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We prove recognition theorems for codimension one manifold factors of dimension n � 4.
In particular, we formalize topographical methods and introduce three ribbons properties:
the crinkled ribbons property, the twisted crinkled ribbons property, and the fuzzy ribbons
property. We show that X ×R is a manifold in the cases when X is a resolvable generalized
manifold of finite dimension n � 3 with either: (1) the crinkled ribbons property; (2) the
twisted crinkled ribbons property and the disjoint point disk property; or (3) the fuzzy
ribbons property.
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1. Introduction

In this paper we provide general position techniques that fully utilize a general position characterization of codimension
one manifold factors of dimension n � 4. A codimension one manifold factor is a space X such that X × R is a manifold.
The famous Cell-like Approximation Theorem of Edwards [1,3,6,7] characterizes the manifolds of dimension n � 5 as pre-
cisely the finite-dimensional resolvable generalized manifolds with the disjoint disk property. In the same vein, it has been
shown that codimension one manifold factors of dimension n � 4 are precisely the finite-dimensional resolvable generalized
manifolds with the disjoint concordances property.

However, up until now, practical methods of identifying spaces as codimension one manifold factors have appealed to a
weaker general position property, the disjoint homotopies property. How to fully utilize the disjoint concordances property
has been somewhat elusive. The ribbons properties introduced in this paper fulfill this role. We show that the ribbons
properties, if satisfied by an ANR X , will imply that X has the disjoint concordances property and hence X × R has the
disjoint disks property. Therefore, a finite-dimensional resolvable generalized manifold X is a codimension one manifold
factor if it possesses one of the following: (1) the crinkled ribbons property; (2) the twisted crinkled ribbons property and
the disjoint point disk property; or (3) the fuzzy ribbons property. For motivation see the surveys [11–14].
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2. Manifold factors and characterizations

As previously stated, a space X is a codimension one manifold factor if X × R is a manifold. The fact that the codimension
one manifold factors of finite dimension n � 4 are precisely the resolvable generalized manifolds X such that X × R has the
disjoint disks property follows as a corollary of Edwards’ Cell-like Approximation Theorem (cf. [1]). Recall that a space X is
said to be resolvable if there is a manifold M and a surjective map f : M → X which is cell-like (i.e., f −1(x) has the shape
of a point for all x ∈ X ). Moreover, X is said to have the disjoint disks property (DDP) if every pair of maps f , g : D2 → Y can
be approximated by maps that have disjoint images.

Edwards’ Cell-like Approximation Theorem states that the manifolds of dimension n � 5 are precisely the finite-
dimensional resolvable generalized manifolds with the disjoint disk property. It is well known that not all resolvable
generalized manifolds of dimension n � 5 have the DDP (cf. [1]). Thus not all resolvable generalized manifolds are man-
ifolds. (In dimension � 2 every generalized manifold is a topological manifold, whereas for the situation in dimensions 3
and 4 see [12–14].)

In general, a space X is said to satisfy the (m,n)-disjoint disks property ((m,n)-DDP) if any two maps f : Dm → X and
g : Dn → X can be approximated by maps with disjoint images. As indicated previously, the (2,2)-DDP is simply called the
disjoint disks property (DDP). The (1,2)-DDP is called the disjoint arc-disk property (DADP). The (1,1)-DDP is called the disjoint
arcs property (DAP). The (0,2)-DDP is called the disjoint point disk property (DPDP).

All generalized manifolds of dimension n � 3 are known to have the DAP. A natural question is if the DADP, the middle
dimension analogue of the DAP and the DDP, provides a characterization of codimension one manifold factors. As it turns
out, the DADP condition is sufficient, but not necessary, to determine if a finite-dimensional resolvable generalized manifold
of dimension n � 4 is a codimension one manifold factor. Examples of codimension one manifold factors of dimension n � 4
that fail to have the DADP can be found in [1,5,10]. In fact some of these examples even fail to have the DPDP.

A list of general position properties that have proved useful in recognizing codimension one manifold factors includes:

• The disjoint arc-disk property [2].
• The disjoint homotopies property [10].

– The plentiful 2-manifolds property [9].
– The method of δ-fractured maps [9].
– The 0-stitched disks property [10].

• The disjoint concordances property [4].

It should be noted here that the disjoint concordances property is the only property listed that provides a characteri-
zation of codimension one manifold factors. Specifically, a resolvable generalized manifold X of finite dimension n � 4 is a
codimension one manifold factor if and only if X satisfies the disjoint concordances property.

Definition 2.1. A path concordance in a space X is a map F : D × I → X × I (where D = I = [0,1]) such that F (D × e) ⊂
X × e, e ∈ {0,1}. A metric space (X,ρ) satisfies the disjoint path concordances property (DCP) if, for any two path homotopies
f i : D × I → X (i = 1,2) and any ε > 0, there exist path concordances F ′

i : D × I → X × I such that

F ′
1(D × I) ∩ F ′

2(D × I) = ∅
and ρ( f i,projX F ′

i ) < ε.

It is the main goal of this paper to establish practical techniques that utilize this property.
In this paper we will be generalizing two properties: the plentiful 2-manifolds property and the method of δ-fractures

maps. These properties were developed specifically to detect the disjoint homotopies property in certain settings. We will
demonstrate how the analogous ribbons properties can be used to detect the weaker disjoint concordances property.

3. Topographies

We begin by restating the disjoint concordances property from a more functional perspective. In particular, we will
restate the disjoint concordance property in terms of the topographies.

Definition 3.1. A topography Υ on Z is a partition of Z induced by a map τ : Z → I . The t-level of Υ is given by

Υt = τ−1(t).

Definition 3.2. A topographical map pair is an ordered pair of maps ( f , τ ) such that f : Z → X and τ : Z → I . The map f will
be referred to as the spatial map and the map τ will be referred to as the level map. The topography associated with ( f , τ )

is Υ , where Υt = τ−1(t).
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Note that a homotopy f : Z × I → X has a naturally associated topography, where τ : Z × I → I is defined by τ (x, t) = t .
In particular, we may view f : Z × I → X as being equivalent to ( f , τ ) and we will refer to ( f , τ ) as the natural topographical
map pair associated with f .

Definition 3.3. Suppose that for i = 1,2, Υ i is a topography on Zi induced by τi and f i : Zi → X . Then ( f1, τ1) and ( f2, τ2)

are disjoint topographical map pairs provided that for all t ∈ I ,

f1
(
Υ 1

t

) ∩ f2
(
Υ 2

t

) = ∅.

A space X has the disjoint topographies property if any two topographical map pairs ( f i, τi) (i = 1,2), where f i : D2 → X , can
be approximated by disjoint topographical map pairs.

The proof of the following result is straightforward:

Theorem 3.4. An ANR X has the disjoint topographies property if and only if X × R has the disjoint disks property.

Proof. Suppose X has the disjoint topographies property. For i = 1,2, let Fi : D2 → X × I . Let projX : D2 → X and
projI : D2 → I be the standard projection maps. Define f i = projX ◦ Fi and τi = projI ◦ Fi . Applying the disjoint topogra-
phies property we get disjoint topographical map pairs ( f ′

i , τ
′
i ) that are approximations of ( f i, τi). Then F ′

i = f ′
i × τ ′

i are the
desired approximations of Fi with disjoint images.

Suppose that X × R has the disjoint disks property. Let ( f i, τi) be topographical map pairs for i = 1,2. Then Fi =
f i × τi : D2 → X × I . By the disjoint disks property Fi can be approximated by F ′

i with disjoint images. Let f ′
i = projX ◦ F ′

i
and τ ′

i = projI ◦ F ′
i . Then ( f ′

i , τ
′
i ) are the desired disjoint topographical map pairs approximating ( f i, τi). �

However, this result is not the main focus of this paper. Our aim is to provide alternative equivalent conditions which
are more easily verified.

4. Special category approximation properties

We desire to more carefully investigate the disjoint topographies property so as to give it practical utility. Similar to
the disjoint homotopies property analyzed in [8], the question of whether a space has the disjoint concordances property
ultimately reduces to the following question: given a constant homotopy of a 1-complex and an arbitrary homotopy on
another 1-complex, can the natural topographical map pairs associated with these homotopies be adjusted with “control”
so as to form disjoint topographical map pairs? In this section, we will clarify these characterizing conditions. In Section 7
we will demonstrate that the conditions give the desired result. The ribbons properties in Sections 8 and 9 will specify
practical circumstances in which these conditions may be obtained.

Definition 4.1. A topographical map pair ( f , τ ) is in the Z category if f : Z × I → X and τ : Z × I → I so that Z ×{e} ⊂ τ−1(e)
for e = 0,1. We denote ( f , τ ) ∈ Z .

The D category is defined by letting Z = D = [0,1]. The K category is defined by letting Z = K , for some 1-complex.

Definition 4.2. A topographical map pair ( f , τ ) is in the Zc category if

(1) ( f , τ ) ∈ Z ;
(2) f : Z × I → X is a constant homotopy; and
(3) ( f , τ ) is the natural topographical map pair associated with f .

For emphasis on the relevant characteristics, we define the conditions that will be the main focus of the next section in
two stages. In the following definitions, the notation Zi is intended to represent a category such as D or K.

Definition 4.3. A space X has the Z1 × Z2 category disjoint topographies property (Z1 × Z2 DTP) if any two topographical map
pairs ( f i, τi) ∈ Zi , for i = 1,2, can be approximated by disjoint topographical map pairs ( f ′

i , τ
′
i ) ∈ Zi .

Definition 4.4. A space X has the Z1 × Z2 DTP∗ if for any pair of maps ( f i, τi) ∈ Zi , for i = 1,2, there are maps ( f ′
i , τ

′
i ) ∈ Zi

so that each f ′
i is an approximation of f i .

Note specifically that the Z1 × Z2 DTP∗ condition does not require the maps τ ′
i to approximate τi .

A careful look at the definitions will reveal that the D × D DTP∗ is just the disjoint concordance property in the language
of topographies. Our goal will be to show that the disjoint concordances property is equivalent to more versatile conditions,
namely the Kc × K DTP∗ and the Dc × D DTP∗ in the case that the target space of the spatial map has the (0,2)-DDP. It is
these conditions to which our ribbons properties appeal.
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5. Extension theorems

In this section we recall a couple of classical extension theorems that are used extensively when performing general
position adjustments in ANR’s. We also establish specific extension theorems applicable in the setting of spaces with the
various disjoint topographies properties. To see a proof of the following homotopy extension theorem the reader can refer
to [8].

Theorem 5.1 (Homotopy Extension Theorem (HET)). Suppose that f : Y → X is a continuous map where Y is a metric space and X is
an ANR, Z is a compact subset of Y and ε > 0. Then there exists δ > 0 such that each g Z : Z → X which is δ-close to f |Z extends to
g : Y → X so that g is ε-homotopic to f . In particular, for any open set U such that Z ⊂ U ⊂ Y , there is a homotopy H : Y × I → X so
that:

(1) H0 = f and H1 = g;
(2) g|Z = g Z ;
(3) Ht |Y −U = f |Y −U , for all t ∈ I; and
(4) diam(H(y × I)) < ε for all y ∈ Y .

Corollary 5.2 (Map Extension Theorem (MET)). Suppose that f : Y → X is a continuous map where Y is a metric space and X is an
ANR, Z is a compact subset of Y and ε > 0. Then there exists δ > 0 such that each g Z : Z → X which is δ-close to f |Z extends to
g : Y → X so that ρ( f , g) < ε.

In the arguments that follow, when we say that “without loss of generality (such and such) maps into an ANR are
already adjusted to exploit (some) general position property”, we are generally appealing to an application of MET. For
example, given maps f i : D2 → X , i = 1,2, where X is an ANR, with the DAP when we say that we may assume without
loss of generality that the restrictions of these maps to a finite (or countable) collection of arcs in the domain have disjoint
images, we are applying MET.

Corollary 5.3 (Special DTP Extension Theorem). Let X be an ANR. Suppose that for i = 1,2, ( f i, τi) are topographical map pairs so that
fi : Yi → X and τi : Yi → I , where Yi is a compact metric space. Suppose further that Ai ⊂ Yi is compact so that:

(1) ( f1|A1 , τ1|A1 ) and ( f2, τ2) are disjoint topographical map pairs;
(2) ( f1, τ1) and ( f2|A2 , τ2|A2 ) are disjoint topographical map pairs; and
(3) ( f1, τ1) and ( f2, τ2) can be approximated by disjoint topographical map pairs.

Then ( f i, τi) can be approximated by disjoint topographical map pairs ( f ′
i , τ

′
i ) so that ( f ′

i |Ai , τ
′
i |Ai ) = ( f i |Ai , τi |Ai ).

Proof. Suppose the objects in the hypothesis are given. By continuity and local compactness we can find compact neighbor-
hoods Ni of Ai so that (1) and (2) still hold when A1 is replaced with Ni . Choose ε > 0 so that (1) and (2) still hold with
Ni replaced with Ai and ( f i, τi) replaced with any ε-approximation of ( f i, τi).

Let δi > 0 be values promised by the HET for ( f i, τi) and choose δ > 0 so that δ < δ1, δ2. Find δ-approximations ( f ′
i , τ

′
i )

of ( f i, τi) that are disjoint topographical map pairs. Let Zi = Yi − Ni , Ui = Yi − Ai , and gi = f ′
i |Zi . Let f ′

i : Yi → X be the
end of the homotopy Hi : Yi × I → X promised by the HET. Then ( f ′

i , τ
′
i ) are the desired disjoint homotopies such that

( f ′
i |Ai , τ

′
i |Ai ) = ( f i |Ai , τi |Ai ). �

In the next result, the end levels of a concordance F : Y × I → X × I or a topographical map pair ( f , τ ) defined on Y × I will
refer to Y × {0} and Y × {1}.

Proposition 5.4. Let X be an ANR. Suppose ( f i, τi) ∈ Z such that fi : Yi × I → X. If the restriction to the end levels is a disjoint
topographical map pair and ( f i, τi) can be approximated by disjoint topographical map pairs, then ( f i, τi) can be approximated by
topographical map pairs fixed on the end levels. An analogous result is true for concordances.

Proof. Let Ei = Yi × {0,1}. By hypothesis, ( f i |Ei , τi |Ei ) are disjoint topographical map pairs. Let ε > 0 so that any ε-approx-
imation of ( f i |Ei , τi |Ei ) are still disjoint topographical map pairs. Let δi > 0 be a value promised by the MET for ε and f i |Ei .
Choose δ > 0 so that δ < δ1, δ2. Let (gi,μi) be δ-approximations of ( f i, τi) in Z . Then there are ε homotopies between
( f i |Ei , τi |Ei ) and (gi |Ei ,μi |Ei ), call these Hi : Ei × I → X .
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For 0 < ζ < 1
2 , let θζ : [0,1] → [ζ,1 − ζ ] be the standard order preserving linear map. Define f ζ

i : Yi × I → X such that:

f ζ

i (x, t) =

⎧⎪⎪⎨
⎪⎪⎩

Hi((x,0), t
ζ
) if t ∈ [0, ζ ),

gi(x, θ−1
ζ (t)) if t ∈ [ζ,1 − ζ ],

Hi((x,1), 1−t
ζ

) if t ∈ (1 − ζ,1]
and define τ

ζ

i : Yi × I → X such that:

τ
ζ

i (x, t) =
{

θζμi(x, t) if t ∈ [ζ,1 − ζ ],
t if t ∈ [0, ζ ) ∪ (1 − ζ,1].

Note that ( f ζ

i |Ei , τ
ζ

i |Ei ) = ( f i |Ei , τi |Ei ). Moreover, for sufficiently small ζ , ( f ζ

i , τ
ζ

i ) are disjoint topographical map pairs
that are an ε-approximation of ( f i, τi).

The argument for concordances is analogous. �
6. Tools for finding disjoint topographies

The following four “R” strategies can be used to manipulate topographical map pairs to be disjoint:

(1) Reimage – modify the spatial image set;
(2) Realign – modify the position of the levels by a self homeomorphism of the domain D × I;
(3) Reparametrize – relabel the levels by a continuous map fixing the t = 0 and t = 1 levels; and
(4) moRph – redefine the topographical structure.

The first strategy is realized by adjusting the spatial maps. The last three are realized by adjusting the level maps. It
is the fourth strategy that is unique to the topographies approach, adding flexibility in that the shape of the levels can
be changed. This is the maneuver that puts the topographical approach at an advantage over the homotopies approach in
detecting codimension one manifold factors. It is this last strategy that will be fully exploited by the new ribbons properties
of Sections 8 and 9.

This section will be devoted to adapting several basic tools that are useful in constructing approximating disjoint topo-
graphical map pairs. The first two results are generalizations of results obtained for homotopies found in [8].

Definition 6.1. Suppose for i = 1,2 that ( f i, τi) are topographical map pairs having topographies Υ i . Then the set of param-
eterization points of intersection, denoted by PPIN(( f1, τ1), ( f2, τ2)) is

PPIN
(
( f1, τ1), ( f2, τ2)

) = {
(t1, t2) ∈ I2

∣∣ f1
(
Υ 1

t1

) ∩ f2
(
Υ 2

t2

) �= ∅}
.

In the next result we show that if PPIN(( f1, τ1), ( f2, τ2)) is 0-dimensional, then we may obtain approximating disjoint
topographical map pairs by reparametrizing the levels of the topography. In particular, a reparametrization is a relabeling of
the levels determined by replacing t with a function γ (t).

Lemma 6.2 (Reparametrization Lemma). Suppose for i = 1,2 that ( f i, τi) are topographical map pairs having topographies Υ i such
that PPIN(( f1, τ1), ( f2, τ2)) is 0-dimensional and f1(Υ

1
e ) ∩ f2(Υ

2
e ) = ∅, for e = 0,1. Then there are arbitrarily close approxima-

tions τ ′
i of τi so that ( f1, τ

′
1) and ( f2, τ

′
2) are disjoint topographical map pairs.

Proof. Suppose ε > 0. Since Z = PPIN(( f1, τ1), ( f2, τ2)) is 0-dimensional there is a path γ : I → I × I − Z from (0,0) to
(1,1) such that |γ (t) − t| < ε. Let τ ′

i = γ ◦ τi . Then ( f i, τ
′
i ) are disjoint topographical map pairs. �

Proposition 6.3. Suppose X is a locally compact ANR with the DAP. Then X has the disjoint topographies property if and only if for
any pair of topographical maps ( f i, τi), for i = 1,2 such that fi : D × I → X, there exist arbitrarily close approximations ( f ′

i , τ
′
i ), such

that PPIN(( f ′
1, τ

′
1), ( f ′

2, τ
′
2)) is 0-dimensional.

Proof. To see the forward direction, assume without loss of generality, that

f1
(

D × {0,1} ∪ {0,1} × I
) ∩ f2

(
D × {0,1} ∪ {0,1} × I

) = ∅
where D × I = [0,1] × [0,1]. It follows from the hypothesis that the collection of maps ( f ′

1, τ
′
1, f ′

2, τ
′
2) such that ( f ′

1, τ
′
1)

and ( f ′
2, τ

′
2) are disjoint topographical map pairs is dense in D × D and this collection is clearly open by continuity argu-

ments. Let γk : I → I be a countable collection of maps such that the complement of the images in the interior of I × I is
0-dimensional and γk(e) = e for e = 0,1. Find approximations ( f ′

i , τ
′
i ) so that ( f ′

1, τ
′
1) and ( f ′

2, γkτ
′
2) are disjoint topograph-

ical map pairs for all k. Then PPIN(( f ′ , τ ′ ), ( f ′ , τ ′ )) is 0-dimensional.
1 1 2 2
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The reverse direction follows almost immediately from the Reparametrization Lemma. The only technicality is that we
need to satisfy Υ 1

e ∩Υ 2
e = ∅. We may modify ( f i, τi) by assuming that τi is a piecewise linear general position map with care

taken so that Υ i
e = D × {e} for e = 0,1. Then we apply the DAP and the MET to modify f i so that f1(Υ

1) ∩ f2(Υ
2) = ∅. �

Proposition 6.4. Let X be a finite-dimensional ANR with the (m1 − 1,m2)-DDP and the (m1,m2 − 1)-DDP. Suppose that ( f i, τi)

are topographical map pairs such that fi : Yi → X and τi : Yi → X, where Yi is a k-complex such that k � mi. Then there exist
approximations ( f ′

i , τ
′
i ) that are disjoint topographical map pairs.

Proof. Begin by modifying the maps τi : Yi → I , if necessary, so that each level is a (k − 1)-complex. This can be accom-
plished by approximating τi by a piecewise linear map in general position. Next, apply the (m1 − 1,m2)-DDP and the
(m1,m2 − 1)-DDP conditions to adjust the maps f i so that each rational level of f1 is disjoint from the image of f2 and
each rational level of f2 is disjoint from the image of f1. Denote the adjusted maps by ( f ′

i , τ
′
i ). Then PPIN(( f ′

1, τ
′
1), ( f ′

2, τ
′
2))

is closed 0-dimensional. If follows by the Reparametrization Lemma that ( f ′
i , τ

′
i ) can be approximated by disjoint topo-

graphical map pairs. �
7. Equivalence theorem

In this section, we will demonstrate the following equivalence theorem:

Theorem 7.1 (Equivalence Theorem). Let X be a locally compact separable ANR with the DAP. Consider the statements:

(a) X has the Dc × D DTP∗.
(b) X has the Kc × K DTP∗.
(c) X has the D × D DTP∗.
(d) X has the disjoint concordance property.
(e) X × R has the disjoint disks property.

Then (b)–(e) are equivalent. If in addition, X has the (0,2)-DDP, then (a)–(e) are equivalent.

Proof. Observe that (c) and (d) are trivially equivalent since the D × D DTP∗ is the disjoint concordance property in the
language of topographies. In particular, equate ( f i, τi) as a topographical map pair with Fi = f i × τi as a concordance. The
fact that (d) and (e) are equivalent was the main result established in [3]. The fact that (c) implies (a) is trivial since Dc ⊂ D.

It suffices to show that: (e) implies (b); (b) implies (c); and (a) implies (b) in the case that X has the (0,2)-DDP.
(e) �⇒ (b): In a locally compact separable ANR, the DDP condition is equivalent to having the property that any two

maps λi : Pi → X can be approximated by maps with disjoint images where Pi are 2-complexes (see [1, Proposition 24.1]).
Given topographical map pairs ( f1, τ1) ∈ Kc and ( f2, τ2) ∈ K we may assume without loss of generality, by applying the
DAP, that the restrictions to the end levels are disjoint topographical map pairs. By Proposition 5.4, there are approximations
( f ′

i , τ
′
i ) that are disjoint topographical map pairs fixed on the end levels. These are the desired approximations.

(b) �⇒ (c): Let ( f i, τi) ∈ D for i = 1,2. According to [8, Theorem 3.3] there are piecewise linear approximations τ ′
i of τi

such that there exist:

(1) a collection of 1-complexes K i
1, . . . , K i

n; and
(2) a collection maps φi

j : K i
i × [ti

j−1, ti
j] → D2 so that:

(a)
⋃

im(φi
j) = D2;

(b) φi
j : K i

j × [ti
j−1, ti

j] → D2 is an embedding away from K i
j × {ti

j−1, ti
j}; and

(c) τ ′
i ◦ φi

j is a level preserving map.

Without loss of generality we may assume that t1
j = t2

j by subdividing into smaller intervals if necessary. Thus we will

denote t j = t1
j = t2

j .

Denote Li
j = τ−1

i (t j). These 1-complexes are called the transition levels. Note that

Li
0 = φi

1

(
K i

1 × {t0}
)

and Li
n = φi

n

(
K i

n × {tn}
)

and for j = 1, . . . ,n − 1,

Li
j = φi

j

(
K i

j × {t j}
) ∪ φi

j+1

(
K i

j+1 × {t j}
)
.

By applying the DAP, we may assume that f1(L1) ∩ f2(L2) = ∅.
j j
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Without loss of generality we may assume that the subintervals [t j−1, t j] are sufficiently small so that the adjustments
that will now follow will also be small. We will begin by modifying the maps φ i

j so that the Kc × K DTP∗ condition may

be exploited. For j = 1, . . . ,n, let s j = t j−1+t j
2 . Define maps:

θ1
j : K 1

j × [t j−1, s j] → D2; θ1
j (z, t) = φ1

j (z,2t − t j−1), (1)

λ1
j : K 1

j × [s j, t j] → D2; λ1
j (z, t) = φ1

j (z, t j), (2)

θ2
j : K 2

j × [t j−1, s j] → D2; θ2
j (z, t) = φ2

j (z, t j−1), (3)

λ2
j : K 2

j × [s j, t j] → D2; λ2
j (z, t) = φ2

j (z,2t − t j). (4)

Consider the natural topographical map pairs ( f1θ
1
j , η

1
j ), ( f1λ

1
j ,μ

1
j ), ( f2θ

2
j , η

2
j ), and ( f2λ

2
j ,μ

2
j ) defined for these homo-

topies, respectively. By applying the K × Kc DTP∗ condition and Proposition 5.4 on ( f1θ
1
j , η

1
j ) and ( f2θ

2
j , η

2
j ) we can find

approximations (g1
j , η̃

1
j ) and (g2

j , η̃
2
j ), respectively, that are disjoint topographical map pairs fixed on the end levels. Like-

wise, there are approximations of ( f1λ
1
j ,μ

1
j ) and ( f2λ

2
j ,μ

2
j ), namely (h1

j , μ̃
1
j ) and (h2

j , μ̃
2
j ), respectively, that are disjoint

topographical map pairs also fixed on the end levels.
Let

f ′
i (x) =

{
gi

j(φ
i
j)

−1(x) if τ ′(x) ∈ [ti−1, si],
hi

j(φ
i
j)

−1(x) if τ ′(x) ∈ [si, ti]
and

τ ′
i (x) =

{
η̃i

j(φ
i
j)

−1(x) if τ ′(x) ∈ [ti−1, si],
μ̃i

j(φ
i
j)

−1(x) if τ ′(x) ∈ [si, ti].
Then ( f ′

i , τ
′
i ) are the desired disjoint topographical map pairs in D that are approximations of ( f i, τi).

(a) �⇒ (b): Note that this is the only case that requires the (0,2)-DDP condition. Let ( f1, τ1) ∈ Kc and ( f2, τ2) ∈ K,
where f i : Ki × I → X and τi : Ki × I → I . Let Ai be the 1-complex [Ki × {0,1}] ∪ [K (0)

i × I]. By applying the DAP and
Corollary 6.4 (using the DAP and the (0,2)-DDP) we may assume without loss of generality that:

(1) ( f1|A1, τ1|A1) and ( f2, τ2) are disjoint topographical map pairs;
(2) ( f1, τ1) and ( f2|A2, τ2|A2) are disjoint topographical map pairs;
(3) the restriction of f1 to K1 × {0} is an embedding;
(4) the restriction f2 to A2 is an embedding; and
(5) f1(A1) ∩ f2(A2) = ∅.

We wish to define topographical maps (gi, ηi) ∈ D that can guide the appropriate modifications of ( f i, τi) to give ap-
proximations that are disjoint topographical map pairs. To this end, using also the DAP, we may find αi : D → X so that:

(6) f i(Ki × {0}) ⊂ αi(D);
(7) α1(D) ∩ α2(D) = ∅; and
(8) αi is a piecewise linear embedding, and in particular the restriction of αi to α−1

i f i((σ − σ (0)) × {0}) is an embedding
for each simplex σ ∈ Ki .

The maps αi will determine the 0-level maps of the new maps gi : D × I → X which we will now construct. For reference
in D , let Q i = α−1

i ( f i(Ki × {0})) and Pi = α−1
i ( f i(K (0)

i × {0})). For reference in D × I , define Bi = Q i × {0,1} ∪ Pi × I and
Ci = Q i × I .

Define g1 : D × I → X to be the constant homotopy so that g1(x, t) = α1(x). Let η1 : D × I → I be the standard projection
map. Define g̃2 : D × {0} ∪ C2 → X so that:

g̃2(x, t) =
{

α2(x) if t = 0,

f2(z, t) if x ∈ Q 2 and α2(x) = f2(z,0).

Likewise, define η̃2 : D × {0,1} ∪ C2 → I such that:

η̃2(x, t) =
{

t if t = 0,1,

τ2(z, t) if x ∈ Q 2 and α2(x) = f2(z,0).

Since X is an ANR, g̃2 extends to a map g2 : D × I → X and η̃2 extends to a map η2 : D × I → I . Note that we have used
sufficient care in our construction so that:



D.M. Halverson, D. Repovš / Topology and its Applications 156 (2009) 2870–2880 2877
(1) (g1|B1 , η1|B1 ) and (g2|C2 , η2|C2 ) are disjoint topographical map pairs; and
(2) (g1|C1 , η1|C1 ) and (g2|B2 , η2|B2 ) are disjoint topographical map pairs.

By the Dc × D DTP∗, (gi, ηi) can be approximated by disjoint topographical map pairs. Hence we also have that

(3) (gi |Ci , ηi |Ci ) can be approximated by disjoint topographical map pairs.

Therefore, by applying the Special DTP Extension Theorem, there are disjoint topographical map pairs (hi,μi) that are
approximations of (gi|Ci , ηi |Ci ) so that (hi |Bi ,μi |Bi ) = (gi |Bi , ηi |Bi ). This determines approximations ( f ′

i , τ
′
i ) of ( f i, τi) that

are disjoint topographies. In particular, ( f ′
i (z, t), τ ′

i (z, t)) = (hi(x, t),μi(x, t)), where f i(z,0) = αi(x). �
Remark 7.2. Note that it is an easy matter to show that conditions (a)–(d) imply the DAP. Given two singular arcs in X ,
use these paths to define constant path homotopies and apply any one of the conditions to approximate by disjoint topo-
graphical map pairs in the case of (a)–(c) or disjoint concordances in the case of (d). The end levels provide the disjoint
approximations. The equivalence of (e) with (a)–(d) does require the DAP.

8. Crinkled ribbons properties

Recall that, given k � 0, a subset Z ⊂ X of space X is said to be locally k-coconnected (k-LCC) if for every point x ∈ X and
every neighborhood U ⊂ X of x, there exists a neighborhood V ⊂ U of x such that the inclusion-induced homomorphism
πk(V \ Z) → πk(U \ Z) is trivial. Also recall the following useful proposition (see [1, Corollary 26.2A]):

Proposition 8.1. Each k-dimensional closed subset A of a generalized n-manifold X, where k � n − 2, is 0-LCC.

We are now ready to define the ribbons properties.

Definition 8.2. A generalized n-manifold X has the crinkled ribbons property (CRP) provided that any constant homotopy
f : K × I → X , where K is a 1-complex can be approximated by a map f ′ : K × I → X so that:

(1) f ′(K × {0}) ∩ f ′(K × {1}) = ∅; and
(2) dim( f ′(K × I)) � n − 2.

Theorem 8.3. If X is a resolvable generalized n-manifold, n � 4, with the crinkled ribbons property, then X has the Kc × K DTP∗.

Proof. Let ( f1, τ1) ∈ Kc and ( f2, τ2) ∈ K. Apply the hypothesis of the theorem to find f ′
1 : K1 × I → X so that f ′

1(K1 ×
{0}) ∩ f ′

1(K1 × {1}) = ∅, and dim( f ′
1(K1 × I)) � n − 2. It follows that f ′

1(K1 × I) is 0-LCC in X . Let A0 = f ′
1(K1 × {0}) and

A1 = f ′
1(K1 × {1}). Define τ ′

1 : K1 × I → I so that:

τ ′
1(x, t) = d( f ′

1(x, t), A0)

d( f ′
1(x, t), A0) + d( f ′

1(x, t), A1)
.

Apply the 0-LCC condition to approximate f2 by f ′
2 : K2 × I → X so that

f ′
2

(
K2 × [Q ∩ I] ∪ K2 × I

) ∩ f ′
1(K1 × I) = ∅,

where K2 is a countable dense set in K2 containing the vertex set. Then ( f ′
2)

−1( f ′
1(K1 × I)) is closed 0-dimensional set Z .

Approximate τ2 so that τ ′
2 is 1–1 on Z . Then PPIN(( f ′

1, τ
′
1), ( f ′

2, τ
′
2)) is a closed 0-dimensional set. By the Reparametrization

Lemma, ( f ′
i , τ

′
i ) can be approximated by disjoint topographical map pairs. �

Corollary 8.4. If X is a resolvable generalized n-manifold, n � 4, with the crinkled ribbons property, then X × R has the disjoint disks
property.

Proof. Follows directly from Theorem 8.3 and the Equivalence Theorem. �
Definition 8.5. A generalized n-manifold X has the twisted crinkled ribbons property (CRP-T) provided that any constant ho-
motopy f : D × I can be approximated by a map f ′ : D × I so that:

(1) f ′(D × {0}) ∩ f ′(D × {1}) is a finite set of points; and
(2) dim( f ′(D × I)) � n − 2.
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Theorem 8.6. If X is a generalized n-manifold of dimension n � 4 having the twisted crinkled ribbons property and the property that
points are 1-LCC embedded in X, then X × R has the Dc × D DTP∗.

Proof. It suffices to show that maps in Dc × D can be approximated by disjoint topographical map pairs.
Let ( f1, τ1) ∈ Dc and ( f2, τ2) ∈ D. Since any generalized manifold of dimension � 3 has the DAP, we may assume

without loss of generality that ( f i, τi) are disjoint on the end levels (i.e., f1(D × {e}) ∩ f2(D × {e}) = ∅ for e = 0,1), and
that any adjustments hereafter are sufficiently small to maintain this condition. Apply the hypothesis of the theorem to
find f ′

1 : D × I → X so that f ′
1(D × {0}) ∩ f ′

1(D × {1}) is a finite set of points P , and dim( f ′
1(D × I)) � n − 2. It follows that

f ′
1(D × I) is 0-LCC in X . We may also apply the hypothesis that points are 1-LCC embedded in X and assume without loss

of generality that f2(D × I) ∩ P = ∅.
Choose ζ > 0 so that d( f2(D × I), P ) > ζ . Let A0 = f ′

1(D × {0}) − N(P , ζ ) and A1 = f ′
1(D × {1}) − N(P , ζ ). Define

τ ′
1 : D × {0,1} ∪ (

D × I − (
f ′

1

)−1(
N(P , ζ )

)) → I

so that:

τ ′
1(x, t) =

{
e if t = e,

d( f ′
1(x,t),A0)

d( f ′
1(x,t),A0)+d( f ′

1(x,t),A1)
otherwise.

Since D × I is an AR, τ ′
1 may be extended to all of D × I . Apply the 0-LCC condition to approximate f2 by f ′

2 : D × I → X
so that:

f ′
2

(
D × [Q ∩ I] ∪ [Q ∩ D] × I

) ∩ f ′
1(D × I) = ∅.

Then ( f ′
2)

−1( f ′
1(D × I)) is a closed 0-dimensional set Z . Approximate τ2 so that τ ′

2 is 1–1 on Z . Then PPIN(( f ′
1, τ

′
1), ( f ′

2, τ
′
2))

is a closed 0-dimensional set. By the Reparametrization Lemma, ( f ′
i , τ

′
i ) can be approximated by disjoint topographical map

pairs. �
Corollary 8.7. If X is a generalized n-manifold of dimension n � 4 having the twisted crinkled ribbons property and the property that
points are 1-LCC embedded in X, then X × R has the disjoint disks property.

Proof. The assertion follows directly from Theorem 8.6 and the Equivalence Theorem. Note that the condition that points
are 1-LCC embedded implies the (0,2)-DDP. �
Remark 8.8. Not all generalized manifolds of dimension n � 4 have the property that points are 1-LCC embedded. For
example, the Daverman–Walsh 2-ghastly spaces are resolvable generalized manifolds that do not have the (0,2)-DDP, and
hence cannot satisfy the condition that points are 1-LCC embedded [5].

The following corollary was also proved in [1,2] by using shrinking techniques. This is the first time general position
arguments have been applied to this setting.

Corollary 8.9. If X is a resolvable generalized locally spherical n-manifold, n � 4, then X is a codimension one manifold factor.

Proof. The locally spherical condition implies the twisted crinkled ribbons property. To see this, let f : D × I be a constant
homotopy. Cover the image of f by small neighborhoods B1, B2, . . . , Bn so that ∂ Bi is an embedded (n − 1)-sphere. Approx-
imate f by a constant path homotopy f ′ : D × I → ⋃

∂ Bi . Without loss of generality we may assume that there are ti ∈ D
such that 0 = t0 < t1 < · · · < tn−1 < tn = 1 and f ′([ti−1, ti]× I) ⊂ ∂ Bn . Since ∂ Bi is an (n−1)-sphere, f ′ can be approximated
by f ′′ : D × I → ⋃

∂ Bi such that the restriction of f ′′ to
⋃

(ti−1, ti) × I is an embedding and f ′′ = f ′ on (t0, t1, . . . , tn) × I .
Then f ′′ is the desired approximation of f . �
9. Fuzzy ribbons property

The fuzzy ribbons property is the most remarkable generalization of the disjoint homotopies techniques. In particular
the fuzzy ribbons property is a generalization of the method of δ-fractured maps. Recall that

Definition 9.1. A map f : D × I → X is said to be δ-fractured over a map g : D × I → X if there are pairwise disjoint balls
B1, B2, . . . , Bm in D × I such that:

(1) diam(Bi) < δ;
(2) f −1(im(g)) ⊂ ⋃m

i=1 int(Bi); and
(3) diam(g−1( f (Bi))) < δ.
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However, because of the freedom in defining the level map to obtain the DTP∗ conditions, we need no longer require
δ-control. The analogous definition in the setting of topographical map pairs is therefore:

Definition 9.2. Let ( f i, τi) ∈ K be such that f i : Ki × I → X and τi : Ki × I → I . Then ( f2, τ2) is said to be fractured over a
topographical map pair ( f1, τ1) if there are disjoint balls B1, B2, . . . , Bm in K2 × I such that:

(1) f −1
2 (im( f1)) ⊂ ⋃m

j=1 int(Bi); and

(2) τ1 ◦ f −1
1 ◦ f2(Bi) �= I .

We are now ready to define the fuzzy ribbons property:

Definition 9.3. A space X has the fuzzy ribbons property (FRP) provided that for any topographical map pairs, ( f1, τ1) ∈ Kc

and ( f2, τ2) ∈ K, and ε > 0 there are maps τ ′
i and ε-approximations f ′

i of f i so that ( f ′
2, τ

′
2) is fractured over ( f ′

1, τ
′
1).

Theorem 9.4. If a space X is an ANR with the DAP having the fuzzy ribbons property, then X has the Kc × K DTP∗.

Proof. Let ( f1, τ1) ∈ Kc and ( f2, τ2) ∈ K such that f i : Ki → X . Using the DAP we may assume without loss of generality
that f1(K1 × I) ∩ f2(K2 × {0,1} ∪ K (0)

2 × I) = ∅. Apply the fuzzy ribbons property to obtain maps τ ′
i and approximations f ′

i
of f i so that ( f ′

2, τ
′
2) is fractured over ( f ′

1, τ
′
1). The approximations of f i should be sufficiently small so that f ′

1(K1 × I) ∩
f ′
2(K2 × {0,1} ∪ K (0)

2 × I) = ∅. Then there are disjoint balls B1, B2, . . . , Bm in K2 × I − K2 × {0,1} ∪ K (0)
2 × I such that:

(1) ( f ′
2)

−1(im( f ′
1)) ⊂ ⋃m

j=1 int(Bi); and

(2) τ ′
1 ◦ ( f ′

1)
−1 ◦ f ′

2(Bi) �= I .

For each j = 1, . . . ,m, choose t j ∈ I − τ ′
1 ◦ ( f ′

1)
−1 ◦ f ′

2(Bi). Now define τ ′′
2 : K2 × {0,1} ∪ K (0)

2 × I ∪ (
⋃

B j) → I so that

τ ′′
2 (x, t) =

{
t if t = 0,1 or x ∈ K (0)

2 ,

t j if (x, t) ∈ B j.

Extend τ ′′
2 to K2 × I . Then ( f ′

1, τ
′
1) and ( f ′

2, τ
′′
2 ) are the desired disjoint topographical map pairs. �

Corollary 9.5. If a space X is an ANR with the FRP, then X × R has the DDP.

Proof. The DAP follows from the FRP. The rest follows directly from Theorem 9.4 and the Equivalence Theorem. �
Remark 9.6. Certain 2-ghastly spaces satisfy the FRP, such as those discussed in [9]. The same type of arguments apply,
however less attention to control is needed to satisfy the FRP.

10. Epilogue

The DTP∗ properties presented in this paper are not only more versatile in detecting codimension one manifold fac-
tors, they also provide a characterization of such spaces. The ribbons properties represent practical applications of these
properties. Further interesting questions that may be investigated using the DTP∗ or ribbons properties include:

Question 10.1. If G is an (n − 2)-dimensional cell-like decomposition of an n-manifold M , where n � 4, is M/G a codimen-
sion one manifold factor?

Question 10.2. Is every Busemann G-space of dimension n � 5 a manifold? Equivalently, are small metric spheres in these
spaces codimension one manifold factors?

Question 10.3. Is every finite-dimensional resolvable generalized manifold of dimension n � 4 a codimension one manifold
factor?
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