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On extending actions of groups
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Abstract. Problems of dense and closed extension of actions of compact
transformation groups are solved. The method developed in the paper is
applied to problems of extension of equivariant maps and of construction
of equivariant compactifications.
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§ 1. Introduction

Let a compact group G act on a space X. The diagram D of the form X p→X
i
↪→Y

is called admissible if p : X → X is the orbit projection and i is a topological
embedding of the orbit space X into a hereditarily paracompact space Y . We
say that

1) the problem of extending the action is solvable for the admissible diagram D if
there exists an equivariant embedding j : X ↪→ Y into a G-space Y (which is called
a solution of the problem of extending the action for the given diagram) covering i,
that is, the embedding j̃ : X ↪→ p(Y) of orbit spaces induced by j coincides with i
(in particular, p(Y) = Y );

2) the problem of extending the action (denoted briefly by PEA) is solvable if
there exists a solution of the PEA for each admissible diagram D , that is, the
diagram D can be involved in a commutative square diagram:

X
j
↪→ Y

p↓ ↓p
X

i
↪→ Y

3) the PEA is solvable for the class C if for each admissible diagram D such that
X, X and Y belong to C , there exists a solution of the PEA with Y ∈ C .

Note that the problem of extending the action is a part of the more general
problem of extension for complete preimages (see [1], [2]). The problem of extend-
ing actions of groups is naturally split into the closed PEA and the dense PEA
depending on the type of the embedding i. On the other hand, it is clear that the
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simultaneous solvability of the closed and dense PEAs implies the solvability of the
PEA in general.

Shchepin was the first to pose the closed problem of extending the action of
groups in view of the following fact established by him:

Proposition 1. Let G be a compact group. If the closed problem of extending
actions of groups is solvable for the class of metric G-spaces, then

(1) the orbit space of each metric G-A[N]E-space E is an A[N]E-space.

Proof. Let Z ←↩ A ϕ→ E be a partial map with Z ∈ M , where M is the class
of all metric G-spaces. We denote by A the fibrewise product Aϕ ×p E. Since
A × Z ∈ M , the hypothesis implies that the embedding A ↪→ Z is covered by

a closed G-embedding A ↪→ Z ∈M . The constructed partial G-map Z←↩ A
ϕ′

←↩ E ∈
G-A[N]E, where ϕ′ is parallel to ϕ, can be G-extended to Z (to a G-neighbourhood).
Passing to the orbit spaces we get the desired extension of ϕ.

As was shown in [3], the preservation of equivariant extensor properties by the
orbit functor implies the solvability of the closed PEA and so this problem obtains
the dual expression.

Proposition 2. Let G be a compact group. Then the validity of (1) implies the
solvability of the closed PEA for all metric G-spaces.

Proof. There exists by Theorem 18 an isovariant G-map f : X → TG ∈ G-AE. In
view of (1), TG = TG/G ∈ AE and therefore the partial map Y ←↩ X eα→ TG has an
extension α̂. It is easy to verify that the fibrewise product Ybα ×p TG is the desired
metric G-space Y.

Since property (1) was established in [3], [4] for arbitrary compact groups (in [5]
it was established for compact metric groups1), by now the closed PEA has been
solved in the class of metric spaces with the action of an arbitrary compact group.

The dense problem of extending actions of groups arises naturally in the theory of
equivariant compactifications and was first posed by Zambakhidze and Smirnov. It
turns out that the dense PEA is intimately connected with the existence of various
invariant metrics on a G-space.

Proposition 3. Let G be a compact group. The dense problem of extending the
action of groups is solvable in the class of separable metric G-spaces if and only if

(2) for each separable metric G-space X and each compatible metric d on the
orbit space X there exists a compatible invariant metric ρ on X such that
Fd = Feρ (here ρ̃([x], [x′]) = min{ρ(g ·x, g ·x′) | g ∈ G} is the induced metric
on X , and Fd,Feρ, . . . are the sets of all Cauchy sequences on X with respect
to the corresponding metrics).

Proof. We consider a metric compactum K containing the completion cdX of X
with respect to d. It is clear that Fd ⊂ Fδ, where δ is a metric on K.

Since the dense problem of extending actions of groups is solvable, the embedding
X ↪→ K is covered by a G-embedding X ↪→ K into a G-compactum K. Consider

1One should note the earlier approach of Jaworowski [6] for finite groups G < Sn, which is
applicable also to compact Lie groups [7].
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the invariant metric σ, which exists on K. It is clear that Feσ = Fδ ⊃ Fd, and the
invariant metric ρ(x, x′) = σ(x, x′) + d(p(x), p(x′)) on the space X is compatible
with its topology. We shall check that Fd = Feρ, where ρ̃ = σ̃ + d. Since d 6 ρ̃,
it follows that Feρ ⊂ Fd. The reverse embedding Fd ⊂ Feρ easily follows from the
embedding Fd ⊂ Feσ already obtained.

We prove the converse result. Let d′ be a metric on Y and d the restriction
of d′ to a dense subset X. By hypothesis there exists an invariant metric ρ on X
such that Fd = Feρ. Let cρX be the G-completion with respect to the metric ρ,
which is a separable metric G-space. It is easy to verify that cρX is naturally
homeomorphic to (cρX)/G. Since Fd ⊂ Feρ, Y naturally lies in ce%X = (c%X)/G.
We take the inverse image of Y with respect to the orbit projection p : c%X→ c%X/G
as a solution s : X ↪→ Y of the dense PEA.

By now the dense PEA has been solved for the class of metric spaces with action
of an arbitrary zero-dimensional compact group [8], [9]. The main aim of the article
is the direct proof of the following results giving an answer in the affirmative both
to the dense PEA and the closed PEA under maximally wide assumptions.

Theorem 1. The problem of extending the action of compact groups is solvable for
all admissible diagrams.

We note that for some nonmetrizable group G and metric spaces X and Y , the
equivariant embedding j : X ↪→ Y solving the PEA can be nonmetrizable. The
following result improves this defect.

Theorem 2. Let G be a compact group and X p→ X
i
↪→ Y a diagram such that all

orbits of X are metrizable, and also
(3) Y is stratifiable and the embedding i is closed ;

or
(4) Y ∈M .

Then there exist a metric G-space Z and an equivariant embedding j : X ↪→ Y into
a G-space Y ⊂ Y × Z, which is a solution of the PEA for this diagram.

In particular, Theorem 2, (3) implies the direct proof of the solvability of the
closed PEA both in the class of metrizable G-spaces and the class of stratifiable
G-spaces (since a countable product preserves the class of stratifiable spaces). We
can easily derive from Theorem 2, (4) the following facts on equivariant compacti-
fications for compact acting groups:

(5) if X is a metric separable G-space with dimX = k, then there exists an
equivariant compactification X ↪→ Y such that Y is a metric compactum
with dimY = k;

(6) if X is a metric G-space with dimX = k, then there exists an equivariant
completion X ↪→ Y with dimY = k.

We observe that the PEA ceases to be solvable in some simple situations. Let
us take X = (Con Z2)ω1 with the natural action of the simplest nontrivial group
G = Z2 and an arbitrary embedding i : X ↪→ Iω1 into a Tychonoff cube of uncount-
able weight ω1. Then the PEA is unsolvable for the diagram X p→ X

i
↪→ Iω1 .

Theorem 1 and the method developed for its proof admit various modifications.
We endow the set S of all solutions of the closed PEA for the admissible diagram
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D = (X p→ X
i
↪→ Y ) with the following partial order: s1 majorizes s2 (for brevity

s1 > s2), where {si : X ↪→ Yi} ⊂ S , if there exists a G-map h : Y1 → Y2 making
commutative the associated diagram: h ◦ s1 = s2 and such that h�X = IdX and
h̃ = IdY .

Theorem 3. Let G be a compact group. Then for each finite set of solutions
{si}ni=1 ⊂ S of the closed PEA there exists a solution s ∈ S such that s > si for
i 6 n.

Theorem 4. Let G be a compact group. Then for each admissible diagram D
there exists a solution s : X ↪→ Y of the closed PEA such that type Y > type X.
If G is a Lie group, then this solution s : X ↪→ Y can be chosen so that
type Y = type X ∪ {(G)}.

The proofs of Theorem 3 and Theorem 4 are omitted because of restrictions
on the volume of the article. In their turn, Theorems 1, 3 and 4 imply several
results of equivariant extensor theory (which, as can be shown, are equivalent to
the corresponding facts on extending the action).

Theorem 5. Let G be a compact group. If the stratifiable G-space X is an equiv-
ariant absolute extensor for the class of stratifiable spaces, then its orbit space X is
an absolute extensor for the class of stratifiable spaces.

In [7] it was also pointed out that the Whitehead-Borsuk-Hanner theorem for
stratifiable spaces [10] implies Theorem 5. Therefore there is a hope that the gap
in the Whitehead-Borsuk-Hanner theorem [10] communicated to us by Cauty can
be overcome.

Theorem 6. Let G be a compact group. If a metric G-space X is an equivariant
absolute extensor, then for any finite collection of G-extensions hi : Z → X of the
partial G-map M 3 Z ←↩ A f→ X there exists a G-extension h : Z → X of f such
that (Gh(z)) > (Ghi(z)) for all z ∈ Z and i.

Theorem 7. Let G be a compact group, X ∈ G-ANE and C ⊂ OrbG. Then
(7) XC ⊂ X is G-ANE,
(8) XC /G ⊂ X is ANE.

Theorem 7, (7) for a compact Lie group and a one-element collection C of
orbit types was proved before by Murayama [11]; Theorem 7, (8) for G = S1 and
X = expG was proved by Torunczyk and West [12]. The proofs of Theorems 3–7
will be published elsewhere.

In completion we give the result revealing the role of the set of extensor points
in the theory of G-extensors. We say that a G-embedding Y ↪→ X is equivariant
homotopy dense if there exists a G-homotopy F : X× [0, 1]→ X such that F0 = Id
and Ft(X) ⊂ Y for each t > 0.

Theorem 8 (on equivariant homotopy density). Let X be a metric G-ANE-space.
Then the subspace XE of all extensor points is equivariant homotopy dense in X.
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As an immediate consequence, we get the following result:

Theorem 9. Let X be a metric G-ANE-space. Then each G-subspace Y such that
XE ⊂ Y ⊂ X is G-ANE.

§ 2. Preliminary facts and results

All spaces (and maps) throughout that do not arise as a result of some construc-
tions are assumed to be hereditarily paracompact (respectively, continuous), and
all acting groups are assumed to be compact.

For B ⊂ A we use the standard notations: ClAB for the closure and IntAB for
the interior. We use the notation f �A for the restriction of the map f to A ⊂ X.
If the set A in question is clear, we shall simply omit the symbol A. If there is no
danger of ambiguity, we shall leave out the definitions of some concepts arising in
the natural manner.

An action of a compact group G on a space X is a homomorphism T : G→ Aut X
of G into the group Aut X of all autohomeomorphisms of X such that the map
G× X → X given by (g, x) 7→ T (g)(x) 
 g · x is continuous (here and throughout
the paper the sign 
 is used for the introduction of the new objects placed to the
left of it). A space X with a fixed action of G is called a G-space.

For any point x ∈ X the following subset Gx = {g ∈ G | g · x = x} is a closed
subgroup of G and is called the stabilizer of x. The orbit of x ∈ X is G(x) =
{g · x | g ∈ G} ⊂ X. The set of orbits is denoted by X 
 X/G, and the natural
map π : X → X, π(x) = G(x), is called the orbit projection. The orbit space of X
is the set X of orbits equipped with the quotient topology induced by π. (See [13]
for more details about G-spaces.)

A map f : X→ Y of G-spaces is called equivariant or a G-map if f(g·x) = g·f(x),
g ∈ G, x ∈ X. Each G-map f : X→ Y induces a map f̃ : X → Y of the orbit spaces
by the formula f̃(G(x)) = G(f(x)). An equivariant homeomorphism is called an
equimorphism. An equivariant map f : X→ Y is said to be isovariant if Gx = Gf(x)

for all x ∈ X.

Theorem 10 (an equimorphism criterion [14]). An isovariant map f : X → Y
inducing a homeomorphism f̃ : X → Y of the orbit spaces is an equimorphism.

Note that all G-spaces and G-maps generate a category denoted by G-TOP, or
EQUIV provided that the groupG is clear. If ‘∗∗∗’ is a known notion from nonequiv-
ariant topology, then ‘G-∗∗∗’ or ‘Equiv-∗∗∗’ means the corresponding equivariant
analogue.

A subset A ⊂ X is called invariant or a G-subset if G · A = A. For each closed
subgroup H < G (see the footnote2) we define the following sets:

XH = {x ∈ X | H · x = x}

(which is called an H-fixed-point set) and

XH = {x ∈ X | Gx = H}.
2Further we shall denote in this way a closed subgroup; the notation for a normal closed

subgroup is H / G.
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It is clear that

X(H) 

⋃{

XK | there is K ′ < G such that K ′ ⊇ H and K ′ is conjugate to K
}

coincides with G · XH , and

X(H) 

⋃{

XK | K < G and K is conjugate to H
}

coincides with G · XH .
The set of all conjugacy classes of closed subgroups of G is denoted by Orb(G)

and is called the set of orbit types. We endow Orb(G) with the following partial
order: (K) 6 (H) ⇐⇒ K ⊂ g−1 · H · g for some g ∈ G. We denote the set
{(Gx) | x ∈ X} ⊂ Orb(G) of orbit types of X by type X. If C ⊂ Orb(G), then
XC 


{
x | (Gx) > (H) for some (H) ∈ C

}
⊂ X.

We introduce several concepts related to extension ofG-maps partially defined on
G-spaces in some class K from the increasing chain: the class of metric G-spaces ⊂
the class of stratifiable G-spaces3 ⊂ the class of hereditarily paracompact G-spaces4.
A G-space X is called an absolute equivariant neighbourhood extensor for K ,
X ∈ G-ANE(K ), if each G-map ϕ : A→ X defined on a closed G-subset A of a G-
space Z ∈ K and called a partial G-map can be G-extended to a G-neighbourhood
U ⊂ Z of A, ϕ̂ : U→ X, ϕ̂�A = ϕ. If it is always possible to G-extend ϕ to U = Z,
then X is called an equivariant absolute extensor for K , X ∈ G-AE(K ). If the
acting group G is trivial (that is, no action on the spaces is considered), then these
notions are transformed into the notions of absolute [neighbourhood] extensors
for K , A[N]E(K ). Since we are mainly interested in equivariant absolute (neigh-
bourhood) extensors for the class of metric G-spaces, they will be briefly denoted by
G-A[N]E. Important examples of G-A[N]E-spaces are Banach G-spaces [15] and lin-
ear normed G-spaces (for compact Lie groups G) [11]. Important for us will be the
question whether a homogeneous space G/H belongs to the class of G-ANE-spaces.
It is known that G/H ∈ G-ANE if and only if G/H is a finite-dimensional locally
connected space. In particular, if G is a compact Lie group, then G/H ∈ G-ANE,
which is in fact equivalent to the slice theorem.

The following construction of the equivariant absolute extensor for an arbitrary
compact group G goes back to [16]. Recall that G acts on the space X = C(G, Y )
of all continuous maps endowed with the compact-open topology by the formula
(g · f)(h) = f(g−1 · h), where f ∈ C(G, Y ) and g, h ∈ G. If Y is metrizable, then
X is also metrizable.

Theorem 11. If a metric space Y is an AE-space for the class P of paracompact
spaces, then C(G, Y ) is a G-AE-space for P .

By [17] each Banach space B is an AE-space for the class of paracompact spaces.
Hence it follows by Theorem 11 that C(G,B) is G-AE for P.

A metric G-space X is called an equivariant absolute neighbourhood retract,
X ∈ G-ANR, if for each closed G-embedding of X into a metric G-space Z there

3A space X is stratifiable if there exists a family {fU : X → [0, 1] | U ⊂ X is an open subset}
of continuous functions such that f−1

U (0, 1] = U and fU 6 fV if and only if U ⊂ V . It is known
that each CW-complex is stratifiable.

4A space is called hereditarily paracompact if each subspace of it is paracompact (this is
equivalent to the paracompactness of each open subspace of it).
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exists a neighbourhood G-retraction r : U→ X, r ◦ r = r. If it is always possible to
choose a G-retraction r defined on U = Z, then X is called an equivariant absolute
retract, X ∈ G-AR.

Theorem 12 (on approximate G-extension of maps). Suppose that a compact
G-subspace X of the Euclidean G-space Rn is a G-ANE. Then for each cover
ω ∈ cov X and each G-map ϕ : A → X of a (not necessarily closed) G-subset A of
a hereditarily paracompact G-space Z there exists a G-map ψ : U → X defined on
an open G-set U containing A such that dist(ϕ,ψ�A) ≺ ω.

Proof. Since X ∈ G-ANE, there exists an equivariant retraction r′ : V′ → X defined
on a G-neighbourhood V′, X ⊂ V′ ⊂ Rn. It is clear that there exist a G-
neighbourhood V, X ⊂ V ⊂ V′, and ε > 0 such that N(X; ε) ⊂ V and also
{r(N(x; ε)) | x ∈ V} ≺ ω, where r 
 r′�V.

Lemma 1. For each map ψ : A → Rn defined on a subset A of a hereditarily
paracompact space Z there exists a map χ : U → Rn defined on an open subset U
containing A such that dist(χ�A, ψ) < ε.

Proof. From the hereditary paracompactness of Z it easily follows that there exists
a locally finite cover ω = {Wα} ∈ cov U of a neighbourhood U of A such that
diamψ(Wα ∩ A) < ε/3. Fix points rα ∈ ψ(Wα ∩ A) and a partition of unity
{λα : Wα → [0, 1]}α∈∆ subordinated to the cover ω. Then the required map χ is
given by the formula χ(z) =

∑
α∈∆ λα(z) · rα ∈ Rn.

There exists by Lemma 1 a map χ : W→ Rn defined on a G-neighbourhood W,
A ⊂ W ⊂ Z, such that dist(χ�A, ϕ) < ε (see the footnote5). In general the map χ
is not equivariant, but the continuous map θ : W→ Rn given by the formula

θ(z) =
∫
G

g−1 · χ(g · z) ∂µ,

where µ is a Haar measure on G, is already equivariant. Since ϕ(g ·z)=g ·ϕ(z) for all
z∈A and dist(χ�A, ϕ)<ε, it follows that dist(ϕ, θ�A)<ε. Hence θ(A)⊂N(X; ε)⊂V.

It is clear that U
θ−1(V) contains A, and r◦θ is the required G-map ψ : U→X.

The proof of the following metatheorem due to Palais [18] is based on the stabi-
lization of nested sequences of compact Lie groups.

Proposition 4. Let P(H) be a property that depends on a compact Lie group H .
Suppose that P(H) holds for the trivial group H = {e} and P(H) holds if P(K)
is true for each proper subgroup K < H . Then P(H) is true for all compact Lie
groups H .

By the fibrewise product of spaces C and B with respect to maps g : C → A and
f : B → A we mean the subset {(c, b) | g(c) = f(b)} ⊂ C ×B, which is denoted by
Cg ×f B. The projections of D = Cg ×f B onto the factors C and B are denoted
by f̌ : D → C and ǧ : D → B. The maps f̌ and ǧ are called the maps parallel to
f and g, respectively, and we write for brevity f̌ ‖ f and ǧ ‖ g. Note that the
map f ◦ ǧ = g ◦ f̌ : D → A is the product of g and f in the category TOPA of all

5 In view of the closedness of the orbit projection π : Z → Z one can insert between A and an
arbitrary neighbourhood U an invariant neighbourhood W, A ⊂ W ⊂ U .
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spaces over A. The most important example of the fibrewise product in the theory
of compact transformation groups is supplied by isovariant maps.

Proposition 5. Let h : Y → X be an isovariant map and h̃ : Y → X the map of
the orbit spaces induced by h. Then Y is the fibrewise product Yeh ×πX X; moreover,
h and h̃, as well as the orbit projections πY and πX are parallel.

We denote by D a commutative square diagram in the category EQUIV with
closed A ⊂ Z:

A ϕ−→ X
∩ ↓f
Z ψ−→ Y

We shall say that
1) the G-map ϕ is a partial lifting of the G-map ψ with respect to f ;
2) the problem of extension of a partial lifting for D is globally (locally) solvable

if there exists a G-map ϕ̂ : Z → X (ϕ̂ : U → X, where U ⊂ Z is a neighbourhood
of A), extending ϕ such that f ◦ ϕ̂ = ψ (f ◦ ϕ̂ = ψ�U);

3) ϕ̂ : Z→ X [ϕ̂ : U→ X] is a global (local) lifting of the G-map ψ.
If Z = Y, then the problem of global extension of a partial lifting for D is

transformed into the problem of global extension of a partial section of f .

Definition 1. A morphism f : X → Y in the category EQUIV is called equivari-
antly soft (locally equivariantly soft) if for each commutative square diagram D in
the category EQUIV the problem of extending a partial lifting is globally (locally)
solvable.

Finally, we give a sufficient condition under which the topology is generated by
subspaces. Let the topological space (D, τD) be represented as a union A ∪ B of
its subspaces. Consider the weak topology τw on D generated by A and B: U ∈ τw
if and only if A ∩ U ⊂ A and B ∩ U ⊂ B are open. We say that the subspaces A
and B generate the topology of D if the weak topology τw coincides with τD. It is
easy to check that the subspaces A and B generate the topology of D if A and B
are simultaneously closed or simultaneously open.

We say that A′ and B′ ⊂ D are separated if B ∩ClD A′ = A′ ∩ClD B′ = ∅. By
[19], Theorem 2.1.7 the separation of A′ and B′ ⊂ D is equivalent to the following:
A′ ⊂ IntD(D \ B′) and B′ ⊂ IntD(D \ A′). Apparently, the following sufficient
condition to generate the topology of D by its subspaces is known to experts.

Proposition 6. If A \ B and B \ A are separated, then the subspaces A and B
generate the topology of D.

The converse is valid for metric space D: let a ∈ A \ B and let the sequence
{xn} ⊂ B \A converge to a. Then D \{xn} is open in both subspaces but not open
in D.

In this paper Proposition 6 will be used in the following situation.

Theorem 13. Let D = Y ∪Q∪U , moreover, let Q and U be open subspaces of D.
Then Y ∪ Q and U ∪ U? generate the topology of D, where U? 
 ClD(U) ∩ Y is
the set of points adherent to U lying in Y .
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Proof. Since U ⊂ D is open, it follows that (U ∪ U?) \ (Y ∪Q) ⊂ U . Therefore, it
is sufficient to show that E 
 (Y ∪Q) \ (U ∪U?) is contained in IntD(Y ∪Q). It is
easy to check that Y \ (U ∪ U?) = Y \ ClD U . Therefore,

E = (Y \ ClD U) ∪ (Q \ (U ∪ U?)) ⊂ (D \ ClD U) ∪Q.

Hence E is contained in the open set (D\ClD U)∪Q, which obviously lies in Y ∪Q.

§ 3. P -orbit projection

Let P C G, G/P = H, and let π : G → H, π(g) = g · P be the natural epimor-
phism. On the G-space X we consider the equivalence relation x ∼ x′⇐⇒ x′ ∈ P ·x.
Then the quotient space X/P defined by this relation coincides with {P ·x | x ∈ X}.
It is clear that Y = X/P is an H-space: (g · P ) · (P · x) = P · (g · x). If y = P · x,
then the stabilizer Hy coincides with Gx · P . The quotient map f : X → X/P is
called a P -orbit projection. If P = G, then f coincides with the orbit projection
p : X → X/G. Since the composite of the P -orbit projection f and the H-orbit
projection of Y is perfect, f is a perfect surjection and has the following properties:

(1) f(gx) = π(g) · f(x) for all x ∈ X and g ∈ G;
(2) π(Gx) = Hf(x) for all x ∈ X;
(3) if f(x) = f(x′), then x and x′ belong to the same G-orbit.

The following fact shows that these properties characterize a P -orbit projection
completely.

Proposition 7. Let π : G→H be an epimorphism of compact groups and P =Kerπ.
A perfect surjection f : X → Y from a G-space X onto an H-space Y is a P -orbit
projection if and only if f has properties (1)–(3).

Proof. We consider the P -orbit projection ϕ : X → X/P = Z and define the map
θ : Z→ Y by the formula θ(P ·x) = f(x). It follows by (1) that θ is well defined and
equivariant. Since f is perfect, θ is a perfect surjection and therefore the induced
map θ̃ of orbit spaces is also perfect and surjective.

Let z = P · x and z′ = P · x′. If θ(z) = θ(z′), then f(x) = f(x′). In view of (3),
x and x′ lie on the same G-orbit. Therefore, z and z′ lie on the same G/P -orbit.
Hence θ̃ is a homeomorphism.

The map θ preserves the orbit type of points as on the one hand Hθ(z) =Hf(x)

and on the other hand Hz =Gx · P = π(Gx). By (2) we have Hθ(z) =Hz. There-
fore, θ is an isovariant map inducing on the orbit spaces a homeomorphism. By
Theorem 10 the map θ is an equimorphism.

For a compact group G we consider the Lie series {Pα / G} of normal closed
subgroups indexed by ordinals α < ω (see [20]). This means that

(5) P1 =G, Pβ<Pα for all α<β, Pα/Pα+1 is a compact Lie group for all α<ω,
Pα=

⋂
{P ′

α | α′<α} for each limit ordinal α, and also
⋂
{Pα | α<ω}={e}.

In this case G is the limit lim←−{G/Pα, ϕ
β
α} of the inverse system of quotient groups

{G/Pα} and natural epimorphisms ϕβα : G/Pβ → G/Pα, α < β. The known result
of [21], Ch. 2, § 6, Theorem 11 can be slightly generalized.
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Lemma 2. Let fβα : Xβ → Xα, α < β, be the natural projection from Xβ = X/Pβ in
Xα=X/Pα. Then fβα is a Pα/Pβ-orbit projection and the map f : X→ lim←−{Xα, f

β
α}

defined by the formula f(x) = {Pα · x} is an equimorphism.

The proof of Lemma 2 consists in a straightforward application of the equimor-
phism criterion (Theorem 10).

The converse result is also valid.

Lemma 3. Let {Pα / G} be the Lie series, P βα , α < β, the kernel of the homo-
morphism ϕβα, and gβα : Zβ → Zα a P βα -orbit projection with gβα ◦ g

γ
β = gγα for all

α < β < γ. Then Z = lim←−{Zα, gβα} is a G-space and Zα = Z/Pα.

§ 4. Extensor subgroups

Definition 2. A closed subgroup H < G of a compact group G is called a P-
subgroup if the homogeneous spaceG/H is finite-dimensional and locally connected.

Pontryagin [20] proved that H < G is a P-subgroup if and only if one of the
following properties holds:

(1) there exists a normal subgroup P /G such that P < H and G/P is a compact
Lie group;

(2) G/H is a topological manifold.
Therefore, G/H is metrizable for each P-subgroup H < G. It is known [20]

that each compact group contains arbitrarily small normal P-subgroups. Hence
the following fact is valid.

Proposition 8. Let G be a compact group and X a G-space. Then
(3) for each neighbourhood O(H) ⊂ G of the subgroup H < G there exists

a P-subgroup H ′ < G such that H ⊂ H ′ ⊂ O(H);
(4) for each neighbourhood O(x) of the point x ∈ X there exists a normal

P-subgroup P / G such that the P -orbit projection p : X → X/P 
 Y has
a small preimage of y 
 P · x, p−1(y) ⊂ O(x). Moreover, there exists
a neighbourhood W ⊂ X/P of y such that p−1(W ) ⊂ O(x).

Property (3) easily implies that
(5) G/H is metrizable if and only if H < G is an intersection of countably many

P-subgroups.
If H < G is a P-subgroup, then, in view of (1) and the slice theorem [13],

it follows that G/H is G-ANR. The proof of the converse fact is based on the
existence of a metric G-space, in which there is a nowhere dense orbit equimorphic
to G/H such that the stabilizers of the remaining points are P-subgroups. Hence
it follows that

(6) H < G is a P-subgroup if and only if G/H is a metric G-ANE.
This equivalence (6) expressing the main property of P-subgroups justifies their

alternative name of extensor subgroups. We also draw the reader’s attention to
a result in [22], from which it follows that

(7) H < G is a P-subgroup if and only if G/H is locally contractible.
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We list the basic properties of extensor subgroups. One can show that the
subgroup H < G is extensor if and only if G admits an orthogonal action on Rn
such that G/H is equimorphic to the orbit of a point. It is clear that each subgroup
H < G in a compact Lie group G as well as each clopen subgroup H < G are
extensor subgroups.

It easily follows by (1) that the property of being an extensor subgroup is inher-
ited after a passage to the larger subgroup. As is well-known, a compact group is
a Lie group if and only if it contains no small subgroups [20]. Hence it follows that
the quotient group G/(P1 ∩ P2), Pi / G, is a Lie group if and only if each G/Pi is
a Lie group.

Proposition 9. The intersection of finitely many extensor subgroups is an exten-
sor subgroup.

This proposition cannot be improved: if an extensor subgroup H < G is an
intersection of a family {Hα < G} of extensor subgroups, then H is an intersection
of finitely many subgroups Hαi .

Since each closed subgroup of a compact Lie group is again a compact Lie
group [20], it easily follows that

(8) if H < G is an extensor subgroup and K < G, then H ∩ K < K is an
extensor subgroup.

The proof of the next fact follows from the definition of P-subgroups and
Hurewicz’s theorem on closed maps that lower dimension [23].

Proposition 10. Let K < L < G and K < L be an extensor subgroup. Then
K < G is an extensor subgroup if and only if L < G is an extensor subgroup.

If G is not a compact Lie group, then by (7) we obtain G /∈ ANE. Let X ∈ ANE
be a free G-space (which exists). It is easy to see that each invariant open set
of it is not homeomorphic to a product G× U , and therefore in this case the slice
theorem fails [24]. But if we weaken the requirement on a slice, then one can assert
the following.

Theorem 14 (on an approximate slice of G-space [25], [26]). Let a compact group
G act on a G-space X. Then for each neighbourhood O(x) of x ∈ X there exists
a neighbourhood V = V (e) of the unit e ∈ G, an extensor subgroup K<G, Gx<K ,
and an invariant neighbourhood U = U(x) admitting a slice map α : U→ G/K such
that x ∈ α−1(V · [K]) ⊂ O(x).

Proof. Let P / G be a normal P-subgroup and W a neighbourhood of y = P · x
taken from Proposition 8, (4). Since Y = X/P is naturally endowed with an action
of the compact Lie group G′ = G/P and G′

y = Gx · [P ] < G′, there exists by
the slice theorem for compact Lie groups a neighbourhood V (e) and a slice map
α : V → G′/G′

y
∼= G/(Gx · P ) defined on a G′-neighbourhood V of the orbit G′(y)

such that α−1(V (e) · [G′
y]) ⊂ W . We can easily check that K 
 Gx · P < G is

an extensor subgroup and the composite α ◦ p : p−1(V) → G/K ∈ G-ANE is the
desired slice map.

Definition 3. A conjugacy class (H) is said to be extensor if H < G is an extensor
subgroup. We denote by XE the set of all extensor points of X, that is, of points
x ∈ X for which Gx < G is an extensor subgroup.
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We say that a G-subspace Y ⊂ X is G-dense if YH ⊂ XH is dense for each
subgroup H < G. In [25] with the help of Theorem 14 on an approximate slice it
was shown that

(9) XE ⊂ X is G-dense if and only if X is a G-ANE for the class of metric
G-spaces with zero-dimensional orbit space, X ∈ G-ANE(0);

(10) a normed linear G-space L is a G-AE if and only if LE ⊂ L is G-dense (the
equivariant Dugundji theorem).

There exists an example of a normed linear G-space L /∈ G-AE for which LE ⊂ L
is dense (but not G-dense).

The following results known for compact Lie groups G (see [14], Example 7.6.4)
can be extended to a more general setting.

Theorem 15. Let H and K be subgroups of a compact group G such that H < K
is an extensor subgroup. Then the natural projection p : G/K → G/H is locally
equivariantly soft.

§ 5. The tube structure on orbit projections

We consider the epimorphism π : G→ H of compact groups with kernel P being
a Lie group. Let K < G be an extensor subgroup and π(K) 
 L < H. Since
K < π−1(L) < G, it follows by Proposition 10 that

(1) K < π−1L and π−1(L) < G are extensor subgroups,
and hence

(2) G/K ∈ G-ANE and G/π−1(L) ∼= H/L ∈ H-ANE.
Let κ : G/K → H/L be the composite of the natural epimorphism α : G/K →
G/π−1L, which is generated by the embedding K < π−1L, and the isomorphism
β : G/π−1L→ H/L. By (1) and Theorem 15 we have

(3) the maps α : G/K → G/π−1L and κ = β ◦ α : G/K → H/L are locally
equivariantly soft.

Since κ(g · [K]) = π(g) · [L] and π(K) = L, it follows that
(4) κ(g · [K]) = [L] if and only if g ∈ P ·K.
We say that the P -orbit projection f : X→ Y has a κ-tube structure generated

by the slice maps ϕ : X→ G/K ∈ G-ANE and ψ : Y→ H/L ∈ H-ANE if they close
the following diagram A up to a commutative diagram: κ ◦ ϕ = ψ ◦ f ,

X ϕ→ G/K
f↓ ↓κ
Y ψ→ H/L

The κ-tube structure on f is said to be nontrivial if κ is not a bijection. This is
equivalent to K either being a proper subgroup of π−1L or P \K 6= ∅.

It is clear that X = G×K S and Y = H ×L T, where S = ϕ−1([K]) is a K-space
and T = ψ−1([L]) is an L-space. In view of the commutativity κ ◦ ϕ = ψ ◦ f it can
be easily seen that f(S) ⊂ T.

Let y ∈ T, x ∈ f−1(y) and ϕ(x) = g · K. Then [L] = ψ(y) = ψ(f(x)) =
κ(ϕ(x)) = κ(g ·K). By (4), g ∈ P ·K. Now it is easy to check that x′ 
 g−1 ·x ∈ S
and f(x′) = y. Hence the following result is proved.

Proposition 11. f(S) = T and the map f� is perfect.
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Proposition 12. Let f : X → Y be a P -orbit projection. If x /∈ XP , then the
restriction of f to the orbit G(x) has a nontrivial tube structure.

Proof. Since P \ Gx 6= ∅, there exists by Proposition 8, (3) an extensor subgroup
K<G such that P \K 6=∅ and Gx<K. It is clear that Gf(x) coincides with Gx ·P .
The embeddings of subgroups Gx < K < K · P and Gx < Gf(x) < K · P naturally
generate G-maps

ϕ : G(x)→ G/K, ψ : G(f(x))→ G/(K · P ) and κ : G/K → G/(K · P ),

which generate on the P -orbit projection f� : G(x) → G(f(x)) a nontrivial tube
structure.

The following two Lemmas 4 and 5 show that if the P -orbit projection f has
a nontrivial tube structure, then f is generated by a Q-orbit projection with the
simpler group G. They explain the origin of the term ‘a tube structure on a map’.

Lemma 4. Let f have a nontrivial tube structure given by an epimorphism κ. Then
f(S) = T and the map f� : S→ T is a Q-orbit projection, where Q is the kernel of
the epimorphism π′ = π� : K → L and a proper subgroup of P .

Proof. Recall that f� : S→ T is a perfect surjection. Let us verify properties (1)–(3)
in Proposition 7 for f�: property (1) and a part of (3) obviously hold. Property (2)
holds since for s ∈ S we have Ks = Gs and Lf(s) = Hf(s).

Since K � π−1L, P is not contained in K. But Q = Kerπ′ coincides with K ∩P
and hence is a proper subgroup of P . Thus, Q < P , but Q 6= P .

We now consider the converse situation: there exist an epimorphism π′ : K → L
of compact groups and a Q-orbit projection f ′ : S→ T, where S is a K-space, T is
an L-space and Q = Kerπ′. Let K < G and L < H be extensor subgroups and
π : G→H an epimorphism extending π′. We denote by κ : G/K → H/L the com-
posite of the natural epimorphisms α : G/K → G/π−1L and β : G/π−1L → H/L.
Then the formula

f([g, s]K) = [π(g), f ′(s)]L

correctly defines the map f = π × f ′ : G×K S → H ×L T. It is straightforward to
check that if f ′ is perfect, then so is f .

Lemma 5. The map f : G×K S→ H ×L T is a P -orbit projection for P = Kerπ.
Furthermore, the natural slice maps ϕ : G ×K S → G/K , ψ : H ×L T → H/L,
and also the epimorphism κ : G/K → H/L define a tube structure on the P -orbit
projection f , that is, κ closes the following diagram up to a commutative one:
κ ◦ ϕ = ψ ◦ f .

Proof. Let x = [g, s]K and x′ = [g′, s′]K ∈ G ×K S. If f(x) = f(x′), then π(g′) =
π(g) · l−1 and f ′(s′) = l · f ′(s) for l ∈ L.

Since π′ is an epimorphism, l = π(k), k ∈ K, and therefore f ′(s′) = π(k)·f ′(s) =
f ′(k ·s). Since f ′ is a Q-orbit projection, s′ and k ·s lie on the same K-orbit. Hence
it is easily deduced that x′ and x lie on the same G-orbit.

All the other characterization properties for P -orbit projections from Proposi-
tion 7 are checked straightforwardly and we leave this to the reader.
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§ 6. Theorem on the slice of a G-map

Assertions on extension of tube structure on maps play an important role in
inductive arguments. Their proofs essentially use the equivariant softness ofG-maps
of homogeneous spaces (see Theorem 15).

Theorem 16 (on extension of tube structure on maps). Let B be a commutative
diagram

X = Cl X
j
↪→ W

f↓ ↓ bf
Y = Cl Y i

↪→ Z

in which f : X → Y and f̂ : W → Z are P -orbit projections. If f has a κ-tube
structure generated by the slice maps ϕ : X → G/K and ψ : Y → H/L, then there
exist invariant neighbourhoods B, Y ⊂ B ⊂ Z, and A 
 f̂−1(B), X ⊂ A ⊂ W,
such that the P -orbit projection f̂� : A→ B has a κ-tube structure generated by the
slice maps ϕ̂ : A → G/K and ψ̂ : B → H/L, which are G-extensions of ϕ and ψ,
respectively.

Proof. Let A be a diagram that generates the κ-tube structure on f . Because the
subgroup K < G is extensor, as was mentioned before, G admits an orthogonal
action on RN such that G/K is equimorphic to an orbit in RN (note also that
RN ∈ G-AE; see [13]). Hence we can assume without loss of generality that

(1) G/K is an orbit in H/L×RN ; moreover, κ coincides with the restriction of
the projection pr1 : H/L× RN → H/L to G/K.

Since by (3) from the previous section the map κ : G/K → H/L is locally equivari-
antly soft, there exists a fibrewise equivariant retraction r : V→ G/K of an invari-
ant neighbourhood V ⊂ H/L × RN of the orbit G/K, that is, pr1 ◦ r = pr1 (see
also Theorem 15). In view of H/L ∈ H-ANE, there exists an H-map ψ̃ : B′ → H/L

given on an invariant neighbourhood B′, Y ⊂ B′ ⊂ Z, such that ψ̃ = extψ.
We represent the map ϕ : X→G/K ↪→H/L× RN as (ϕ1, ϕ2). Since RN ∈G-AE,

there exists a G-map χ : W→ RN extending ϕ2 : X→ RN .
Let A′ 
 f̂−1(B′). Consider the G-map σ : A′ → H/L× RN given by the for-

mula σ = (ψ̃ ◦ f̂) × χ. It is clear that A 
 σ−1(V) and B 
 f̂(A) are invariant
neighbourhoods of X and Y, respectively. One can check using the fibrewise retrac-
tion σ that ϕ̂ 
 r ◦ σ : A→ G/K and ψ̂ 
 ψ̃�B generate a κ-tube structure on f̂�A,
that is, κ ◦ ϕ̂ = f̂� ◦ ψ̂.

Consider now the situation when the embeddings j and i from Theorem 16 are
not necessarily closed. In this case the conclusion of the theorem remains true,
provided that one requires no matching of the present tube structures and the
constructed ones.

Theorem 17 (on expansion of tube structure on a map). Let B be a commutative
diagram

X
j
↪→ W

f↓ ↓ bf
Y i

↪→ Z
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in which f : X → Y and f̂ : W → Z are P -orbit projections for a compact Lie
group P . If f has a nontrivial tube structure, then there exist invariant neigh-
bourhoods B, Y ⊂ B ⊂ Z, and A 
 f̂−1(B), X ⊂ A ⊂ W, such that the P -orbit
projection f̂� : A→ B also has a nontrivial tube structure.

Proof. In the main, this proceeds along the lines of Theorem 16 on extension of tube
structure on maps if we apply Theorem 12 on approximate G-extension of maps
where appropriate. Let us consider a commutative diagram A ,

X ϕ−→ G/K
f↓ ↓κ
Y ψ−→ H/L

generating a nontrivial tube structure on f . We shall assume that condition (1)
holds. Fix the fibrewise (with respect to pr1) equivariant retraction r : V → G/K
of some invariant neighbourhood V ⊂ H/L× RN of the orbit G/K, pr1 ◦ r = pr1.
Since H/L ∈ H-ANE, there exists by Theorem 12 an H-map ψ̃ : B′ → H/L given
on an invariant neighbourhood B′, Y ⊂ B′ ⊂ Z, such that ψ and ψ̃�Y are arbitrarily
close.

We represent the map ϕ : X→ G/K ↪→ H/L× RN in the diagonal form (ϕ1, ϕ2).
Since RN ∈ G-AE, there exists by Theorem 12 a G-map χ : A′ → RN given on an
invariant neighbourhood A′, X ⊂ A′ ⊂ W, such that ϕ2 and χ�X are arbitrarily
close. Without loss of generality we can assume that A′ = f̂−1(B′).

Now consider theG-map σ : A′ → H/L× RN given by the formula σ = (ψ̃◦f̂)×χ.
If the approximating maps ψ̃ and χ constructed above were sufficiently close to ψ
and ϕ2, respectively, then the image σ(A′) lies in V. It is clear that A 
 σ−1(V) and
B 
 f̂(A) are invariant neighbourhoods of X and Y, respectively. We assert that
ϕ̃ 
 r ◦ σ : A → G/K and ψ̃�B set a nontrivial tube structure on f̂�A, that is,
κ ◦ ϕ̃ = f̂� ◦ ψ̃�B.

Corollary 1. Suppose that a P -orbit projection f : X → Y for a compact Lie
group P has a nontrivial tube structure and Y is contained in Z. Then there exists
a commutative diagram A generating a nontrivial tube structure on f in which ψ
has an H-extension onto some invariant neighbourhood of Y.

For the proof of Corollary 1 one should repeat the reasoning from Theorem 17
ignoring references to the G-map χ : A′ → RN . In more detail, consider the G-map
σ1 : X → H/L× RN given by the formula σ1 : X → H/L× RN . If the constructed
approximating map ψ̃ is sufficiently close to ψ, then the image σ1(X) lies in V. We
assert that ϕ1 
 r ◦ σ1 : X → G/K and ψ1 
 ψ̃�X set a nontrivial tube structure
on f , that is, κ ◦ ϕ1 = f̂ ◦ ψ1.

§ 7. Theorem on equivariant homotopic density

We defer the proof of Theorem 8 till the end of the section because we require
some auxiliary facts. For a compact group G we denote by T the discrete union
of all homogeneous spaces G/H ∈ G-ANE. It is clear that the metric cone Con T
over T has extensor type and its orbit space is the cone over a discrete space.
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Theorem 18. Let X be a metric G-subspace of a G-space Y whose orbit space Y is
metrizable. Then for each nested family {Vn ⊂ Y}∞n=1 of invariant neighbourhoods
of X there exists a G-map f : Y→ TG, where TG = (Con T)ω , such that

(a) the restriction of f to X is isovariant ;
(b) f

(
Y \

⋂
{Vn | n > 1}

)
⊂ (TG)E .

Proof. We can assume without loss of generality that X and Y contain no isolated
points. Otherwise one should pass from X and Y to X×Gω and Y×Gω, respectively.

Since Y = Y/G is metrizable, there exists a family B = {Wµ}µ∈M of open
subsets of Y intersecting X such that

(1) B =
⋃∞
n=1 Bn, Bn = {Wµ}µ∈Mn⊂M is a discrete family,

∐∞
n=1Mn = M ;

(2) the body of Bn is contained in Vn for each n;
(3) the restriction B�X generates a basis of X.
We denote by Wµ π−1Wµ, where π : Y → Y is the orbit projection. Since the

slices of Wµ (for instance, trivial) exist, the quantity

i(µ) 
 inf
{
diam(X ∩ ϕ−1(g · [H])) |

ϕ : Wµ → G/H is the slice map, g ∈ G
}

> 0

is well defined (here we take the diameter with respect to a compatible invariant
metric %, which exists on Y by [18]). In view of the assumption made above, i(µ)>0.
It follows from the invariance of σ that both X ∩ ϕ−1(g · [H]) = X ∩ g · ϕ−1([H])
and X ∩ ϕ−1([H]) have equal diameters. Hence it is sufficient to take g = e in the
definition of i(µ). Of particular interest is the slice map ϕµ : Wµ → G/Hµ, µ ∈Mn

for which diam
(
X ∩ ϕ−1

µ ([Hµ])
)
< j(µ) 
 2i(µ). It is easy to see that ϕµ has the

following important property.

Lemma 6. If µ ∈Mn, then diam(X∩ϕ−1
µ ([Hµ])) < 2 diam(X∩ϕ−1([H])) for any

other slice map ϕ : Wµ → G/H .

We consider the G-map

ψµ 
 Conϕµ : Y→ ConG/Hµ,

which coincides with (ϕµ, ξµ) on Wµ and with the vertex {∗} on the complement
to Wµ (here ξµ : Y→ [0, 1] is a function constant on orbits such that ξ−1

µ (0)=Y\Wµ).
It is clear that ψ−1

µ (G/Hµ × (0, 1]) = Wµ and Gϕµ(y) = Gψµ(y), y ∈Wµ.
Since the family Bn is discrete, it is easy to see that the formulae ψn�Wµ

= ψµ
for µ ∈ Mn and ψn�Y\

S
{Wµ|µ∈Mn} = {∗} define consistently a continuous G-map

ψn : Y → Con T. It is clear that ψ−1
n (∗) = Y \

⋃
{Wµ | µ ∈ Mn}. We shall show

that the diagonal product η 
 ∆ψn : Y→ (Con T)ω = TG is the desired G-map.
By Theorem 14 on an approximate slice, for each x ∈ X and α > 0 there

exists a G-map r : U(x) → G/H ∈ G-ANE of some neighbourhood U(x) ⊂ Y for
which r−1([H]) has diameter less than α/2. Since by (3) the restriction B�X is
a basis of X, there exists an index µ ∈ Mn such that x ∈ Wµ ⊂ U(x). From
diam(r−1([H])) < α/2 it follows that i(µ) < α/2, and hence by Lemma 6 we have

(c) diam(X ∩ ϕ−1
µ ([Hµ])) < i(µ) < α.
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Therefore, diam(X ∩ ϕ−1
µ (g · [Hµ])) < α for all g ∈ G. The existence of slice maps

{ϕµi
: Wµi

→ G/Hµi
}i>1,µi∈Mni

such that x ∈ ϕ−1
µi

(ai) ⊂Wµi
for all i > 1, where

ai 
 ϕµi
(x), follows from the above, and also

(d) {diamϕ−1
µi

(ai)} → 0.
Since Gai

= Gϕµi
(x) = Gψµi

(x) ⊃ Gη(x) ⊃ Gx, it follows that Gx ⊂
⋂
{Gai

| i > 1}.
To prove that the stabilizers of x and η(x) are equal, it is sufficient to establish the
reverse inclusion

⋂
{Gai

| i > 1} ⊂ Gx. If g ∈
⋂
{Gai

| i > 1}, then g · x ∈ ϕ−1
µi

(ai)
for all i > 1, and by virtue of (d), x and g · x coincide. Hence g ∈ Gx.

Finally, we check (b). If y 6∈ Vn, then y 6∈ Vn+m. It follows from (2) that all coor-
dinates of η(y) apart from the first n coincide with the vertex {∗}. Hence Gη(y) is
the intersection of finitely many extensor subgroups, that is, Gη(y) is an extensor
subgroup (Proposition 9).

Theorem 18 implies the following important results on the structure of solutions
of the PEA, which in turn with the help of Theorem 1 enables one to deduce
Theorem 2, (4).

Proposition 13. Let s′ : X ↪→ Y′ be a solution of the PEA for an admissible dia-
gram D . Then

(4) if X is a closed subset of the metric space Y′, then there exists a solution
s : X ↪→ Y of the PEA for D such that s′ > s and Y \ X ⊂ YE ;

(5) if X and Y are metrizable, then there exists a solution s : X ↪→ Y ∈ M of
the PEA for D such that s′ > s.

Proof. By Theorem 18 there exists a G-map f : Y′ → TG such that f�X is isovariant;
moreover, in the case of (4), f(Y′ \X) ⊂ (TG)E . We consider the fibrewise product
Y 
 Yf ×p TG ∈M , where p : TG → TG/G is the orbit projection.

Since f�X is isovariant, it follows that X ⊂ Y. It is easy to check that s : X ↪→ Y
covers X ↪→ Y , and the natural G-map h : Y′ → Y, h(y′) = (p(y′), f(y′)), makes
the diagram commutative: h ◦ s′ = s and also h̃ = IdY . It is clear that in the case
of (4), Y \ X ⊂ YE .

Let Z ↪→ A f→ X be a partial G-map. As an easy application of Proposition 13
to the solution s : A ↪→ Z of the closed PEA for the diagram A p→ A ↪→ Z, we
obtain the following.

Proposition 14. For each partial G-map Z ←↩ A f→ X ∈ G-AE there exists
a G-extension f̂ : Z → X such that f̂(Z \ A) ⊂ XE . A similar result holds for
G-ANE-spaces.

Proof of Theorem 8. We apply Proposition 14 to the partial G-map

X× [0, 1] ↪→ X× {0} Id→ X ∈ G-AE.

The case X ∈ G-ANE is similarly proved.

§ 8. Problem of extension of P -orbit projections

We treat the problem of extending the action in the general context. Let f : X→Y
be a P -orbit projection for the kernel P of the epimorphism π : G→ H of compact
groups, and i : Y ↪→ Z an arbitrary H-embedding of Y into the H-space Z, in which
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each open invariant subset is paracompact. The resulting diagram X f→ Y i
↪→ Z

is called H-admissible. It is clear that the induced diagram X pY◦f−→ Y
ei
↪→ Z is

admissible in the previous sense. We say that
(1) the generalized problem on extending the action (GPEA) is solvable for the

H-admissible diagram X f→ Y i
↪→ Z if there exists a G-embedding j : X ↪→W

into a G-space W and a P -orbit projection f̂ : W→ Z such that f̂ ◦ j = i◦f ;
(2) the generalized problem on extending the action is locally solvable for the

H-admissible diagram X f→ Y i
↪→ Z if it is solvable for some H-admissible

diagram X f→ Y i
↪→ R, where Y ⊂ Int R ⊂ Z;

(3) the generalized problem on extending the action is solvable for P -orbit pro-

jections if the GPEA is solvable for each H-admissible diagram X f→ Y i
↪→ Z.

As will further be shown, the main result, Theorem 1, is reduced to the following
key theorem on the solvability of the generalized problem on extending the action.

Theorem 19. The generalized problem on extending the action is solvable for
P -orbit projections, provided that the kernel P is a compact Lie group.

We observe that Theorems 1 and 19 coincide in the case of a compact Lie group
G = P . First, we consider the simplest cases of Theorem 19 carrying over its
complete proof to the next section.

Lemma 7. The generalized problem on extending the action for each H-admissible
diagram X f→ Y i

↪→ Z is solvable, provided that f is a P -orbit projection and i is an
open H-embedding.

Hence it easily follows that
(4) if the generalized problem on extending the action is locally solvable for the

H-admissible diagram X f→ Y i
↪→ Z, then the GPEA is solvable for this

diagram.

Proof. We shall construct the G-space W in such a manner that W \ X = Z \ Y.
With this aim in view, we set W 
 X t (Z \ Y). The basis of W is generated by
all open sets in X and by sets Õ = f−1(O∩Y)t(O\Y), where O ⊂ Z is an arbitrary
open set. The action of G on W coincides with that of G on X, and it is given on
Z \ Y by the formula g · y = π(g) · y, y ∈ Z \ Y. The continuity of the action is
easily checked as well as the fact that the map f̂ : W→ Z, which coincides with f
on X and with Id on Z \ Y, is a P -orbit projection extending f .

Let X f→ Y i
↪→ Z be an H-admissible diagram. We note that A = f−1(f(A)) for

all A ⊂ X, and also Gx = P ·Gx = π−1(π(Gx)) if P < Gx. Hence it follows by the
perfectness of f that

(5) f�XP : XP → f(XP ) is an equimorphism of closed subsets of X and Y.
It is clear that for X′ 
 X\XP , Z′ 
 Z\ClZ(f(XP )) and Y′ 
 Y∩Z′ = Y\f(XP )

the following holds:
(6) (X′)P = ∅ and the map f� : X′ → Y′ is a P -orbit projection.
The following assertion reduces the investigation of the generalized problem on

extending the action to the case of the absence of P -fixed-point sets in X.
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Lemma 8. If the generalized problem on extending the action for all H-admissible
diagrams with empty P -fixed-point sets is solvable, then the GPEA is solvable for
all H-admissible diagrams X f→ Y i

↪→ Z with XP 6= ∅.

Proof. Since Z ′ is hereditarily paracompact, the diagram X′ f�→ Y′ i′

↪→ Z′ is admis-
sible. Since (X′)P = ∅, in view of the hypothesis of the lemma, the GPEA for
this diagram is solvable. Therefore there exist a G-embedding j′ : X′ ↪→ W′ into
a G-space W′ and a P -orbit projection f̂ : W′ → Z′ such that f̂ ◦ j′ = i′ ◦ f�. We
apply Lemma 7 to the natural H-embedding i′′ : Z′ ↪→ Z, which is open: the GPEA

for the diagram W′ bf→ Z′ i
′′

↪→ Z is solvable. Therefore the GPEA is solvable for the
initial diagram.

Now we explain the reduction of Theorem 1 to Theorem 19.

Proposition 15. The validity of Theorem 19 implies the validity of Theorem 1.

Proof. Let {Pα / G} be a Lie series of G, Xα 
 X/Pα (see the notations in
Lemma 2). Since P1 = G and X1 = X, the embedding i : X ↪→ Y can be
regarded as the G/P1-embedding i1 : X1 ↪→ Y1, where Y1 
 Y is regarded as
a G/P1-space. Using the line of reasoning by transfinite induction and using The-
orem 19 repeatedly (since Pα/Pα+1 is a compact Lie group), one can construct
G/Pα-embeddings iα : Xα ↪→ Yα into the G/Pα-space Yα and Pα+1

α -orbit projec-
tions f̂α+1

α : Yα+1 → Yα such that f̂α+1 ◦ iα+1 = iα ◦ fα for all α < ω. Then
the required G-space Y is lim←−{Yα, f̂

β
α} and X = lim←−{Xα, f

β
α} lies in Y in a natural

manner.

We conclude this section by giving a result on gluing solutions of the GPEA,
which will play an important role in performing the transfinite induction in the
final part of the paper.

Theorem 20. Let T1 and T2 ⊂ T be H-spaces which generate the topology of the
H-space T, let f1 : W1 → T1 and f2 : W2 → T2 be P -orbit projections. Suppose that
there exists a G-homeomorphism h : (f1)−1(T0)→ (f2)−1(T0), where T0 
 T1∩T2,
such that f2 ◦ h = f1. Then there exists a solution s : W1 ↪→ W of the GPEA for
the H-admissible diagram W1

f1→ T1 ↪→ T.

Proof. It is clear that the equivalence relation ≈ on the discrete union W1 tW2,
nontrivial classes of which are pairs {t1, t2 | t2 = h(t1), t1 ∈ (f1)−1(T0)}, is invari-
ant with respect to the action of G; the quotient topology on the quotient space
W 
 (W1 tW2)/ ≈ coincides with the weak topology generated by W1 and W2,
which naturally lie in W.

Since the map presenting the action of G on W2 is perfect, it follows that for each
compactum K ⊂ G and for each neighbourhood U , K · F ⊂ U , where F ⊂ W2,
there exists a neighbourhood O(F ) ⊂ U such that K ·O(F ) ⊂ U . Hence it easily
follows that a continuous action of G on W is given in a consistent manner by the
formulae (g, [t1]) 7→ [g · t1] for t1 ∈ W1 and (g, [t2]) 7→ [g · t2] for t2 ∈ W2. The
following result obtained by a straightforward verification completes the proof of
the theorem.
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Lemma 9. The orbit space W/P coincides with T equipped with the weak topology
generated by T1 and T2 ⊂ T.

§ 9. The proof of Theorem 19

The reasoning will proceed by induction on the compact Lie group P by the use
of the Palais metatheorem (Proposition 4). If |P | = 1, then π is an isomorphism
that trivializes the situation under consideration. We suppose now that for each
proper subgroup Q < P the GPEA for each Q-orbit projection is solvable and show
that it is solvable for each P -orbit projection f : X→ Y. By Lemma 8 it is sufficient
to study the G-space X without a P -fixed-point set, XP = ∅.

First we consider the case of the P -orbit projection f having a nontrivial tube
structure.

Lemma 10. If f has a nontrivial tube structure, then the GPEA is solvable for
each H-admissible diagram X f→ Y i

↪→ Z.

Proof. Consider the slice maps ϕ : X → G/K and ψ : Y → H/L from the commu-
tative diagram A which generate a nontrivial tube structure on f . By Corollary 1
one can assume that ψ has an H-extension ψ̂ : U → H/L in some invariant neigh-
bourhood U,Y ⊂ U ⊂ Z.

By Lemma 4 the map f� : S = ϕ−1[K] → T = ψ−1[L] is a Q-orbit projection
for the proper compact group Q < P . In view of the induction hypothesis, the
GPEA is solvable for Q-orbit projections, and so it is solvable for the diagram
S f→ T ↪→ T′ 
 ψ̂−1[L], which is L-admissible since T′ is equivariantly hereditarily
paracompact. Hence there exist a K-embedding j′ : S ↪→ S′ into a K-space S′ and
a Q-orbit projection f ′ : S′ → T′ such that f ′ ◦ j′ = i ◦ f �.

Next, by Lemma 5 the map f̂ = π × f ′ : G×K S′ → H ×L T′ = U is a P -orbit
projection and, as is easy to see, f̂ solves the GPEA for the H-admissible diagram
X f→ Y i

↪→ U. The application of Lemma 7 completes the proof of the lemma for

the diagram G×K S′
bf→ H ×L T′ = U ↪→ Z with open embedding U ↪→ Z.

The last case of the proof of Theorem 19 consists of the consideration of a P -orbit
projection f : X→ Y with XP = ∅ and H-embedding Y i

↪→ Z.

Lemma 11. There exist a neighbourhood E, Y ⊂ E ⊂ Z, and a locally finite H-
cover σ ∈ cov E of it consisting of open subsets {Fγ ⊂ E}γ∈Γ such that Fγ ∩Y 6= ∅
for each γ ∈ Γ and also

(1) the map gγ 
f� : Vγ 
f−1(F?γ)→F?γ has a nontrivial tube structure, where
F?γ is the set of points adherent to Fγ lying in Y, that is, F?γ = ClE(Fγ) ∩Y.

Proof. Since XP = ∅, Proposition 12 implies that for each x ∈ X, the restriction
of f onto the orbit G(x) has a nontrivial tube structure. Hence it follows by
Theorem 16 on the extension of a slice that there exists a locally finite open H-cover
ω = {Uα} ∈ cov Y such that

(1) each P -orbit projection f� : f−1(Uα)→ Uα has a nontrivial tube structure.
Let ν be a family of open H-sets of Z whose restriction to Y coincides with ω.

Since Z is hereditarily paracompact, the body ∪ν of the family ν is paracompact.
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Hence there exists a locally finite open H-cover σ′ of ∪ν the closure of which
refines ν. It is clear that σ 
 {F ∈ σ′ | F ∩ Y 6= ∅} and E 
 ∪σ are as required.

Assume for the moment that the GPEA is solvable for the diagram X f→ Y i
↪→ E,

which is evidently H-admissible. Then the GPEA for the H-admissible diagram
X f→ Y i

↪→ Z will be solvable by Lemma 7 and the openness of E ⊂ Z. Hence
without loss of generality we can assume that E = Z, which we do in what follows.

The further reasoning will proceed with the help of a new induction, namely,
a transfinite induction, for which we well order the set Γ by indexing the elements of
{Fγ}. Without loss of generality we can assume that Γ has the maximal element ω,
which is not a limit ordinal. We set for a limit ordinal γ, Qγ 


⋃
{Fγ′ |γ′ < γ},

otherwise we set Qγ 

⋃
{Fγ′ |γ′ 6 γ}. It is obvious that Z = Qω is the body of

a locally finite increasing system of open subsets {Qγ}, moreover Qγ′ ∪ Fγ = Qγ

for γ = γ′ + 1. One notes an important consequence of local finiteness of the cover
σ = {Fγ}:

(3) if γ is a limit ordinal, then the collection {Y ∪ Qγ′ | γ′ < γ} generates the
topology of Y∪Qγ , that is, U ⊂ Y∪Qγ is open if and only if (Y∪Qγ′)∩U
is open in Y ∪Qγ′ for all γ′ < γ.

With the help of transfinite induction, for all γ ∈ Γ we construct a solution jγ : X ↪→
Wγ

bfγ−→ Y ∪Qγ of the GPEA for the H-admissible diagram X f→ Y
iγ
↪→ Y ∪Qγ (see

the footnote6) such that
(4) Wγ1 ⊂ Wγ2 and f̂γ2�Wγ1

= f̂γ1 for all γ1 < γ2, that is, f̂γ2 is a solution

of the GPEA for the H-admissible diagram Wγ1

bfγ1−→ Y ∪Qγ1 ↪→ Y ∪Qγ2 .
Since Y ∪ Qω = Z, the suggested plan guarantees the solvability of the GPEA

for the admissible diagram X f→ Y i
↪→ Z, which leads to the completion of the proof

of Theorem 19.
The basis of the inductive argument is easily established with the help of

Lemma 10.

Lemma 12. The GPEA for the diagram X f→ Y
iγ0
↪→ Y ∪Qγ0 is solvable.

Proof. By Lemmas 10 and 11 the GPEA for the H-admissible diagram D1 =
{Vγ0

gγ0−→ F?γ0 ↪→ F?γ0 ∪ Fγ0} is solvable. Since the GPEA for the H-admissible

diagram Vγ0
gγ0−→ F?γ0 ∩Y ↪→ Y is evidently solvable and the H-subspaces F?γ0 ∪ Fγ0

and Y generate the topology of the H-space Y ∪ Qγ0 = Y ∪ Fγ0 , it follows by

Theorem 20 that the GPEA for the H-admissible diagram X f→ Y ↪→ Y ∪ Fγ0 is
solvable.

The inductive step is based on the following proposition.

Lemma 13. For each γ′ ∈ Γ, γ′ < ω the GPEA for the H-admissible diagram

Wγ′

bfγ′
→ Y ∪Qγ′ ↪→ Y ∪Qγ , where γ 
 γ′ + 1 ∈ Γ, is solvable.

Proof. By Lemma 7 it is sufficient to show that the GPEA for the given diagram is
locally solvable, that is, there exists a neighbourhood T,Y∪Qγ′⊂T⊂Y∪Qγ , such

6That is, bfγ ◦ jγ = i� ◦ f , where bfγ is the P -orbit projection.
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that the H-admissible diagram Wγ′

bfγ′
→ Y ∪Qγ′ ↪→ T is solvable. First of all, we

draw attention to the fact that the P -orbit projection gγ : Vγ → F?γ . has a nontrivial
tube structure. Theorem 16 implies

(5) the existence of an invariant neighbourhood S, F?γ ⊂ S ⊂ Y∪Qγ′ , such that
the P -orbit projection h 
 f̂γ′� : (f̂γ′)−1(S) → S also has a nontrivial tube
structure.

Denoting (Fγ ∪ F?γ) ∩ S by A for brevity we consider the H-admissible diagram

h−1(A)
h�−→A i

↪→T2 
(Fγ∪F?γ)∩ Ŝ, where Ŝ ⊂ Y∪Qγ′∪Fγ is a neighbourhood of F?γ
such that Ŝ∩ (Y∪Qγ′) = S. Since by (5) the map h� : h−1(A)→ A has a nontrivial
tube structure, Lemma 10 implies the solvability of the GPEA for the considered
H-admissible diagram, that is, there exist a G-embedding j : h−1(A) ↪→ W2 into
the G-space W2 and a P -orbit projection f2 : W2 → T2 such that f2 ◦ j = i ◦ h�.

It is easily checked that F?γ = F?γ ∩ Ŝ = (Fγ ∩ Ŝ)?. Therefore, T2 = (Fγ ∪ F?γ)∩ Ŝ
has the form U∪U?, where U 
 Fγ ∩ Ŝ is open in T 
 Y∪Qγ′ ∪U. Furthermore,
since (Y∪Qγ)\T = Fγ \ (Ŝ∪Qγ′), T is a neighbourhood of Y∪Qγ′ lying in Y∪Qγ .
In view of Theorem 13 on topology generating, the H-subspaces T1 
 Y ∪ Qγ′

and T2 generate the topology of the H-space T.
It is clear that T0 
 T1 ∩ T2 coincides with S. Since the H-orbit projections f2

and f1 
 f̂γ′ : W1 
 Wγ′ → T1 are identical on (f̂γ′)−1(S), Theorem 20 can be
applied: there exists a solution s : W1 ↪→ W of the GPEA for the H-admissible
diagram W1

f1→ T1 ↪→ T.

Now let γ ∈ Γ be a limit ordinal. We consider an increasing family ofG-subspaces
{Wγ′ ⊂Wγ′′}γ′6γ′′<γ and a system of agreeing P -orbit projections

{f̂γ′ : Wγ′ → Y ∪Qγ′}γ′<γ .

Next we take Wγ to be equal to
⋃
{Wγ′ | γ′ < γ} and f̂γ : Wγ → Y ∪Qγ to be

equal to f̂γ′ on Wγ′ for all γ′ < γ. In view of condition (3) on topology generating,
the map f̂γ : Wγ → Y ∪Qγ is continuous. It is easily checked that X ↪→ Wγ and

f̂γ solve the GPEA for the H-admissible diagram X f→ Y ↪→ Y ∪ Qγ′ , so that
Wγ′ ⊂Wγ and f̂γ′ = f̂γ�Wγ′ for all γ′ < γ.

§ 10. Proof of Theorem 2, (3)

By Theorem 1 there exists a solution s′ : X ↪→ Y′ covering X ↪→ Y . Since Y is
paracompact and p : Y′ → Y is perfect, Y′ is paracompact too.

Since X is stratifiable, there exists a continuous one-to-one map from X onto
a metric space [27]. Hence there exists a continuous map ϕ : X→ B into a Banach
space B such that

(1) its restriction to each orbit is an embedding.
In view of (1), the map ψ : X → Z 
 C(G,B) given by the formula ψ(x)(g) =
ϕ(g−1x), g ∈ G, x ∈ X, is isovariant. By Theorem 11, since Z = C(G,B) is G-ANE
for the class of paracompact spaces and Y′ is paracompact, there exists a G-map
ψ̂ : Y′ → Z extending ψ.
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We consider the fibrewise product Y 
 Yθ ×π Z ⊂ Y × Z, where π : Z → Z

is the orbit projection and θ : Y → Z is the map induced by ψ̂. The G-space Y is
stratifiable as a subset of the product of two stratifiable spaces. Since ψ is isovariant,
theG-space X is naturally contained in theG-space Y, s : X ↪→ Y, moreover, s covers
X ↪→ Y . Finally, the natural G-map h : Y′ → Y, h(y′) = (p(y′), ψ̂(y′)), has the
properties h ◦ s′ = s and h̃ = IdY .

The authors are grateful to V. L. Timokhovich for several useful consultations
on general topology.
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