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Groups of obstructions to surgery

and splitting for a manifold pair

Yu. V. Muranov and D. Repovš

Abstract. The surgery obstruction groups LP∗ of manifold pairs are studied. An
algebraic version of these groups for squares of antistructures of a special form
equipped with decorations is considered. The squares of antistructures in ques-
tion are natural generalizations of squares of fundamental groups that occur in the
splitting problem for a one-sided submanifold of codimension 1 in the case when
the fundamental group of the submanifold is mapped epimorphically onto the fun-
damental group of the manifold. New connections between the groups LP∗, the
Novikov–Wall groups, and the splitting obstruction groups are established.

Bibliography: 19 titles.

§ 1. Introduction

Let f : M → Y be a normal map of degree one of smooth (piecewise linear,
topological) manifolds of dimension n + q, and let X ⊂ Y be a submanifold of
dimension n. Then the groups of obstructions to surgery LPn(F ) for the manifold
pair are defined. These groups depend functorially on the push-out square F of
fundamental groups with orientation

π1(∂U) −→ π1(Y \X)y y
π1(X) −→ π1(Y ),

(1.1)

where U is a tubular neighbourhood of X and all the maps of fundamental groups
are induced by the natural inclusions (see [1] and [2]). The groups LPn(F ) are
independent of the category of manifolds (smooth, piecewise linear, topological),
as are the Novikov–Wall groups and almost all the natural maps considered in
this paper. For this reason we shall use the piecewise linear vocabulary in what
follows, pointing out distinctions from other categories when necessary. For n > 5
we have the obstruction σ(f,M) ∈ LPn(F ), which is trivial if and only if there
exists a map g such that g is transversal to X, lies in the class of the normal
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cobordism of f , g−1(X) = N , and g : (M ;N,M \N) → (Y ;X,Y \X) is a simple
homotopy equivalence of triples of spaces. If n 6 4, then the condition σ(f,M) = 0
is necessary but not sufficient for the existence of a simple homotopy equivalence
of triples.

Let f : M → Y be a normal map that is already a simple homotopy equivalence
(in this case f is called a homotopy triangulation). Then there arises a problem of
splitting along the submanifold X, with obstruction groups LSn(F ). In this case
the obstruction to splitting θ(f,M) ∈ LSn(F ) is zero if (and only if, for n > 5)
there exists a simple homotopy equivalence of triples g lying in the homotopy class
of the map f , transversal to X, and such that g−1(X) = N (see [1] and [2]).

The groups LS∗ and LP∗ are closely related to the surgery obstruction groups
L∗(π1(Y )) and L∗(π1(X)), where π1 is the fundamental group of the corresponding
manifold. These groups occur naturally in many geometric problems. Apparently,
the deepest relation between these spaces can be described by the following Levine
braid of exact sequences (see [1]):

−→ Ln+q(C) −→ Ln+q(D) −→ LSn−1(F ) −→
↗ ↘ ↗ ↘ ↗ ↘

LPn(F ) Ln+q(C → D)
↘ ↗ ↘ ↗ ↘ ↗

−→ LSn(F ) −→ Ln(B) −→ Ln+q−1(C) −→,
(1.2)

where A = π1(∂U), B = π1(X), C = π1(Y \X), and D = π1(Y ). The diagram (1.2)
was constructed by Wall as an implement for calculating the L-groups and the
natural maps involved. Later on, however, this diagram proved to be very efficient
in geometric problems as well.

Let hT (Y ) be the set of equivalence classes of homotopy triangulations of a
manifold Y . Two homotopy triangulations fi : Mi → Y are equivalent if there exists
a piecewise linear homeomorphism h : M1 → M2 such that the maps f2 and f1h
are homotopic. Each element (f,M) of the set hT (Y ) defines an obstruction to
splitting θ(f,M) ∈ LSn(F ). Hence there exists a natural map hT (Y ) → LSn(F ).
We also consider the action λ of the group Ln+q+1(π1(Y )) on the set hT (Y ). This
is a map in the Sullivan exact sequence

Ln+q+1(π1(Y ))
λ−→ hT (Y ) −→ [Y,G/PL] −→ Ln+q(π1(Y )) . (1.3)

We now define a composite map

r : Ln+q+1(π1(Y ))→ hT (Y )→ LSn(F ),

using the action λ of the group on the trivial triangulation.
If X is a one-sided submanifold of codimension 1 and the horizontal maps in the

square F are isomorphisms (such pairs of manifolds are called Browder–Livesay
pairs), then the splitting obstruction groups LSn(F ) are the Browder–Livesay
groups LNn(π1(Y \ X) → π1(Y )) (see [3] and [4]). In this case we have also
an isomorphism LPn(F ) ∼= Ln+1(i!), where i! : Ln(π1(X)) → Ln(π1(∂U)) is the
transfer map, and the map r is called the Browder–Livesay invariant (see [5]).
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This map is a group homomorphism in the diagram (1.2). If r(x) 6= 0 for an
element x ∈ Ln+q+1(π1(Y )), then it follows from our description that the action
of x on the set hT (Y ) is non-trivial. If r(x) 6= 0 then the element x cannot be
realized by a normal map of closed manifolds according to [5].

We can regard the groups LPn(F ) as ‘dual’ in a certain sense to the LSn(F ),
since (1.2) includes the long exact sequence

−→ LPn+1 −→ Ln+q+1(π1(Y )) −→ LSn(F ) −→ .

The concept of the Browder–Livesay invariant has been developed in two direc-
tions. Based on the diagram (1.2) for the Browder–Livesay pairs, Kharshiladze [6]
defined iterated Browder–Livesay invariants, which proved sufficient for the solu-
tion of the realization problem in the case of elementary Abelian 2-groups with an
arbitrary orientation (see [6]). However, already in the case of finite 2-groups, the
definitive results cannot be obtained using these methods (see [7]). There exists
another approach to the realization problem (see [8]) which has allowed one to
obtain more complete results in the oriented case.

On the other hand, a stronger (than r) generalized Browder–Livesay invariant
was algebraically defined in [9] and [10]. This invariant is the homomorphism
Ln+1(π1(Y )) → LSn−1(F ) for a one-sided submanifold in the case when the hori-
zontal maps in the square F are epimorphisms. Following [9], we call such a square
a geometric diagram. Deep relations between the groups LSn(F ), the Wall groups,
and the Browder–Livesay groups were established for this case in [11] (see also [12]).
These relations enable one, in particular, to generalize the groups LS∗(F ) for geo-
metric diagrams F to the case of squares of antistructures equipped with decorations
(see [11]).

The aim of this paper is to investigate the groups LP∗ of obstructions to surgery
for pairs of manifolds and to construct an algebraic version of these groups for
geometric diagrams of antistructures equipped with decorations, which are natural
generalizations of geometric diagrams of groups (see [11]). We establish here new
relations between the groups LP∗, the Novikov–Wall groups, and the splitting
obstruction groups. We must point out that the groups LP with decorations defined
here are compatible with the earlier defined groups LS equipped with decorations
(see [11]), so that we have diagram (1.2), also equipped with decorations this time
(Theorem 4.2).

Several results of § 3 were announced in [12]. At the beginning of each section
we describe briefly its contents.

§ 2. LP∗LP∗LP∗ groups for a Browder–Livesay pair

We consider a Browder–Livesay pair of manifolds. That is, we assume that we
have a one-sided submanifold of codimension 1 and that the horizontal maps in
the square F are isomorphisms. In this case we have an algebraic version of
diagram (1.2) constructed by Ranicki in [13] for the quadratic extension of anti-
structures (see also [14]). In [15], there is a description of the conditions on
decorations ensuring that there exists a corresponding diagram of Novikov–Wall
groups (in particular, of relative L-groups) equipped with decorations.
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In this section we mainly consider a Browder–Livesay pair and give preliminary
algebraic material concerning the groups LP∗ of obstructions to surgery for pairs
of manifolds and the splitting problem for this pair. Since the groups LP∗ coincide
in this case with the relative groups for the transfer map (see below), we can in a
natural way introduce the relative groups for the LP∗. Using the methods of [15] we
prove Theorem 2.1, which describes the diagram of relative groups of obstructions
to surgery for pairs of manifolds.

In this paper, we use the concepts of an antistructure (R,α, u), a quadratic exten-
sion of antistructures, and of the decorated Novikov–Wall groups LXn (R,α, u). The
necessary definitions are available in [11], [13], [15], and [16]. We shall simply
write Ln(R) if the type of antistructure under consideration is clear from the con-
text. If a subgroup X ⊂ K1(R) is a decoration, then we assume that it is invariant
with respect to the involution induced by α. We recall that for two decorations X
and Y , X ⊂ Y ⊂ K1(R), we have the Rothenberg exact sequence (see [16])

−→ LXn (R) −→ LYn (R) −→ Hn(Y/X) −→, (2.1)

where H∗ is the Tate cohomology.
Let i: (R,α, u)→(S, α, u) be a quadratic extension of antistructures, and let (ρ,a)

be a structure on R (see [13]). Let γ be the automorphism of the ring S over R
described by the formula γ(x + yt) = (x − yt), x, y ∈ R. The automorphism ρ
extends to the ring S according to the formula ρ(x+ yt) = t(x+ yt)t−1, x, y ∈ R.
We have another antistructure, (S, α̃, ũ), on S, where α̃ = ργα and ũ = −tα(t−1).
Since ũ ∈ R and the ring R is α̃-invariant, the antistructure (R, α̃, ũ) is well defined.
The quadratic extension of antistructures (R, α̃, ũ) → (S, α̃, ũ) coincides with i as
a ring inclusion.

Let X ⊂ K1(R) and Y ⊂ K1(S) be α- and α̃-invariant subgroups such that

i∗(X) ⊂ Y, i!(Y ) ⊂ X, (2.2)

where i∗ is the induced map and i! is the transfer map. We set R̃ = (R, α̃, ũ)

and S̃ = (S, α̃, ũ); let i!− : LYn (S, γα, u)→ LXn (R,α, u) be the transfer map, and let

i∗ : LXn (R)→ LYn (S) be the induced map (see [13]).
Then (see [13]–[15]) we have the Levine braid

−→ LXn (R)
i∗−→ LYn (S)

i!t−1

−→ LXn−2(R̃)
ti∗−→

↗ ↘ ↗ ↘ ↗ ↘
LY,Xn (i!−) LX,Yn (i∗)

↘ ↗ ↘ ↗ ↘ ↗
→ LXn−1(R̃)

ti∗−→ LYn−1(S̃)
i!−→ LXn−1(R) −→,

(2.3)

where the LY,Xn (i!−) and LX,Yn (i∗) are the relative groups (see [2]).
We now consider the inclusion i : π → G of index 2 of groups with orientation that

corresponds to the right vertical column in the square F related to the Browder–
Livesay pair. Let w : G→ {±1} be the orientation homomorphism, and let t ∈ G\π.
Then

LN2n(π → G) ∼= LU2n(Zπ, α,−w(t)t−2), (2.4)
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where α(x) = txt−1 is an anti-automorphism on the ring Zπ, and U is the sub-
group of K1(Zπ) generated by the elements ±g, g ∈ π (see [17]). (We recall

that the bar denotes the standard involution
∑
agg =

∑
w(g)agg

−1.) In odd
dimensions one must consider the quotient of the right-hand side of (2.4)

modulo the subgroup Z/2 generated by the automorphism

(
0 1

±w(t)t−2 0

)
.

Diagram (1.2) is isomorphic in this case to diagram (2.3) defined for the
quadratic extension i : (Zπ,−, 1) → (ZG,−, 1) of antistructures equipped with
the decorations U (see [18]). In particular, we have the isomorphism

LPn(F ) ∼= Ln+1(i!−),

where i!− : Ln(ZG,−, 1)→ Ln(Zπ,−, 1).
Thus, if i : (R,α, u)→ (S, α, u) is a quadratic extension of antistructures and if

conditions (2.2) on decorations are satisfied, then the groups LY,Xn (i!−) are natural
generalizations of the groups of obstructions to surgery for manifold pairs in the

Browder–Livesay case. We denote these groups by LPY,Xn−1 (Φ). Here Φ is a com-
mutative square of antistructures in which the vertical maps are the extension i
and the horizontal maps are isomorphisms. We do not specify the decorations in
question if they are clear from the context. We recall (see [13] and [14]) that we

have the isomorphism LY,Xn (i!−) ∼= LY,Xn−1(̃i!−), where ĩ!− is the transfer map

ĩ!− : (S, γα̃, ũ)→ (R, α̃, ũ).

We now consider a commutative square Ψ of antistructures

(R,α, u)
f−→ (R, β, v)yi yj

(S, α, u)
g−→ (Q, β, v),

(2.5)

which defines a quadratic extension g of the morphism f of antistructures (see [15]).
Assume that the subgroups X ⊂ K1(R), Z ⊂ K1(P ), Y ⊂ K1(S), W ⊂ K1(Q)

are invariant with respect to the two corresponding involutions and

i∗(X) ⊂ Y, j∗(Z) ⊂W, f∗(X) ⊂ Z,
g∗(Y ) ⊂W, i!(Y ) ⊂ X, j!(W ) ⊂ Z.

(2.6)

Let Φ′ be a square of antistructures containing two isomorphic vertical morphisms j.
Under these assumptions (see [2], [13]), there exist naturally defined relative groups
LP∗(f, g) fitting into the exact sequence

−→ LPY,Xn (Φ) −→ LPW,Zn (Φ′) −→ LPn(f, g) −→ . (2.7)

It follows from [15] that if conditions (2.6) are satisfied, then we have
diagram (2.3) for the relative L-groups of the horizontal maps in diagram (2.5).
This diagram involves also the groups LP ∗(f, g).
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Remark. We can define the groups LP ∗(f, g) in a natural way also as the relative
groups of the transfer map i!rel of the relative groups

LY,W∗
(
(S, γα, u)→ (Q, γβ, v)

)
−→ LX,Z∗

(
(R,α, u)→ (P, β, v)

)
,

This follows easily from the commutative diagram for the transfer maps in (2.5).

Assume that the horizontal maps in the square (2.5) also define a quadratic
extension j of i. Let τ ∈ P ⊂ Q be an element generating these extensions. In a
similar way to the construction of the morphism of antistructures ‘with tildes’
for the quadratic extension i, we can construct the commutative square of anti-
structures

(R,α, u)
f−→ (P, β, v)yi yj

(S, α, u)
g−→ (Q, β, v),

(2.8)

where the vertical and the horizontal maps are quadratic extensions again. Let Φ be
the square of antistructures in which the two vertical columns are the same as the
left-hand column in the square (2.8), and the horizontal maps are isomorphisms. In
the same way, starting from the right-hand column in (2.8) we define a square Φ′.

Theorem 2.1. Assume that the horizontal maps in the square (2.5) define a quad-
ratic extension and that the decorations X, Z, Y , and W satisfy conditions (2.6).
Then we have the following Levine braid :

−→ LPY,Xn (Φ)
(f,g)∗−→ LPW,Zn (Φ′) −→ LPY,Xn−2(Φ) −→

↗ ↘ ↗ ↘ ↗ ↘
∆(f, g)! ∆(f, g)∗

↘ ↗ ↘ ↗ ↘ ↗
−→ LPY,Xn−1(Φ)

τ(f,g)∗−→ LPW,Zn−1(Φ′) −→ LPY,Xn−1(Φ) −→,

(2.9)

where ∆(f, g)! and ∆(f, g)∗ are the corresponding relative groups.

Proof. We consider the diagram (2.3) for the quadratic extensions f and

gγ : (S, γα, u)→ (Q, γβ, v),

where γ(t) = −t, γ
∣∣
R

and γ
∣∣
P

are the identity maps. Since these diagrams are
natural, the vertical maps in (2.5) and (2.8) define the transfer map from the
diagram for the quadratic extension gγ into the diagram for f . From now on, we
can repeat almost word for word the proof of Theorem 2 in [15]. All the maps in
the indicated diagrams and the transfer map of the diagrams can be realized on the
spectral level (see [19]). The cofibres of the transfer maps between the diagrams
are spectra, the homotopy groups of these spectra give us diagram (2.9), and the
sequences in this diagram are exact since the squares of the spectra are pull-backs
(see [15]), which proves the theorem.
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§ 3. Groups LP∗LP∗LP∗ for geometric diagrams of groups

In this section we construct Levine braids connecting the groups LP∗ with the
Novikov–Wall groups for geometric diagrams of groups. We shall also define the
groups LP∗ for squares of antistructures (2.5) in which the horizontal maps are
epimorphisms. Such squares are natural generalizations of geometric diagrams of
groups, and the groups that we introduce keep all the algebraic properties of the
surgery obstruction groups for manifold pairs.

We now denote by Ψ a commutative square of antistructures (2.5) in which
the horizontal maps are epimorphisms and the morphism g of antistructures is a
quadratic extension of the morphism f . We call a square of antistructures with such
properties a geometric diagram of antistructures (see [11]). Using the square Ψ we
can construct a geometric diagram Ψγ with morphism gγ : (S, γα, u) → (Q, γβ, v)
in the lower row, and with upper row and ring morphisms as in Ψ.

By [19] and [11] the square Ψγ generates the homotopy commutative square of
Quinn–Ranicki spectra

L(R,α, u)
L(f)−→ L(P, β, v)xi!− xj!−

L(S, γα, u)
L(gγ)−→ L(Q, γβ, v).

(3.1)

The homotopy groups of the spectra in this square are isomorphic to the corre-
sponding L-groups. The horizontal maps are induced by f and g, and the vertical
maps correspond to the transfer maps (see [19]). For spectra, we use the notation
of [11] by setting ΩLn+1

∼= Ln, denoting the homotopy cofibre of the map L(f)
of the spectra by L(f∗), the homotopy cofibre of the map i! by L(i!), and setting
πn(L(∗)) = Ln(∗).

The diagram (3.1) can be extended in all directions so that all the rows and
columns are cofibrations and the diagram remains homotopy commutative (see [11]).
The resulting diagram also involves the spectrum L(Ψ!

γ), which is the homotopy

cofibre of the map L(i!) → L(j!). We now consider the homotopy commutative
square of this extended diagram:

ΩL(Ψ!
γ) −→ L(i!)x x

ΩL(f∗) −→ L(R,α, u)

(3.2)

and we define the spectrum LP(Ψ) as the homotopy fibre of the diagonal map in
the square (3.2)).

Before describing the connections of this spectrum with other L-spectra and
studying its homotopy groups we consider the square Ψ of antistructures that cor-
responds to the geometric diagram of groups (1.1). We set A = π1(∂U), B = π1(X),
C = π1(Y \X), and D = π1(Y ). We can construct the geometric diagram of anti-
structures from the square F by passing to the group rings over Z. The involutions
in all the rings except for ZB correspond in that case to the standard involution
defined by the orientation of the manifold. We choose the involution in the ring ZB
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compatible with the ring homomorphisms (see [11]). The invertible element u is
equal to 1. Hence we obtain the following geometric diagram ZF of antistructures:

(ZA, , 1) −→ (ZC, , 1)y y
(ZB, , 1) −→ (ZD, , 1),

(3.3)

where the orientation homomorphism of group B on the left-hand side does not
correspond to the orientation of the submanifold X in (1.1).

Theorem 3.1. Let F be a geometric diagram of groups and let ZF be the geometric
diagram of antistructures (3.2) constructed from the square F as described above.
Then we have the isomorphism

πn(LP(ZF )) ∼= LPn(F ),

where the LPn(F ) are the surgery obstruction groups on the pair of manifolds
corresponding to the square F .

Proof. We consider a natural map Λ of manifold pairs inducing a natural map of
the diagram Φ, which is the diagram

A −→ Ay y
B −→ B,

into the diagram F . Such a map of manifold pairs exists by [1] and [2]. Since
the Levine braid (1.2) is natural, we obtain the map (1.2) of the diagrams induced
by Λ, where the maps of the Novikov–Wall groups and the splitting obstruction
groups are induced by the maps of the squares. Since the diagram (1.2) can be
realized on the spectral level (see, for example, [18]), the map Λ induces a map of
the commutative squares of spectra:

ΩL(i!−) −→ ΩL(B) LP(F ) −→ ΩL(D)y y L(Λ)−→
y y

L(B−) −→ ΩL(A→ B) L(B−) −→ ΩL(C → D),

(3.4)

where the orientation homomorphism of the group B corresponds to the orientation
of the manifold Y , and the orientation homomorphism of the group B− corresponds
to the orientation of the submanifold X. We now consider the universal square of
the fibres of L(Λ), which is

Ω2L(A→ C) −→ Ω2L(B → D)y y
∗ −→ Ω2L(F ) ,

since the maps on the Novikov–Wall groups are natural and the squares of spectra
are universal. In particular, we obtain the fibration

Ω2L(A→ C) −→ ΩL(i!−) −→ LP(F ).
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The first map in this fibration is the natural composite

Ω2L(A→ C) −→ ΩL(A) −→ ΩL(i!−)

of a map in the relative exact sequence for the map A → C and of a map in
the relative exact sequence for the transfer map i!− : L∗(B−) → L∗(A) considered
each on the spectral level (see [19]). This is a consequence of the universality
of the left-hand square in diagram (2.4) and of the fact that the maps
Ω2L(A → C) −→ L(B−) and Ω2L(A → C) −→ ΩL(B) factor through the
natural map Ω2L(A → C) −→ ΩL(A). The theorem now follows from the
definition of the spectrum LP(ZF ) and diagrams (3.2) and (3.3).

Theorem 3.2. Consider the following maps of spectra, which are the composites
of the natural maps in diagram (3.1) extended by cofibrations:

ΩL(f∗) −→ L(i!), L(S, γα, u)
δ−→ L(P, β, v), ΩL(j!) −→ L((gγ)∗).

The spectrum LP(Ψ), which was defined above as the homotopy fibre of the first of
these maps, is homotopy equivalent to the fibre of any of these maps of spectra.

Proof. In the category of spectra, fibrations coincide with cofibrations. It is now
sufficient to consider diagram (3.1) extended by cofibrations and to apply Lemma 2
in [11].

For a geometric diagram Ψ of antistructures let LPn(Ψ) be the homotopy groups
πn(LP(Ψ)). This definition is consistent by Theorem 3.1

Corollary 3.1. If Ψ is a geometric diagram of antistructures, then we have the
following long exact sequences :

−→ Ln+1(f) −→ Ln(i!−) −→ LPn−1(Ψ) −→,

−→ Ln(S, γα, u) −→ Ln(P, β, v) −→ LPn−1(Ψ) −→,

−→ Ln+1(j!
−) −→ Ln(gγ) −→ LPn−1(Ψ) −→,

(3.5)

in which the maps i!−, j
!
− are the transfer maps for the diagram Ψγ.

Proof. These exact sequences are the homotopy long exact sequences of the fibra-
tions in Theorem 3.2.

Now let F be a geometric diagram

A −−−−→ Cy y
B− −−−−→ D+

of groups equipped with orientations. Then we can define geometric diagrams Φ
and Φ′ of groups as follows:

A −−−−→ Ay y
B− −−−−→ B+

and

C −−−−→ Cy y
D− −−−−→ D+.

These diagrams correspond to Browder–Livesay pairs. We also have natural maps
Φ → F → Φ′ of these diagrams. We can now write the exact sequences from
Corollary 3.1 in a form convenient for geometric applications.
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Corollary 3.2. For the diagrams F , Φ, and Φ′ defined above we have the following
long exact sequences :

−→ Ln+1(A→ C) −→ LPn−1(Φ) −→ LPn−1(F ) −→,

−→ Ln(B−) −→ Ln(C) −→ LPn−1(F ) −→,

−→ LPn(Φ′) −→ Ln(g−) −→ LPn−1(F ) −→,

in which the orientation on the group B− corresponds to the orientation of the
submanifold, and g− : B− → D− is a map of groups with orientation.

We must point out that g− is not involved in the geometric diagrams F , Φ,
and Φ′.

Theorem 3.3 and Corollary 3.3 to it, which follow, are counterparts of Theorem 4
and Corollary 2 in [11]. The proofs of these results are also perfectly similar to those
in [11].

Theorem 3.3. Let Ψ be a geometric diagram of antistructures. Then we have the
following universal squares of spectra

ΩL(R) −→ ΩL(P )y y
ΩL(i!−) −→ LP(Ψ),

ΩL(Q, γα, u) −→ ΩL((gγ)∗)y y
ΩL(P ) −→ LP(Ψ),

Ω2L(Ψ!
γ) −→ ΩL(i!−)y y

ΩL((gγ)∗) −→ LP(Ψ),

in which the transfer maps are as in Corollary 3.1.

Corollary 3.3. Under the hypothesis of Theorem 3.3 we have the following Levine
braids:

−→ Ln+1(S, γα, u) −→ Ln+1(P ) −→ Ln+1(f) −→
↗ ↘ ↗ ↘ ↗ ↘

Ln+1(R) LPn(Ψ)
↘ ↗ ↘ ↗ ↘ ↗

−→ Ln+2(f) −→ Ln+1(i!−) −→ Ln(S, γα, u) −→,

−→ Ln+2(j!
−) −→ Ln+1(gγ) −→ Ln(S, γα, u)−→

↗ ↘ ↗ ↘ ↗ ↘
Ln+1(Q, γα, u) LPn(Ψ)

↘ ↗ ↘ ↗ ↘ ↗
−→ Ln+1(S, γα, u) −→ Ln+1(P ) −→ Ln+1(j!

−) −→,

(3.6)
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−→ Ln+2(f) −→ Ln+1(i!−) −→ Ln+1(j!
−) −→

↗ ↘ ↗ ↘ ↗ ↘
Ln+2(Ψ!

γ) LPn(Ψ)
↘ ↗ ↘ ↗ ↘ ↗

−→ Ln+2(j!
−) −→ Ln+1(gγ) −→ Ln+1(f) −→ .

We note that one encounters no difficulties in modifying Corollary 3.3 for the
case of a geometric diagram of groups by analogy with Corollary 3.2.

§ 4. LP∗LP∗LP∗-groups with decorations

In this section we define the groups LP k∗ (Ψ) for a geometric diagram of anti-
structures Ψ equipped with a square of decorations k satisfying some additional
conditions. We prove that all the relations (such as Corollary 3.3) between the
‘decorated surgery obstruction groups for pairs of manifolds’ and the Novikov–Wall
groups (now also with decorations) are as before. We shall study the dependence
of the groups LP k∗ on decorations. This section is similar to § 3 in [11], where we
define the decorated groups LSk∗ for geometric diagrams of antistructures. How-
ever, there are also important distinctions between this section and § 3 in [11], which
stem mainly from using the square Ψγ in place of the square of antistructures ‘with
tildes’ in the definitions of the corresponding groups.

We note that the decorated groups LP k in this paper are compatible with the
decorated groups LSk (equipped with the same square of decorations) introduced
in [11]. This enables us to construct diagram (1.2) for groups with decorations,
which is very important in geometric applications.

We now consider a geometric diagram of antistructures Ψ (see (2.5)); let k be
the commutative square

X
f∗−→ Zyi∗ yj∗

Y
g∗−→ W

(4.1)

of the decorations defined in § 2, which are invariant with respect to the two corre-
sponding involutions and satisfy conditions (2.6). All the maps in k are induced by
the maps in Ψ, and the pair (Ψ, k) defines a geometric diagram of antistructures Ψk

equipped with decorations (see [11]).
As before, we have in this case diagrams similar to (3.1) and (3.2), but now

involving the spectra defining the Novikov–Wall groups equipped with decorations
(see [19]). As in § 2, we define the spectrum LP(Ψk) as the homotopy fibre of the
natural map of spectra

ΩL(f∗) −→ L(i!−),

where i!− : LYn (S, γα, u)→LXn (R,α, u) is the transfer map of the decorated Novikov–

Wall groups and f∗ : LXn (R,α, u)→ LZn (P, β, v) is the induced map. This definition
is compatible with the definition of the LP -groups with decorations for Browder–
Livesay pairs in § 2. The following theorem is perfectly similar to Theorem 6 in [11].

Theorem 4.1. Theorems 3.3 and 3.4, where all the spectra are equipped with the
corresponding decorations from the square k, hold for the spectrum LP(Ψk).
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Definition. We call the homotopy groups of the spectrum LP(Ψk) the LP -groups
with decorations k.

We shall denote these groups by LP k(Ψ), by analogy with the Novikov–Wall
groups and the LS-groups with decorations (see [11]).

Corollary 4.1. For the groups LP k(Ψ) we have the exact sequences (3.5) and
the Levine braids (3.6), where all the groups are equipped with the corresponding
decorations.

In the following result we shall use the groups LSk∗ (Ψ) defined in [11]. We note
only that these groups are defined for the geometric diagram of antistructures Ψk

equipped with decorations.

Theorem 4.2. Let Ψk be the above-defined geometric diagram of antistructures
equipped with decorations. Then there exists the following Levine braid:

−→ LZn+1(P, β, v) −→ LWn+1(Q, β, v) −→ LSkn−1(Ψ) −→
↗ ↘ ↗ ↘ ↗ ↘

LP kn(Ψ) LZ,Wn+1 (P → Q, β, v)
↘ ↗ ↘ ↗ ↘ ↗

−→ LSkn(Ψ) −→ LYn (S, γα, u) −→ LZn (P, β, v)−→ .

Proof. By [11] and [13] we have the cofibration of spectra

ΩL
(
(S, γα, u)Y

) ε−→ Ω2L
(
(P → Q, β, v)Z,W

)
−→ LS(Ψk), (4.2)

in which the map ε is the composite of the natural maps of spectra

ΩL
(
(S, γα, u)Y

)
−→ ΩL

(
(Q, γβ, v)W

)
−→ ΩL

(
(P → Q, β̃, ṽ)Z,W

)
and of the natural isomorphism

ΩL
(
(P → Q, β̃, ṽ)Z,W

) ∼= Ω2L
(
(P → Q, β, v)Z,W

)
.

For convenience of notation we indicate here the decorations by superscripts at
the corresponding antistructures. The map δ in Theorem 3.2 is the composite
L(gγ)j!

− of the maps involved in the square (3.1), which can also be defined for the

geometric diagrams of antistructures equipped with decorations. In addition, we
have the commutative diagram (see [13] and [15])

L
(
(Q, γβ, v)W

) j!−−→ L((P, β, v)Z)y x
L
(
(P̃ → Q̃, β̃, ṽ)Z,W

)
−→ ΩL

(
(P → Q, β, v)Z,W

)
.

Hence we have the commutative square of spectra

L
(
(S, γα, u)Y

) δ−→ L
(
(P, β, v)Z

)yε x∼=
ΩL
(
(P → Q, β, v)Z,W

)
−→ L

(
(P, β, v)Z

)
.
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We now consider the map ν : LP(Ψk) → ΩL
(
(Q, β, v)Z

)
of the fibres of the

horizontal maps induced by this square, so that we obtain the commutative square

LP(Ψk) −→ L
(
(S, γα, u)Y

)yν yε
ΩL
(
(Q, β, v)W

)
−→ ΩL

(
(P → Q, β, v)Z,W

)
,

(4.3)

in which the cofibres of the horizontal maps are naturally homotopy equivalent to
the spectrum L((P, β, v)Z ). That is, we obtain a universal square of spectra. It now
follows from the cofibration (4.2) that the fibres of the vertical maps are homotopy
equivalent to the spectrum LS(Ψk). The homotopy long exact sequences for the
maps in (4.3) form the required Levine braid, which completes the proof.

We study now the behaviour of the LP k-groups under changes of decorations.
We shall obtain certain analogues of the Rothenberg exact sequence (2.1) for this
case.

First we consider the simpler case of a geometric antistructure Φ with decora-
tions k defined in § 2. We recall that this diagram corresponds geometrically to a
Browder–Livesay pair. Assume that we also have a square l of decorations such
that we have an inclusion k ⊂ l of the following form:

X −→ X X ′ −→ X ′y y ⊂
y y

Y −→ Y Y ′ −→ Y ′,

and let Φl be a geometric diagram of antistructures equipped with decorations.

Theorem 4.3. Under the above assumptions we have the long exact sequence

−→ LP k∗ (Φ) −→ LP l∗(Φ) −→ H∗+1(i!−) −→, (4.4)

in which H∗+1(i!−) denotes the relative Tate cohomology included into the long exact
sequence

−→ H∗(Y ′/Y )
i!−−→ H∗(X ′/X) −→ H∗(i!−) −→ .

Here the involution on the groups X and X ′ is induced by α, while the involution
on the groups Y and Y ′ is induced by γα.

Proof. The Rothenberg exact sequence (2.1) for the antistructure (S, γα, u) with
decorations Y and Y ′ is mapped into the Rothenberg exact sequence for the anti-
structure (R,α, u) with decorations X and X ′, since the transfer map is natural.
A consideration of the resulting commutative diagram completes the proof of the
theorem.

Corollary 4.2. Assume that the groups X ′ and X in Theorem 4.3 are the same.
Then the Tate cohomology in the exact sequence (4.4) is isomorphic to H∗(Y ′/Y ),
where the involution is induced by γα.

Proof. This follows from the commutative diagram in Theorem 4.3.

It is worth noting that the properties of the groups LP here are considerably
different from the properties of the groups LS. It suffices to compare Corollary 4.1
and Example 1 in [11].



462 Yu. V. Muranov and D. Repovš

Corollary 4.3. Assume that the groups Y ′ and Y in Theorem 4.3 are the same.
Then the Tate cohomology in the exact sequence (4.4) is isomorphic to H∗+1(X ′/X),
where the involution is induced by α.

We recall that the Tate cohomology can be also realized on the spectral level
(see [19]). In this case the Rothenberg exact sequence is the homotopy long exact
sequence of the fibration (cofibration) of spectra. Let H(∗) be the spectra with
homotopy groups isomorphic to the Tate cohomology Hn(∗) (in a similar way to
the L-spectra; see also [11]).

We now consider the general case of a geometric diagram of antistructures Ψ
depicted in (2.5) with two possible decorations k and l, k ⊂ l, of the following form:

X −→ Z X ′ −→ Z ′y y ⊂
y y

Y −→ W Y ′ −→ W ′.

Theorem 4.4. Under the above hypotheses we have the long exact sequence

−→ LP k∗ (Ψ) −→ LP l∗(Ψ) −→ π∗
(
H((l/k)!)

)
−→,

in which the spectrum H((l/k)!) is homotopy equivalent to a cofibre of any of the
following three maps of spectra:

ΩH(f∗)→ H(i!−), H(Y ′/Y ) −→ H(Z ′/Z), ΩL(j!
−)→ H

(
(gγ)∗

)
.

Proof. There is a natural map of the homotopy commutative diagram of spec-
tra (3.1) equipped with decorations k into the same diagram with decorations l.
We consider the cofibres of this map to obtain the homotopy commutative diagram

H(X ′/X) −→ H(Z ′/Z)x x
H(Y ′/Y ) −→ H(W ′/W ).

We now extend this diagram in the vertical and the horizontal directions by cofibra-
tions (see [11]) and define the spectrumH((l/k)!) in the same way as we have defined
the spectrum LP(Ψ). Our further arguments repeat the proof of Theorem 3.2 (see
also [11]).

We note in conclusion that, as Theorem 4.4 shows, the groups LP∗(Ψ) corre-
sponding to the same geometric diagram of antistructures equipped with different
decorations vary only in 2-torsion.
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