A SELECTION THEOREM FOR MAPPINGS WITH NONCONVEX NONDECOMPOSABLE VALUES IN L_{p}-SPACES

Dušan Repovš ${ }^{1}$ - Pavel V. Semenov ${ }^{2}$

1. Introduction

Let T be a set equipped with a probability measure μ, B a Banach space and $L_{p}=L_{p}(T, B)$ the Banach space of all (equivalence classes of) p-summable mappings from T into B with the usual norm:

$$
\|f\|=\left(\int_{T}|f(t)|_{B}^{p} d \mu\right)^{1 / p}, \quad 1 \leq p<\infty
$$

For every subset $E \subset B$ we define

$$
L_{p}(T, E)=\left\{f \in L_{p}(T, B) \mid f(t) \in E \text { almost everywhere }\right\}
$$

If E is a convex subset of B then $L_{p}(T, E)$ is a convex subset of $L_{p}(T, B)$. For an arbitrary subset E of B one can, in general, state only the decomposability of the set $L_{p}(T, E)$ in the Banach space $L_{p}(T, B)$. Recall that by [4] decomposability of $Z \subset L_{p}(T, B)$ means that for every $f \in Z, g \in Z$ and for every μ-measurable subset $A \subset T$, the function which agrees with f over A and with g over $T \backslash A$ is also an element of Z. In [1], [2], and [3] selection theorems were proved for

1991 Mathematics Subject Classification. Primary 54C65, 52A30; Secondary 54C60, 26E25.
Key words and phrases. Selections of multivalued maps, Banach spaces, α-paraconvex sets, nondecomposable sets, semi-convex sets, paracompact spaces.
${ }^{1}$ Supported in part by Ministry of Science and Technology of the Republic of Slovenia grant No. J1-7039-0101-95.
${ }^{2}$ Supported in part by the G. Soros International Science Foundation Grant No. NFU000.
decomposable valued lower semicontinuous mappings into spaces $L_{1}(T, B)$ with nonatomic measure μ and separable B. In other words, decomposability looks like a suitable substitute for convexity in L_{1}-spaces (cf. [1], [6]).

In the present note we shall consider multivalued mappings whose values are unions of two intersecting sets $L_{p}\left(T, E_{1}\right)$ and $L_{p}\left(T, E_{2}\right)$, where E_{1} and E_{2} are convex. Sets of such type are, in general, nondecomposable and nonconvex. However, we shall prove that a selection theorem for lower semicontinuous mappings holds also in this case under some additional restrictions on E_{1} and E_{2}.

Definition 1.1. A subset $W \subset L_{p}(T, B), p \geq 1$, is said to be semiconvex if

$$
W=L_{p}\left(T, E_{1}\right) \cup L_{p}\left(T, E_{2}\right)
$$

for some nonempty closed convex subsets $E_{1} \subset B, E_{2} \subset B$ with a convex union $E_{1} \cup E_{2}$.

Definition 1.2. A subset $W \subset L_{p}(T, B), p \geq 1$, is said to be strongly semiconvex if

$$
W=L_{p}\left(T, E_{-}\right) \cup L_{p}\left(T, E_{+}\right)
$$

for some nonempty closed convex $E_{-} \subset B, E_{+} \subset B$ with a convex union $E_{-} \cup E_{+}$ such that $\ell\left(E_{-}\right) \leq c$ and $\ell\left(E_{+}\right) \geq c$, for some $c \in \mathbb{R}$ and for some continuous linear functional $\ell: B \rightarrow \mathbb{R}$.

Theorem 1.3. Every lower semicontinuous mapping from a paracompact space into the space $L_{p}(T, B), p \geq 1$, with strongly semiconvex values admits a continuous singlevalued selection.

Theorem 1.3 is a direct corollary of the following theorems:
Theorem 1.4. Every strongly semiconvex subset of $L_{p}(T, B)$ is α-paraconvex in $L_{p}(T, B)$, where $\alpha=\left(1+2^{-1 / p}\right) / 2 \in[0,1)$.

Theorem 1.5. For every $\alpha \in[0,1)$, every lower semicontinuous α-paraconvex valued mapping from a paracompact space into a Banach space admits a continuous singlevalued selection.

Theorem 1.5 was proved by Michael [5] where the notion of paraconvexity was also introduced.

Definition 1.6. Let $\alpha \in[0,1)$. A nonempty closed subset P of a normed space E is said to be α-paraconvex if for every open ball D with radius r and with $D \cap P \neq \emptyset$, the inequality

$$
\operatorname{dist}(q, P) \leq \alpha r
$$

holds, for all q from the convex hull $\operatorname{conv}(D \cap P)$.

If f is a Lipschitz function (with some constant k) in n variables and with a convex closed domain, then its graph is an α-paraconvex subset of \mathbb{R}^{n+1}, for some $\alpha=\alpha(k, n)<1$ (see [7]). Another example of a paraconvex subset in the Hilbert space is given by a bouquet of convex sets (see [8]).

We conclude the introduction by two open questions:
Question 1.7. Let B be a Banach space and \mathcal{L} the family of all of its subsets which admit a representation as the union of two closed convex sets. Is it then true that every lower semicontinuous mapping $F: X \rightarrow \mathcal{L}$ from a paracompact space X with equi-LC C^{0} family $\{F(x)\}_{x \in X}$ of values must always have a selection?

It is easy to show that in the Hilbert space a sufficient condition is that the set of "angles" between two closed convex sets above has a positive lower bound (see [8]).

Question 1.8. Does there exist a suitable (for selection theory) notion of paradecomposability, i.e. a controlled version of the weakening of the concept of decomposability?

As a test one can consider the case of the union $L_{p}\left(T, E_{1}\right) \cup L_{p}\left(T, E_{2}\right)$, for nonconvex E_{1} and E_{2}, with E_{1} and E_{2} separated by a hyperplane.

2. Preliminaries

Given a multivalued mapping $F: X \rightarrow Y$ with nonempty values, a selection for F is a continuous singlevalued mapping $f: X \rightarrow Y$ such that $f(x) \in F(x)$, for each $x \in X$. A multivalued mapping $F: X \rightarrow Y$ is said to be lower semicontinuous if $\{x \in X \mid F(x) \cap U \neq \emptyset\}$ is open in X whenever U is open in Y.

Lemma 2.1. Let P be a closed nonempty subset of a normed space $(E,\|\cdot\|)$, let $x \in P, y \in P$, and let

$$
\operatorname{dist}\left(z_{0}, P\right) \leq \alpha r, \quad 0 \leq \alpha<1,
$$

where $2 z_{0}=x+y$ and $\|x-y\|=2 r$. Then

$$
\operatorname{dist}(z, P) \leq \beta r
$$

for all $z \in[x, y]$, where $\beta=(1+\alpha) / 2$.
Let W be a strongly semiconvex subset of $L_{p}(T, B)$ and let

$$
W=L_{p}\left(T, E_{-}\right) \cup L_{p}\left(T, E_{+}\right)
$$

with $E_{-}, E_{+}, c \in \mathbb{R}$ and $\ell: B \rightarrow \mathbb{R}$ from Definition 1.2. Set $E_{0}=E_{-} \cap E_{+}, W_{-}=$ $L_{p}\left(T, E_{-}\right), W_{+}=L_{p}\left(T, E_{+}\right)$and $W_{0}=L_{p}\left(T, E_{0}\right)$. Clearly, $E_{0}=\left(E_{-} \cup E_{+}\right) \cap \Pi$ where Π is the hyperplane $\{x \in B \mid \ell(x)=c\}$. Observe that $E_{-} \backslash E_{0}=\emptyset$ implies that $E_{-} \subset E_{+}$and $W_{-} \subset W_{+}$, i.e. that W is convex. Thus we can assume that $E_{-} \backslash E_{0} \neq \emptyset$.

Lemma 2.2. Let D be an open ball in $L_{p}(T, B)$ whose intersection with W is nonconvex. Then the convex hull $\operatorname{conv}(D \cap W)$ equals the union of segments:

$$
\bigcup\left\{\left[f_{-}, f_{+}\right] \mid f_{+} \in W_{+} \cap D, f_{-} \in\left(W_{-} \backslash W_{0}\right) \cap D\right\}
$$

In order to prove Theorem 1.4 it suffices, by Lemmas 2.1 and 2.2 , to show that $\operatorname{dist}(g, W) \leq 2^{-1 / p} r$ for $2 g=f_{-}+f_{+}$with $f_{+} \in W_{+} \cap D, f_{-} \in\left(W_{-} \backslash W_{0}\right) \cap D$ and $\left\|f_{-}-f_{+}\right\|=2 r$.

3. Proofs

Proof of Theorem 1.4. We assume that $f_{+} \in W_{+} \cap D$ and $f_{-} \in\left(W_{-} \backslash\right.$ $\left.W_{0}\right) \cap D$ are mappings from T into $E_{-} \cup E_{+}$with $\left\|f_{-}-f_{+}\right\|=2 r$ and with $f_{+}(t) \in E_{+}$for almost every $t \in T$ and $f_{-}(t) \in E_{-} \backslash E_{0}$ for almost every $t \in T$, respectively. So, the segment $\left[f_{-}(t), f_{+}(t)\right]$ intersects the hyperplane Π, for almost every $t \in T$. Because of the convexity of $E_{-} \cup E_{+}$the intersection $\Pi \cap\left[f_{-}(t), f_{+}(t)\right]$ lies in E_{0} and by the assumption $f_{-}(t) \notin \Pi$, this intersection is a singleton. So, we define a mapping $f_{0}: T \rightarrow E_{0}$ by setting $f_{0}(t)=\Pi \cap$ $\left[f_{-}(t), f_{+}(t)\right]$, for almost every $t \in T$. Clearly,

$$
\left|g(t)-f_{0}(t)\right|_{B} \leq\left|f_{-}(t)-f_{+}(t)\right|_{B} / 2
$$

because $g(t)$ is the middle point of the segment $\left[f_{-}(t), f_{+}(t)\right]$.
Define mappings $g_{+}: T \rightarrow E_{+}$and $g_{-}: T \rightarrow E_{-}$by setting

$$
g_{+}(t)= \begin{cases}g(t) & \text { if } g(t) \in E_{+}, \\ f_{0}(t) & \text { if } g(t) \in E_{-} \backslash E_{0},\end{cases}
$$

and

$$
g_{-}(t)= \begin{cases}g(t) & \text { if } g(t) \in E_{-} \backslash E_{0} \\ f_{0}(t) & \text { if } g(t) \in E_{+}\end{cases}
$$

AsSERTION 3.1. The mappings f_{0}, g_{+}, g_{-}are elements of $L_{p}(T, B)$.
By Assertion 3.1 we have $g_{+} \in W_{+} \subset W$ and $g_{-} \in W_{-} \subset W$. Thus

$$
\operatorname{dist}(g, W) \leq \min \left\{\left\|g-g_{+}\right\|,\left\|g-g_{-}\right\|\right\}
$$

Let us estimate the right hand side of the inequality above:

$$
\begin{aligned}
\left\|g-g_{+}\right\|^{p}+\left\|g-g_{-}\right\|^{p}= & \int_{T}\left|g(t)-g_{+}(t)\right|_{B}^{p} d \mu+\int_{T}\left|g(t)-g_{-}(t)\right|_{B}^{p} d \mu \\
= & \int_{\left\{t \mid g(t) \in E_{-} \backslash E_{0}\right\}}\left|g(t)-f_{0}(t)\right|_{B}^{p} d \mu \\
& +\int_{\left\{t \mid g(t) \in E_{+}\right\}}\left|g(t)-f_{0}(t)\right|_{B}^{p} d \mu \\
= & \int_{T}\left|g(t)-f_{0}(t)\right|_{B}^{p} d \mu \\
\leq & \int_{T}\left|f_{-}(t)-f_{+}(t)\right|_{B}^{p} / 2^{p} d \mu=\left\|f_{-}-f_{+}\right\|^{p} / 2^{p}=r^{p}
\end{aligned}
$$

Hence

$$
\min \left\{\left\|g-g_{+}\right\|,\left\|g-g_{-}\right\|\right\} \leq\left(r^{p} / 2\right)^{1 / p}=2^{-1 / p} r
$$

This completes the proof of Theorem 1.4.
Proof of Lemma 2.1. If $\left\|z-z_{0}\right\| \leq(\beta-\alpha) r$, then

$$
\operatorname{dist}(z, P) \leq\left\|z-z_{0}\right\|+\operatorname{dist}\left(z_{0}, P\right) \leq \beta r
$$

by the triangle inequality. If $\left\|z-z_{0}\right\|>(\beta-\alpha) r$, then z is βr-close to $x \in P$ or z is βr-close to $y \in P$.

Proof of Lemma 2.2. The inclusion

$$
\bigcup\left\{\left[f_{-}, f_{+}\right] \mid f_{+} \in W_{+} \cap D, f_{-} \in\left(W_{-} \backslash W_{0}\right) \cap D\right\} \subset \operatorname{conv}(D \cap W)
$$

is obvious. To prove the other inclusion, let us fix $f=\sum_{i=1}^{n} \lambda_{i} f_{i}$ with $\lambda_{i}>0$ and $\sum_{i=1}^{n} \lambda_{i}=1$, for some $n \in \mathbb{N}$ and for some $\left\{f_{1}, \ldots, f_{n}\right\} \in D \cap W$. If all f_{1}, \ldots, f_{n} are elements of $D \cap W_{+}$then $f \in D \cap W_{+}$and hence $f \in\left[f_{-}, f\right]$, for an arbitrary $f_{-} \in\left(W_{-} \backslash W_{0}\right) \cap D$. If $\left\{f_{1}, \ldots, f_{k}\right\} \subset D \cap W_{+},\left\{f_{k+1}, \ldots, f_{n}\right\} \subset\left(W_{-} \backslash W_{0}\right) \cap D$ and $k<n$ then

$$
\begin{aligned}
f= & \left(\lambda_{1}+\ldots+\lambda_{k}\right)\left(\frac{\lambda_{1}}{\lambda_{1}+\ldots+\lambda_{k}} f_{1}+\ldots+\frac{\lambda_{k}}{\lambda_{1}+\ldots+\lambda_{k}} f_{k}\right) \\
& +\left(\lambda_{k+1}+\ldots+\lambda_{n}\right)\left(\frac{\lambda_{k+1}}{\lambda_{k+1}+\ldots+\lambda_{n}} f_{k+1}+\ldots+\frac{\lambda_{n}}{\lambda_{k+1}+\ldots+\lambda_{n}} f_{n}\right) \\
= & \lambda f_{+}+(1-\lambda) f_{-}
\end{aligned}
$$

where $0<\lambda<1$ and $f_{+} \in D \cap W_{+}, f_{-} \in D \cap\left(W_{-} \backslash W_{0}\right)$, by the convexity of D, W_{+}and $\left(W_{-} \backslash W_{0}\right)$.

Proof of Assertion 3.1. The mapping $f_{0}: T \rightarrow E_{0}$ admits an analytic expression

$$
f_{0}(t)=(1-\lambda(t)) f_{-}(t)+\lambda(t) f_{+}(t)
$$

where

$$
0<\lambda(t)=\frac{c-\ell\left(f_{-}(t)\right)}{\ell\left(f_{+}(t)-f_{-}(t)\right)} \leq 1
$$

But $f_{+}, f_{-} \in L_{p}(T, B)$ and $\ell: B \rightarrow \mathbb{R}$ is continuous. Hence $\lambda \in L_{p}(T, \mathbb{R})$ and thus $f_{0} \in L_{p}(T, B)$.

Let $T_{c}=\{t \in T \mid \ell(g(t)) \geq c\}$. Then T_{c} is a μ-measurable subset of T, since $g \in L_{p}(T, B)$ and ℓ is continuous. So, the characteristic function κ_{c} of the set T_{c} is a simple measurable function. Therefore

$$
g_{+}=\kappa_{c} g+\left(1-\kappa_{c}\right) f_{0} \in L_{p}(T, B)
$$

and

$$
g_{-}=\kappa_{c} f_{0}+\left(1-\kappa_{c}\right) g \in L_{p}(T, B)
$$

References

[1] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 40 (1988), 69-86.
[2] A. Fryszkowski, Continuous selections for a class of non-convex multi-valued maps, Studia Math. 76 (1983), 163-174.
[3] V. V. Goncharov and A. A. Tolstonogov, Compatible continuous selectors of multivalued mappings with nonconvex values and their applications, Mat. Sb. 182 (1991), 946-949. (Russian)
[4] F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions, J. Math. Anal. 7 (1977), 149-182.
[5] E. Michael, Paraconvex sets, Math. Scand. 7 (1959), 372-376.
[6] C. Olech, Decomposability as a substitute for convexity, Lecture Notes in Math. 1091, Springer-Verlag, Berlin, 1984, pp. 193-205.
[7] D. Repovš and P. V. Semenov, Paraconvexity of graphs of continuous functions, Set-Valued Anal. 3 (1995), 23-32.
[8] P. V. Semenov, On paraconvexity of star-like sets, Sibirsk. Mat. Zh. (to appear). (Russian)

Dušan Repovš
Institute of Mathematics, Physics and Mechanics
University of Ljubljana
P.O.B. 2964

1001 Ljubljana, SLOVENIA
E-mail address: dusan.repovs@uni-lj.si

Pavel V. Semenov

Moscow State Pedagogical University
Ul. M. Pyrogovskaya 1
119882 Moscow, RUSSIA

