 the function u =

∑n
i=0 uiχPi

lies in the ε-neighbourhood
of K.

Remark. Let T : (T,F, µ) → ([0, 1],L,m) be the isomorphism of a separable
measurable space endowed with a nonatomic probability measure µ into the
space of Lebesgue measurable subsets of the interval I = [0, 1] constructed by
the procedure explained in [6, Chapter VIII]. Then there exists an isomorphism

T : L1(T,E) → L1(I, E)

of Banach spaces which preserves the decomposable hull:

T(uχA) = T(u)χT (A).

A subset K ⊂ L1(T,E) is said to be dispersibly convex if the set T(K) ⊂ L1(I, E)
is dispersibly convex in L1(I, E). Obviously the notion of dispersible convexity
for separable measurable spaces depends on the choice of the isomorphism T .

It is easy to prove that

(a) Any intersection of dispersible sets is dispersible; and
(b) Any linear combination αK + βH of dispersible sets is dispersible.

Definition 3.2. The smallest dispersibly convex set containing the set K ⊂
L1([0, 1], E) is said to be the dispersible hull of the set K.

It follows from (a) that the dispersible hull of the set K coincides with the
intersection of all dispersibly convex sets containing the set K. It would be useful
to find a constructive description of the dispersible hull of a set. The following
simple fact will be useful in the sequel:

Lemma 3.3. If P = {Pi}ni=0 is a partition of the interval I, and ρ(ui, vi) <
a, 0 ≤ i ≤ n, then

ρ

( n∑
i=0

uiχPi ,

n∑
i=0

viχPi

)
< (n+ 1)a.

Lemma 3.3 and the definition of dispersibly convex sets imply the following:

Lemma 3.4. If K is a dispersibly convex set then its closure ClK is also
dispersibly convex.

The most important result concernes open and closed balls which turn out
to be dispersibly convex. By Lemma 3.4 it suffices to verify this fact only for
open balls:
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Theorem 3.5. For each function f ∈ L1(T,E) and each a > 0 the open ball

B(f, a) =
{
g

∣∣∣∣ |f − g| =
∫
‖f(t)− g(t)‖ ∂t < a

}
is a dispersible set.

Theorem 3.5 can be easily deduced from the following theorem.

Theorem 3.6. For arbitrary functions ui, vi ∈ L1([0, 1], E), i = 0, . . . , n,
such that |ui− vi| < Ai for all i, there exists a σ > 0 such that for any point s ∈
∆n and any σ-approximatively s-dispersible partition P = {Pi}ni=0 the distance
between functions u =

∑n
i=0 uiχPi

and v =
∑n
i=0 viχPi

is less than
∑
κiAi.

Proof. Consider first the case when the functions ui and vi are piecewise
constant. Let L = {Ik}mk=0 be a linear partition of I = [0, 1] such that ui = cik ∈
E on Ik and vi = dik ∈ E on Ik. Hence,

ui =
m∑
k=0

cikχIk
and vi =

m∑
k=0

dikχIk
.

Since |ui − vi| < Ai, it follows that

|ui − vi| =
m∑
k=0

‖cik − dik‖m(Ik) = Bi < Ai.

Let B = mini(Ai − Bi) and σ < B/((
∑∑

‖cik − dik‖) + 1). Consider an arbi-
trary σ-approximatively s-dispersible partition P = {Pi}ni=0, where s = {κi} ∈
∆n. Since m(Pi ∩ Ik)

σ
≈κim(Ik), it follows that

|u− v| =
n∑
i=0

m∑
k=0

(‖cik − dik‖κim(Pi ∩ Ik))

Θ
≈

n∑
i=0

m∑
k=0

(‖cik − dik‖κim(Ik))

=
n∑
i=0

κi

( m∑
k=0

‖cik − dik‖m(Ik)
)

=
n∑
i=0

κiBi,

where Θ =
∑∑

(‖cik − dik‖κiσ). From Θ < σ
∑∑

‖cik − dik‖ < B <∑n
i=0 κi(Ai −Bi) it follows that |u− v| <

∑n
i=0 κiAi.

In the general case we shall approximate the functions ui, vi by piecewise-
constant functions ûi, v̂i ∈ L1(I, E) so that |ui − ûi| + |vi − v̂i| < D/(n + 1)2,
where D = mini |Ai − Ci|, and Ci = |ui − vi| < Ai. By Lemma 3.3, we have

|u− û|+ |v − v̂| < (n+ 1)D
(n+ 1)2

=
D

(n+ 1)
.
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Since for piecewise-constant functions ûi, v̂i the inequality

|ûi − v̂i| <
D

(n+ 1)2
+ Ci

holds, it follows by the previous considerations that there exists σ > 0 such that
for each point s ∈ ∆n and each σ-approximatively s-dispersible partition P =
{Pi}ni=0, the distance between functions û =

∑n
i=0 ûiχPi and v̂ =

∑n
i=0 v̂iχPi is

at most
∑
κi(D/(n+ 1)2 +Bi) =

∑
κiBi +D/(n+ 1)2. As a result, we get:

|u− v| ≤ D

(n+ 1)
+

D

(n+ 1)

2

+
∑

κiBi <
∑

κiBi +D <
∑

κiAi. �

Corollary 3.7. Each a-neighbourhood N(K; a) = {g ∈ L1([0, 1], E) |
ρ(g,K) < a} of a dispersibly convex set K is dispersibly convex.

Remark. The proof, analogous to the proof of Theorem 3.6, shows that the
sets {u ∈ L1([0, 1], E) |

∫ √
|u| dt ≤ 1} as well as the balls with respect to the

seminorm q(u) = |
∫
T
u(t) dt| are dispersibly convex.

4. Dispersible multivalued mappings

Hereafter X will be a paracompact space and Y the space L1(I, E).

Definition 4.1. A multivalued mapping F : X  Y is said to be dis-
persible if for each x0 ∈ X and a > 0, each point s ∈ ∆n and each functions
u0, u1, . . . , un ∈ F (x0) there exist a neighbourhood O(x0) of the point x0 and
a number σ > 0 such that for any σ-approximatively s-dispersible partition
P = {Pi}ni=0, the function

∑n
i=0 uiχPi

is contained in N(F (x), a), for every
point x ∈ O(x0).

It is easy to prove the following result by means of Theorem 3.6:

Proposition 4.2. A multivalued mapping F : X  Y is dispersible if and
only if for each x0 ∈ X and a > 0, an arbitary point s ∈ ∆n and arbitrary
functions u0, . . . , un ∈ N(F (x0); a) there exist a neighbourhood O(x0) of the
point x0 and a number σ > 0 such that for each σ-approximatively s-dispersible
partition P = {Pi}ni=0 the function

∑n
i=0 uiχPi

is contained in N(F (x), a), for
every point x ∈ O(x0).

It follows from Definition 4.1 that the mapping F is lower semicontinuous
and the values F (x) are dispersible convex at each point x ∈ X. In general, the
converse does not hold. It is easy to verify by means of Theorem 3.6 that a lower
semicontinuous mapping F : X  Y is dispersible if for each point x ∈ X the
value F (x) is a decomposable set. Moreover, the dispersibility is preserved under
many operations:
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Proposition 4.3. If multivalued mappings F,H : X  Y are dispersible
then

(a) the multivalued mapping Φ : X  Y , Φ(x) = F (x)+H(x) is dispersible,
and

(b) the multivalued mapping Φ : X  Y , Φ(x) = ClF (x) is dispersible.

Definition 4.4. A multivalued mapping H : X  Y is said to be openly
generated if it satisfies the following condition:

(a) For every points x0 ∈ X and y0 ∈ H(x0) there exist neighbourhoods
O(x0), O(y0) such that O(y0) ⊂ H(x), for all x ∈ O(x0).

Clearly, H is an openly generated mapping if and only if its graph {(x,H(x)) |
x ∈ X} is an open subset of X×Y . This is the reason that the openly generated
mappings are also called also mappings with open graphs. Openly generated
mappings are always lower semicontinuous.

A large class of openly generated dispersible multivalued mappings can be
constructed by the following method:

Proposition 4.5. Let B be a dispersibly convex set such that tB ⊂ B, for
all 0 < t < 1 and {0} ∈ IntB. If ϕ : X → (0,∞) is a lower semicontinuous
singlevalued function then the multivalued mapping H : X  Y , H(x) = ϕ(x)B
is dispersible. If, in addition B is open, then H is openly generated.

Proof. First consider the case when B is open. To verify that H is dis-
persible consider the functions u0, . . . , un ∈ H(x0) constructed in the following
manner ui = ϕ(x0)bi, where bi ∈ B. Since B is open we may assume that
ui = tbi, where t < ϕ(x0). Since the function ϕ is lower semicontinuous, there
exists α > 0 such that O(x0) = {x | ϕ(x) > t + α} is a neighbourhood of the
point x0. We claim that the open set (t + α)B which is a neighbourhood of
u0 ∈ H(x0), is contained in H(x) for x ∈ O(x0). Indeed,

t+ α

ϕ(x)
< 1 ⇒ t+ α

ϕ(x)
B ⊂ B ⇒ (t+ α)B ⊂ ϕ(x)B = H(x).

Therefore the mapping H is openly generated.
Since the interior of B contains the point 0, it follows that tN(B;β) ⊂

(t+ α)B, for a certain number β > 0. Therefore, we get:

(1) tN(B;β) ⊂ H(x), for every x ∈ O(x0).

Since B is dispersible, there exists a number σ > 0, such that for each point s ∈
∆n and each σ-approximatively s-dispersible partition P = {Pi}ni=0, the function
b =

∑n
i=0 biχPi is contained in N(B;β). Then

∑n
i=0 uiχPi = t

∑n
i=0 biχPi

∈
tN(B;β). However, by (1) the last set is contained in H(x), for all x ∈ O(x0).
This proves that the mapping H is dispersible and openly generated.
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In the case when B is not open we consider the mapping H ′(x) = ϕ(x) IntB,
which has already been proved to be dispersible. By Proposition 4.3(b) the
mapping H(x) = ClH ′(x) is also dispersible. �

The following proposition is proved analogously:

Proposition 4.6. Let B be a dispersibly convex open set such that tB ⊂ B,
for all 0 < t < 1, {0} ∈ IntB. If ϕ : X → (0,∞) is a lower semicontinuous
singlevalued function, the multivalued mapping F : X  Y is dispersible, and the
intersection Φ(x) = F (x) ∩ ϕ(x)B is nonempty, then the multivalued mapping
Φ : X  Y is dispersible.

5. Proofs of Theorems 1.1 and 1.2

Without loss of generality we can assume that (T,F, µ) = ([0, 1],L,m) and
L1(T,E) = L1([0, 1], E) = Y .

Proposition 5.1. Let X be a paracompact space and F : X  Y a dis-
persible multivalued mapping. Then for each ε > 0 there exists an ε-selection
Ψ : X → Y of the mapping F .

Proof. Let {N(y, ε) | y ∈ Y } be a covering of the space Y by open ε-
balls. Denote the preimage F−1(N(y, ε)) by Wy. Then for each x ∈ Wy the set
F (x) ∩N(y; ε) is nonempty or equivalently, y ∈ N(F (x); ε).

Let an open locally finite covering ω = {Vλ}λ∈Λ of the space X be a star
refinement of the open covering {Wy | y ∈ Y }. Let St(Vλ;ω) ⊂ Wψ(λ), where
ψ : Λ → Y is a mapping. Then ClVλ ⊂ Wψ(λ). Choose a linear ordering on
the index set Λ. For each point x ∈ X fix all those elements V0, . . . , Vnx of the
covering ω whose closure contains the point x, ordered by the ordering of their
indices. If St(Vi;ω) ⊂Wψi

, then obviously

(1) x ∈ ClVi ⊂Wψi .

The neighbourhood O1(x) of the point x intersects only the elements V0, . . . Vnx

of the covering and is contained in ∩Wψi . Because of (1) all points {ψi}nx
i=0 lie

in N(F (x′); ε), for all x′ ∈ O1(x).
Now apply the hypothesis that the mapping F is dispersible. By Proposi-

tion 4.3 there exist a neighbourhood O2(x) ⊂ O1(x) and a number σx > 0 such
that

(2) For arbitrary functions {ψi}nx
i=0 ⊂ N(F (x), ε), for each point s ∈ ∆nx

and for an arbitary σx-approximatively s-dispersible partition P =
{Pi}nx

i=0, the function ux =
∑nx

i=0 ψiχPi
lies in N(F (x′); ε), for each

point x′ ∈ O2(x).

Let τ = {Uβ} be an open locally finite covering of the space X which is a star
refinement of the covering {O2(x) | x ∈ X}. Let St(Uβ ; τ) ⊂ O2(xβ). Obviously,
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the function

x ∈ X 7→ min{σxβ
| x ∈ Uβ ⊂ O2(xβ)} = d(x) > 0

is lower semicontinuous. By the Dowker theorem [9] there exists a continuous
function σ : X → R+ such that 0 < σ(x) < d(x), for all x ∈ X.

Consider the canonical mapping s : X → N〈ω〉 into the nerve of the covering
ω, lying in the full polyhedron ∆. By Theorem 2.6 there exists a continuous map
Π : X → P, for given s and σ, such that

(c) Π(x) = {Π(x)λ}λ∈Λ is a σ(x)-approximatively s(x)-dispersible Λ-parti-
tion of the interval I for all x ∈ X, and

(d) if x 6∈ Vλ then m(Π(x)λ) = 0.

We claim that the desired ε-selection is the mapping Ψ : X → Y ,

Ψ(x) =
∑
λ∈Λ

ψ(λ)χΠ(x)λ
.

We have proved at the end of the Section 3 that Ψ is continuous. It remains
to prove that Ψ(x) ∈ N(F (x), ε), for all x ∈ X. Let x ∈ Uβ ⊂ O2(xβ). Since
σ(x) < d(x) ≤ σxβ

, the σ(x)-approximatively s(x)-dispersible partition Π(x) is
σxβ

-approximatively s(x)-dispersible. From (2) it follows that

Ψ(x) =
∑
λ∈Λ

ψ(λ)χΠ(x)λ
=

nx∑
i=0

ψiχΠ(x)i
∈ N(F (x′); ε),

for all x′ ∈ O2(xβ), therefore also for x ∈ O2(xβ). �

The rest of this section is devoted to the proof of Theorem 1.1 concerning
selections of dispersible mappings.

Theorem 5.2. Let F, F1 : X  Y be lower semicontinuous dispersible mul-
tivalued mappings (not necessarily with closed values). If for each point x ∈ X

the inclusion ClF1(x) ⊂ F (x) holds, then the mapping F admits a continuous
selection.

Corollary 5.3. If the values of a dispersible multivalued mapping F :
X  Y are closed then the mapping F admits a continuous selection.

Proof of Theorem 5.2. Let {εk} be a sequence of positive numbers such
that εk+1 < εk/2 and ε1 = 1. By Proposition 5.1 the mapping F1 admits an
ε1-selection s1 : X → Y . By Theorem 3.5 and Proposition 4.5, the open εk-
ball Bk = N(0, εk) is a dispersibly convex set and the mapping s1(x) + B1 =
N(s1(x), ε1) is dispersible and openly generated.

It follows by Proposition 4.6 that the mapping F2(x) = F1(x)∩N(s1(x), ε1) 6=
∅ is dispersible. By Proposition 5.1, it admits an ε2-selection s2 : X → Y .
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Analogously, multivalued mappings Fk+1(x) = Fk(x) ∩N(sk(x), εk) 6= ∅ as well
as their εk+1-selections sk+1 : X → Y , k = 2, 3, . . . can be constructed.

Since Fk(x) ⊂ N(sk−1(x), εk−1), it follows that diamFk(x) ≤ 2εk−1. Be-
cause of the inequalities

ρ(sk(x), sk+1(x)) ≤ ρ(sk(x), Fk(x)) + ρ(sk+1(x), Fk(x)) + diam(Fk(x))

≤ 2εk + 2εk−1,

the sequence {sk} is a Cauchy sequence in Y = L1(T,E). Completeness of Y
implies that this sequence converges to a mapping ψ : X → Y . The mapping
ψ(x) ∈ ClF1(x) ⊂ F (x) is precisely the desired selection of mapping F . �

We remark that the theorem on the extension of a partial selection of a dis-
persible mapping F : X  L1(T,E) defined on closed subspace of paracompact
spaces X, to a global selection is also valid and its proof is a standard reduction
to the proof of Theorem 1.1.

Proof of Theorem 1.2. We shall only give a sketch of the proof. Let
Xk = {x ∈ X | F (x)∩Gk(x) 6= ∅}. It is obvious that Xi ⊂ Xi+1 and ∪Xk = X.
We can thus assume without lossing generality that Xk are closed.

The mappings F ∩Gk are dispersible and defined on Xk and Cl(F ∩Gk) ⊂
F ∩ Gk+1. By means of Theorem 5.2, it is possible to construct selections sk :
Xk → Y of the mappings F ∩ Gk+1 such that sk|Xk−1 = sk−1. The desired
selection s : X → Y of the mapping F ∩G is then given by s|Xk

= sk. �
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