Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 8, 1996, 407–412

A SELECTION THEOREM FOR MAPPINGS WITH NONCONVEX NONDECOMPOSABLE VALUES IN L_p -SPACES

Dušan Repov $\mathbf{\tilde{s}}^1$ — Pavel V. Semenov²

1. Introduction

Let T be a set equipped with a probability measure μ , B a Banach space and $L_p = L_p(T, B)$ the Banach space of all (equivalence classes of) p-summable mappings from T into B with the usual norm:

$$||f|| = \left(\int_T |f(t)|_B^p d\mu\right)^{1/p}, \quad 1 \le p < \infty.$$

For every subset $E \subset B$ we define

$$L_p(T, E) = \{ f \in L_p(T, B) \mid f(t) \in E \text{ almost everywhere} \}.$$

If E is a convex subset of B then $L_p(T, E)$ is a convex subset of $L_p(T, B)$. For an arbitrary subset E of B one can, in general, state only the *decomposability* of the set $L_p(T, E)$ in the Banach space $L_p(T, B)$. Recall that by [4] decomposability of $Z \subset L_p(T, B)$ means that for every $f \in Z$, $g \in Z$ and for every μ -measurable subset $A \subset T$, the function which agrees with f over A and with g over $T \setminus A$ is also an element of Z. In [1], [2], and [3] selection theorems were proved for

O1996Juliusz Schauder Center for Nonlinear Studies

407

¹⁹⁹¹ Mathematics Subject Classification. Primary 54C65, 52A30; Secondary 54C60, 26E25. Key words and phrases. Selections of multivalued maps, Banach spaces, α -paraconvex sets, nondecomposable sets, semi-convex sets, paracompact spaces.

 $^{^1 \}rm Supported$ in part by Ministry of Science and Technology of the Republic of Slovenia grant No. J1-7039-0101-95.

²Supported in part by the G. Soros International Science Foundation Grant No. NFU000.

decomposable valued lower semicontinuous mappings into spaces $L_1(T, B)$ with nonatomic measure μ and separable B. In other words, decomposability looks like a suitable substitute for convexity in L_1 -spaces (cf. [1], [6]).

In the present note we shall consider multivalued mappings whose values are unions of two intersecting sets $L_p(T, E_1)$ and $L_p(T, E_2)$, where E_1 and E_2 are convex. Sets of such type are, in general, nondecomposable and nonconvex. However, we shall prove that a selection theorem for lower semicontinuous mappings holds also in this case under some additional restrictions on E_1 and E_2 .

DEFINITION 1.1. A subset $W \subset L_p(T, B)$, $p \ge 1$, is said to be *semiconvex* if

$$W = L_p(T, E_1) \cup L_p(T, E_2)$$

for some nonempty closed convex subsets $E_1 \subset B$, $E_2 \subset B$ with a convex union $E_1 \cup E_2$.

DEFINITION 1.2. A subset $W \subset L_p(T,B)$, $p \ge 1$, is said to be *strongly* semiconvex if

$$W = L_p(T, E_-) \cup L_p(T, E_+)$$

for some nonempty closed convex $E_{-} \subset B$, $E_{+} \subset B$ with a convex union $E_{-} \cup E_{+}$ such that $\ell(E_{-}) \leq c$ and $\ell(E_{+}) \geq c$, for some $c \in \mathbb{R}$ and for some continuous linear functional $\ell: B \to \mathbb{R}$.

THEOREM 1.3. Every lower semicontinuous mapping from a paracompact space into the space $L_p(T, B)$, $p \ge 1$, with strongly semiconvex values admits a continuous singlevalued selection.

Theorem 1.3 is a direct corollary of the following theorems:

THEOREM 1.4. Every strongly semiconvex subset of $L_p(T, B)$ is α -paraconvex in $L_p(T, B)$, where $\alpha = (1 + 2^{-1/p})/2 \in [0, 1)$.

THEOREM 1.5. For every $\alpha \in [0,1)$, every lower semicontinuous α -paraconvex valued mapping from a paracompact space into a Banach space admits a continuous singlevalued selection.

Theorem 1.5 was proved by Michael [5] where the notion of paraconvexity was also introduced.

DEFINITION 1.6. Let $\alpha \in [0, 1)$. A nonempty closed subset P of a normed space E is said to be α -paraconvex if for every open ball D with radius r and with $D \cap P \neq \emptyset$, the inequality

$$\operatorname{dist}(q, P) \le \alpha r$$

holds, for all q from the convex hull $\operatorname{conv}(D \cap P)$.

If f is a Lipschitz function (with some constant k) in n variables and with a convex closed domain, then its graph is an α -paraconvex subset of \mathbb{R}^{n+1} , for some $\alpha = \alpha(k, n) < 1$ (see [7]). Another example of a paraconvex subset in the Hilbert space is given by a bouquet of convex sets (see [8]).

We conclude the introduction by two open questions:

QUESTION 1.7. Let B be a Banach space and \mathcal{L} the family of all of its subsets which admit a representation as the union of two closed convex sets. Is it then true that every lower semicontinuous mapping $F : X \to \mathcal{L}$ from a paracompact space X with equi-LC⁰ family $\{F(x)\}_{x \in X}$ of values must always have a selection?

It is easy to show that in the *Hilbert space* a sufficient condition is that the set of "angles" between two closed convex sets above has a positive lower bound (see [8]).

QUESTION 1.8. Does there exist a suitable (for selection theory) notion of paradecomposability, i.e. a controlled version of the weakening of the concept of decomposability?

As a test one can consider the case of the union $L_p(T, E_1) \cup L_p(T, E_2)$, for nonconvex E_1 and E_2 , with E_1 and E_2 separated by a hyperplane.

2. Preliminaries

Given a multivalued mapping $F: X \to Y$ with nonempty values, a selection for F is a continuous singlevalued mapping $f: X \to Y$ such that $f(x) \in F(x)$, for each $x \in X$. A multivalued mapping $F: X \to Y$ is said to be *lower* semicontinuous if $\{x \in X \mid F(x) \cap U \neq \emptyset\}$ is open in X whenever U is open in Y.

LEMMA 2.1. Let P be a closed nonempty subset of a normed space $(E, \|\cdot\|)$, let $x \in P, y \in P$, and let

$$\operatorname{dist}(z_0, P) \le \alpha r, \quad 0 \le \alpha < 1,$$

where $2z_0 = x + y$ and ||x - y|| = 2r. Then

$$\operatorname{dist}(z, P) \leq \beta r$$

for all $z \in [x, y]$, where $\beta = (1 + \alpha)/2$.

Let W be a strongly semiconvex subset of $L_p(T, B)$ and let

$$W = L_p(T, E_-) \cup L_p(T, E_+)$$

with E_- , E_+ , $c \in \mathbb{R}$ and $\ell : B \to \mathbb{R}$ from Definition 1.2. Set $E_0 = E_- \cap E_+$, $W_- = L_p(T, E_-)$, $W_+ = L_p(T, E_+)$ and $W_0 = L_p(T, E_0)$. Clearly, $E_0 = (E_- \cup E_+) \cap \Pi$ where Π is the hyperplane $\{x \in B \mid \ell(x) = c\}$. Observe that $E_- \setminus E_0 = \emptyset$ implies that $E_- \subset E_+$ and $W_- \subset W_+$, i.e. that W is convex. Thus we can assume that $E_- \setminus E_0 \neq \emptyset$. LEMMA 2.2. Let D be an open ball in $L_p(T, B)$ whose intersection with W is nonconvex. Then the convex hull $\operatorname{conv}(D \cap W)$ equals the union of segments:

$$\bigcup \{ [f_{-}, f_{+}] \mid f_{+} \in W_{+} \cap D, \ f_{-} \in (W_{-} \setminus W_{0}) \cap D \}.$$

In order to prove Theorem 1.4 it suffices, by Lemmas 2.1 and 2.2, to show that $\operatorname{dist}(g, W) \leq 2^{-1/p} r$ for $2g = f_- + f_+$ with $f_+ \in W_+ \cap D$, $f_- \in (W_- \setminus W_0) \cap D$ and $||f_- - f_+|| = 2r$.

3. Proofs

PROOF OF THEOREM 1.4. We assume that $f_+ \in W_+ \cap D$ and $f_- \in (W_- \setminus W_0) \cap D$ are mappings from T into $E_- \cup E_+$ with $||f_- - f_+|| = 2r$ and with $f_+(t) \in E_+$ for almost every $t \in T$ and $f_-(t) \in E_- \setminus E_0$ for almost every $t \in T$, respectively. So, the segment $[f_-(t), f_+(t)]$ intersects the hyperplane Π , for almost every $t \in T$. Because of the convexity of $E_- \cup E_+$ the intersection $\Pi \cap [f_-(t), f_+(t)]$ lies in E_0 and by the assumption $f_-(t) \notin \Pi$, this intersection is a singleton. So, we define a mapping $f_0 : T \to E_0$ by setting $f_0(t) = \Pi \cap [f_-(t), f_+(t)]$, for almost every $t \in T$. Clearly,

$$|g(t) - f_0(t)|_B \le |f_-(t) - f_+(t)|_B/2$$

because g(t) is the middle point of the segment $[f_{-}(t), f_{+}(t)]$.

Define mappings $g_+: T \to E_+$ and $g_-: T \to E_-$ by setting

$$g_{+}(t) = \begin{cases} g(t) & \text{if } g(t) \in E_{+}, \\ f_{0}(t) & \text{if } g(t) \in E_{-} \setminus E_{0}, \end{cases}$$

and

$$g_{-}(t) = \begin{cases} g(t) & \text{if } g(t) \in E_{-} \setminus E_{0} \\ f_{0}(t) & \text{if } g(t) \in E_{+}. \end{cases}$$

ASSERTION 3.1. The mappings f_0 , g_+ , g_- are elements of $L_p(T, B)$.

By Assertion 3.1 we have $g_+ \in W_+ \subset W$ and $g_- \in W_- \subset W$. Thus

$$dist(g, W) \le \min\{\|g - g_+\|, \|g - g_-\|\}.$$

Let us estimate the right hand side of the inequality above:

Selection Theorem

$$\begin{split} \|g - g_+\|^p + \|g - g_-\|^p &= \int_T |g(t) - g_+(t)|_B^p \, d\mu + \int_T |g(t) - g_-(t)|_B^p \, d\mu \\ &= \int_{\{t|g(t) \in E_- \setminus E_0\}} |g(t) - f_0(t)|_B^p \, d\mu \\ &+ \int_{\{t|g(t) \in E_+\}} |g(t) - f_0(t)|_B^p \, d\mu \\ &= \int_T |g(t) - f_0(t)|_B^p \, d\mu \\ &\leq \int_T |f_-(t) - f_+(t)|_B^p / 2^p \, d\mu = \|f_- - f_+\|^p / 2^p = r^p. \end{split}$$

Hence

$$\min\{\|g - g_+\|, \|g - g_-\|\} \le (r^p/2)^{1/p} = 2^{-1/p}r.$$

This completes the proof of Theorem 1.4.

PROOF OF LEMMA 2.1. If $||z - z_0|| \leq (\beta - \alpha)r$, then

$$\operatorname{dist}(z, P) \le ||z - z_0|| + \operatorname{dist}(z_0, P) \le \beta r$$

by the triangle inequality. If $||z - z_0|| > (\beta - \alpha)r$, then z is βr -close to $x \in P$ or z is βr -close to $y \in P$.

PROOF OF LEMMA 2.2. The inclusion

$$\bigcup \{ [f_-, f_+] \mid f_+ \in W_+ \cap D, \ f_- \in (W_- \setminus W_0) \cap D \} \subset \operatorname{conv}(D \cap W)$$

is obvious. To prove the other inclusion, let us fix $f = \sum_{i=1}^{n} \lambda_i f_i$ with $\lambda_i > 0$ and $\sum_{i=1}^{n} \lambda_i = 1$, for some $n \in \mathbb{N}$ and for some $\{f_1, \ldots, f_n\} \in D \cap W$. If all f_1, \ldots, f_n are elements of $D \cap W_+$ then $f \in D \cap W_+$ and hence $f \in [f_-, f]$, for an arbitrary $f_- \in (W_- \setminus W_0) \cap D$. If $\{f_1, \ldots, f_k\} \subset D \cap W_+$, $\{f_{k+1}, \ldots, f_n\} \subset (W_- \setminus W_0) \cap D$ and k < n then

$$f = (\lambda_1 + \ldots + \lambda_k) \left(\frac{\lambda_1}{\lambda_1 + \ldots + \lambda_k} f_1 + \ldots + \frac{\lambda_k}{\lambda_1 + \ldots + \lambda_k} f_k \right) \\ + (\lambda_{k+1} + \ldots + \lambda_n) \left(\frac{\lambda_{k+1}}{\lambda_{k+1} + \ldots + \lambda_n} f_{k+1} + \ldots + \frac{\lambda_n}{\lambda_{k+1} + \ldots + \lambda_n} f_n \right) \\ = \lambda f_+ + (1 - \lambda) f_-$$

where $0 < \lambda < 1$ and $f_+ \in D \cap W_+$, $f_- \in D \cap (W_- \setminus W_0)$, by the convexity of D, W_+ and $(W_- \setminus W_0)$.

PROOF OF ASSERTION 3.1. The mapping $f_0: T \to E_0$ admits an analytic expression

$$f_0(t) = (1 - \lambda(t))f_{-}(t) + \lambda(t)f_{+}(t)$$

where

$$0 < \lambda(t) = \frac{c - \ell(f_{-}(t))}{\ell(f_{+}(t) - f_{-}(t))} \le 1.$$

411

But $f_+, f_- \in L_p(T, B)$ and $\ell : B \to \mathbb{R}$ is continuous. Hence $\lambda \in L_p(T, \mathbb{R})$ and thus $f_0 \in L_p(T, B)$.

Let $T_c = \{t \in T \mid \ell(g(t)) \geq c\}$. Then T_c is a μ -measurable subset of T, since $g \in L_p(T, B)$ and ℓ is continuous. So, the characteristic function κ_c of the set T_c is a simple measurable function. Therefore

$$g_+ = \kappa_c g + (1 - \kappa_c) f_0 \in L_p(T, B)$$

and

$$g_{-} = \kappa_c f_0 + (1 - \kappa_c)g \in L_p(T, B).$$

References

- A. BRESSAN AND G. COLOMBO, Extensions and selections of maps with decomposable values, Studia Math. 40 (1988), 69–86.
- [2] A. FRYSZKOWSKI, Continuous selections for a class of non-convex multi-valued maps, Studia Math. 76 (1983), 163–174.
- [3] V. V. GONCHAROV AND A. A. TOLSTONOGOV, Compatible continuous selectors of multivalued mappings with nonconvex values and their applications, Mat. Sb. 182 (1991), 946–949. (Russian)
- [4] F. HIAI AND H. UMEGAKI, Integrals, conditional expectations and martingales of multivalued functions, J. Math. Anal. 7 (1977), 149–182.
- [5] E. MICHAEL, Paraconvex sets, Math. Scand. 7 (1959), 372–376.
- C. OLECH, Decomposability as a substitute for convexity, Lecture Notes in Math. 1091, Springer-Verlag, Berlin, 1984, pp. 193–205.
- [7] D. REPOVŠ AND P. V. SEMENOV, Paraconvexity of graphs of continuous functions, Set-Valued Anal. 3 (1995), 23–32.
- [8] P. V. SEMENOV, On paraconvexity of star-like sets, Sibirsk. Mat. Zh. (to appear). (Russian)

Manuscript received February 3, 1996

DUŠAN REPOVŠ Institute of Mathematics, Physics and Mechanics University of Ljubljana P.O.B. 2964 1001 Ljubljana, SLOVENIA

E-mail address: dusan.repovs@uni-lj.si

PAVEL V. SEMENOV Moscow State Pedagogical University Ul. M. Pyrogovskaya 1 119882 Moscow, RUSSIA

 TMNA : Volume 8 - 1996 - N° 2