Preserving Z-sets by Dranishnikov's resolution

Sergey M. Ageev ${ }^{\text {a }}$, Matija Cencelj ${ }^{\text {b,c }}$, Dušan Repovš ${ }^{\text {d,c,* }}$
${ }^{\text {a }}$ Faculty of Mechanics and Mathematics, Belarus State University, Av. F. Skorina 4, Minsk, Belarus 220050
${ }^{\mathrm{b}}$ Institute for Mathematics, Physics and Mechanics, University of Ljubljana, PO Box 2964, Ljubljana, Slovenia 1001
${ }^{\text {c }}$ Faculty of Education, University of Ljubljana, Kardeljeva pl. 16, Ljubljana, Slovenia 1000
${ }^{\text {d Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana, Slovenia } 1000}$

ARTICLE INFO

Article history:

Received 15 April 2009
Accepted 17 April 2009

MSC:

primary 54F65, 58B05
secondary $54 \mathrm{C} 55,57 \mathrm{~N} 20$

Abstract

We prove that Dranishnikov's k-dimensional resolution $d_{k}: \mu^{k} \rightarrow Q$ is a UV^{n-1}-divider of Chigogidze's k-dimensional resolution c_{k}. This fact implies that d_{k}^{-1} preserves Z-sets. A further development of the concept of UV^{n-1}-dividers permits us to find sufficient conditions for $d_{k}^{-1}(A)$ to be homeomorphic to the Nöbeling space ν^{k} or the universal pseudoboundary σ^{k}. We also obtain some other applications.

© 2009 Elsevier B.V. All rights reserved.

Keywords:

Nöbeling space
Pseudoboundary
Z-set
Dranishnikov's resolution
Chigogidze's resolution
UV ${ }^{n}$-divider
Menger compactum
Menger manifold
Polish space
Polyhedron

1. Introduction

Dranishnikov [16] constructed for each $k \geqslant 1$ the map $d_{k}: \mu^{k} \rightarrow Q=[-1,1]^{\omega}$ of the k-dimensional Menger compactum onto the Hilbert cube Q such that:
(a) d_{k} is $(k-1)$-soft, $(k, k-2)$-soft and polyhedrally k-soft;
(b) d_{k}^{-1} preserves $\operatorname{AE}(k)$ - and $\operatorname{ANE}(k)$-spaces, and therefore d_{k} is a $U V^{k-1}$-map;
(c) d_{k} is k-invertible (i.e. for each map $\varphi: A \rightarrow Q$, $\operatorname{dim} A \leqslant k$, there exists a map $\tilde{\varphi}: A \rightarrow \mu^{k}$ such that $d_{k} \circ \tilde{\varphi}=\varphi$); and
(d) d_{k} is k-universal with respect to maps of compacta.

In what follows we shall call a map satisfying the properties (a)-(d), Dranishnikov's k-resolution. This map represents an important technique of geometric topology and permits us to demonstrate the wide analogy between Menger theory and

[^0]Q-manifold theory. For example, with its help the Triangulation and Stability Theorems in the Menger manifold theory were formulated and proved in [16].

On the other hand, Dranishnikov's resolution is by its properties the finite-dimensional analogue of the projection $d: Q \cong Q \times Q \rightarrow Q$ of the product onto factor with the exception of being k-soft. It is clear that the more properties of Dranishnikov's resolution will be found the more convenient instrument it will become.

In the sequel we shall call a k-soft map $c_{k}: v^{k} \rightarrow Q, k \geqslant 0$, of the k-dimensional Nöbeling space onto the Hilbert cube k-universal with respect to maps of Polish spaces Chigogidze's k-resolution [11]. This map, is a bridge between the Nöbeling and Hilbert ($l_{2}-$) manifold theories and possesses properties which are every bit as remarkable as those of Dranishnikov's resolution (the discussion on its uniqueness is put in the Epilogue). The opinion to consider c_{k} as the finite-dimensional analogue of the projection $c: l_{2} \cong Q \times(-1,1)^{\omega} \rightarrow Q$ is justified to a greater degree than in the case of Dranishnikov's resolution.

The investigation of interconnection between these two resolutions was initiated in [7] and it was established that Chigogidze's resolution is densely contained in Dranishnikov's resolution, i.e. that there exists an embedding $i_{k}: v^{k} \hookrightarrow \mu^{k}$ such that $c_{k}=d_{k} \upharpoonright_{\nu^{k}}$ and $\mathrm{Cl} \nu^{k}=\mu^{k}$. This result is in complete accordance with the infinite-dimensional situation: $c=d \upharpoonright_{l_{2}}$ and $\mathrm{Cll}_{2}=Q$ for the natural embedding $i: l_{2} \cong Q \times(-1,1)^{\omega} \hookrightarrow Q$.

However, while most of the useful properties of these infinite-dimensional objects are evident (for instance, that i is a UV-map), all new properties of its finite-dimensional analogues are established with excessive difficulties, especially since d_{k} fails to be k-soft. The aim of the present paper is to make a definite progress towards the investigation of the finitedimensional resolutions. Our main result is:

Theorem 1.1. For each $k \geqslant 1$ there exists Dranishnikov's resolution $\delta_{k}: \mu^{k} \rightarrow Q$ which is $a \mathrm{UV}^{k-1}$-divider of Chigogidze's resolution $\chi_{k}: \nu^{k} \rightarrow Q$, i.e. there exists $a \mathrm{UV}^{k-1}$-embedding $i_{k}: v^{k} \hookrightarrow \mu^{k}$ such that $\chi_{k}=\delta_{k} \upharpoonright_{\nu^{k}}$ and $\mathrm{Cl} \nu^{k}=\mu^{k}$.

The proof of this central theorem is based on a careful analysis of the concept of the $U V^{k-1}$-dividers, which may in fact, be considered as the other purpose of this paper. In particular, we find a piecewise linear version of Theorem 1.1 which is a crucial ingredient of its proof.

Theorem 1.2. Let P be a compact polyhedron with the triangulation L and $k \geqslant 1$. Then there exist an ANE-compactum D and maps $p: D \rightarrow P$ and $q: D \rightarrow P^{(k)}$ such that:
(1) p is a k-conservatively soft; and
(2) p is $a \mathrm{UV}^{k-1}$-divider of a k-soft map.

Remark 1.3. It will follow directly from the proof of Theorem 1.2 that
(3) q is $p^{-1}(L \circ L)$-map where $L \circ L$ is the star of L with respect to L.

Theorem 1.1 implies several important results. Since the passing to the preimage with respect to an n-soft map preserves Z_{n}-sets, as it does also with respect to a $U V^{k-1}$-divider of Chigogidze's resolution χ_{k} (see Proposition 3.4), Dranishnikov's resolution does preserves Z-sets.

Theorem 1.4. For each $k \geqslant 1$ there exists Dranishnikov's resolution $\delta_{k}: \mu^{k} \rightarrow Q$ such that $\left(\delta_{k}\right)^{-1}(F) \subset_{z} \mu^{k}$ as soon as $F \subset_{z_{k}} Q$.

Of course, this intriguing fact will play an important role in the theory of Menger manifolds. It should also be remarked that this fact was conjectured for a long time (see $[11,17]$) and it was erroneously claimed to be false [12].

Next, we find sufficient conditions for the preimage $\delta_{k}^{-1}(Z)$ of $Z \subset Q$ to be homeomorphic to the Nöbeling space ν^{k} or universal pseudoboundary σ^{k}.

Theorem 1.5. For each $k \geqslant 1$ there exists Dranishnikov's resolution $\delta_{k}: \mu^{k} \rightarrow Q$ such that for each $Z \in \operatorname{AE}(k), Z \hookrightarrow Q \in U V^{k-1}$, the following holds:
(4) $\delta_{k}^{-1}(Z) \cong v^{k}$ as soon as Z is topologically complete, strongly k-universal with respect to Polish spaces;
(5) $\delta_{k}^{-1}(Z) \cong \sigma^{k}$ as soon as Z is σ-compact, discretely I^{k}-approximated and strongly k-universal with respect to compacta.

Theorem 1.5 implies that $\delta_{k}^{-1}\left((-1,1)^{\omega}\right) \cong v^{k}$ and $\delta_{k}^{-1}\left(Q \backslash(-1,1)^{\omega}\right) \cong \sigma^{k}$ which is the affirmative solution of Problem 612 from [15].

2. Preliminaries

Throughout this paper we shall assume all spaces to be separable complete metric and all maps to be continuous, if they do not arise as a result of some constructions and their properties should be established in the process of proof. The set of all open covers of the space X is denoted by $\operatorname{cov} X$. We will use $\mathrm{N}(A ; \omega)$ to denote the neighborhood $\bigcup\{U \mid U \in \omega, U \cap A \neq \emptyset\}$ of $A \subset X$ with respect to $\omega \in \operatorname{cov} X ; \omega^{\prime} \circ \omega \rightleftharpoons\left\{\mathrm{N}(A ; \omega) \mid A \in \omega^{\prime}\right\}$ - the star of a cover ω^{\prime} with respect to ω (we use the sign \rightleftharpoons for introducing new objects to the left of it). The body $\bigcup \omega$ of a system of sets ω is the set $\bigcup\{U \mid U \in \omega\}$. We say that the embedding $A \subset B$ is strong and write $A \Subset B$ if $\mathrm{Cl} A \subset \operatorname{Int} B$.

The refinement of the cover ω in ω_{1} is denoted by $\omega \prec \omega_{1}$. If $f, g: X \rightarrow Y$ are maps, and δ is a family of subsets of Y, then the δ-closeness of f to g (briefly, $\operatorname{dist}(f, g) \prec \delta$ or $f \stackrel{\delta}{\sim} g$) means that if $f(x) \neq g(x)$, then $\{f(x), g(x)\} \subset W \in \delta$. The restriction of a map f onto a subset A is denoted by $f \upharpoonright_{A}$ or simply $f \upharpoonright$ if there is no ambiguity about A. Since f is an extension of $g=f \upharpoonright_{A}$, we write this as $f=\operatorname{ext}(g)$. If $\delta>0$ is a number, then δ-closeness of f to g is denoted by $\operatorname{dist}(f, g)<\delta$, as in the case of covers. We denote the distance $d(x, y)$ between points $x, y \in X$ of metric space (X, d) as $\operatorname{dist}(x, y)$ if there is no confusion.

Let us introduce a series of notions concerned with the extension of partial maps, i.e. maps given on closed subspaces of a metric space [18]. If an arbitrary partial map $Z \longleftrightarrow A \xrightarrow{\phi} X, \operatorname{dim} Z \leqslant k, k \leqslant \infty$, can be extended on the entire space Z [on some neighborhood of A], then X is called an absolute [neighborhood] extensor in dimension $k, X \in \mathrm{~A}[\mathrm{~N}] \mathrm{E}(k)$. If $k=\infty$, then the notion of absolute [neighborhood] extensor $(X \in A[N] E)$ arises. By the Kuratowski-Dugundji Theorem [18], the property of extendability in finite dimension correlates with the connectivity and the local connectivity of the space: $X \in \mathrm{AE}(k) \Leftrightarrow$ $X \in \mathrm{C}^{k-1} \& \mathrm{LC}^{k-1}$.

The problem of extension of partially defined morphisms has a categorical character. In the category of maps having a fixed target Y the problem of extension of morphisms is known as the problem of extension of a partial lift to the global lift. For a given map $f: X \rightarrow Y$, the partial lift of the map $\psi: Z \rightarrow Y$ with respect to f is the map $\varphi: A \rightarrow X$ which is defined on the closed subset $A \subset Z$ and which makes the following diagram commutative:

A partial lift φ of the map ψ is extended to a global (local) lift with respect to f if there exists a global (local) extension of $\varphi: Z \rightarrow X$ which is the lift of ψ. Thus, the problem of global lifting consists in the splitting of the square diagram above by the map $\hat{\varphi}$ into two triangular commutative diagrams.

Recall that a map f is called soft (locally soft) with respect to pair (Z, A), if any partial lift $\phi: A \rightarrow X$ (with respect to f) of any map $\psi: Z \rightarrow Y$ can be extended to the global (local) lift. The collection $\mathfrak{S}(f)$ of all pairs (Z, A) for which f is soft will be called a softness envelope of the map f. Note that if $|Y|=1$, then the problem of extension of lifts is transformed into the problem of extension of maps.

Let \mathfrak{C} be a class of pairs (Z, A) in which $A \subset Z$ is a closed subset. The map f is called \mathfrak{C}-soft (locally \mathfrak{C}-soft) if it is soft (locally soft) with respect to all pairs (Z, A) from \mathfrak{C}. Along this line, we can introduce the notions of (n, k)-softness $(\mathfrak{C}=\{(Z, A) \mid \operatorname{dim} Z \leqslant n$, $\operatorname{dim} A \leqslant k\})$, polyhedral softness $(\mathfrak{C}=\{(Z, A) \mid Z, A$ are polyhedra, and $\operatorname{dim} Z \leqslant n\})$. We denote the class of (n, n)-soft maps, or briefly, n-soft maps by \mathfrak{S}_{n}. If $\mathfrak{S}(f)$ contains all pairs $(Z \times[0,1], Z \times\{0\})$, where $\operatorname{dim} Z \leqslant n$, then f is called a Hurewicz n-fibration. The following assertion is well known [18]:

Proposition 2.1. Let $Y \in \operatorname{ANE}(n)$. Then for each $\varepsilon \in \operatorname{cov} Y$ there exists $\delta \in \operatorname{cov} Y, \delta \prec \varepsilon$ such that for every closed subspace $A \subset W$, $\operatorname{dim} W \leqslant n$, and also for all maps $\hat{\alpha}: W \rightarrow Y$ and $\beta: A \rightarrow Y$ such that $\operatorname{dist}\left(\hat{\alpha} \upharpoonright_{A}, \beta\right) \prec \delta$, there exists an extension $\hat{\beta}: W \rightarrow Y$, $\hat{\beta} \upharpoonright_{A}=\beta$, such that $\operatorname{dist}(\hat{\alpha}, \hat{\beta}) \prec \varepsilon$.

We say that the family \mathcal{L} of subsets in metric space Y is an equi- LC^{n-1}-family provided that \mathcal{L} consists of closed subsets in the body $\bigcup \mathcal{L}$ and for any $x \in \bigcup \mathcal{L}$ and $\varepsilon>0$ there exists $\delta>0$ such that any map $\phi: S^{k} \rightarrow \mathrm{~N}(x ; \delta) \cap L, L \in \mathcal{L}$ and $k<n$, defined on the boundary of the ball B^{k+1}, is extended to the map $\hat{\phi}: B^{k+1} \rightarrow \mathrm{~N}(x ; \varepsilon) \cap L$.

The local n-softness of the surjective open map $f: Y \rightarrow Z$ where Y is complete metric space, by the Michael Selection Theorem [20], is equivalent to $\left\{f^{-1}(y)\right\} \in$ equi- LC^{n-1}. The following assertion is a corollary of the filtered finite-dimensional selection theorem [20] which is in turn a far reaching generalization of the Michael Selection Theorem.

Theorem 2.2. Let $f: Y \rightarrow Z$ be a complete locally k-soft surjective map of metric spaces, $A \subset Y$ and $B \subset Z$ closed subsets such that $f(A)=B$ and $f \upharpoonright_{A}: A \rightarrow B$ is a homeomorphism. Then for each neighborhood $Y_{k} \subset Y$ of A there exist a decreasing sequence $Y_{k} \supset Y_{k-1} \supset \cdots \supset Y_{0}$ of open neighborhoods of A and a neighborhood $Z_{0} \subset f\left(Y_{0}\right)$ of B in Z such that
(a) The embedding $Y_{i} \cap f^{-1}(z) \hookrightarrow Y_{i+1} \cap f^{-1}(z)$ is ($k-1$)-aspherical for each $z \in Z_{0}$ and for each $0 \leqslant i \leqslant k$ (i.e. this embedding induces trivial homomorphism of homotopy groups $\pi_{i}, i \leqslant k-1$);
(b) For each map $\psi: W \rightarrow Z_{0}$ of k-dimensional metric space W there exists a lift $\tilde{\psi}: W \rightarrow \mathrm{Cl} Y_{k}$ of ψ with respect to f.

In the sequel we need the following easy consequence of Theorem 2.2 the direct proof of which is rather cumbersome.
Proposition 2.3. Let $f: Y \rightarrow Z$ be a locally k-soft complete surjective map of metric spaces. Then for each map $\alpha: W \rightarrow Y$ of k-dimensional metric space W and for each function $\varepsilon: W \rightarrow(0,1)$ there exists a function $\delta: W \rightarrow(0,1)$ such that for each map $\beta: W \rightarrow Z$ with $\operatorname{dist}(f(\alpha(w)), \beta(w))<\delta(w), w \in W$, there exists a lift $\tilde{\beta}: W \rightarrow Y$ of β with respect to f such that $\operatorname{dist}(\alpha(w), \tilde{\beta}(w))<\varepsilon(w), w \in W$.

We say that a dense map $f: X \rightarrow Y$ (i.e. $f(X)$ is dense in Y) from $\operatorname{ANE}(k)$-space X into Y is:
(1) A $U V^{k-1}$-map (briefly, $f \in U V^{k-1}$) if for each neighborhood $\mathcal{U}(y), y \in Y$, there exists a neighborhood $\mathcal{V}(y)$ such that the embedding $f^{-1}(\mathcal{V}(y)) \hookrightarrow f^{-1}(\mathcal{U}(y))$ is $(k-1)$-aspherical; and
(2) The map f is approximately polyhedrally k-soft if for every $\varepsilon>0$ there exists $\delta>0$ such that for every k-dimensional compact polyhedral pair (W, A) and for all maps $\varphi: A \rightarrow X$ and $\psi: W \rightarrow Y$ with $\operatorname{dist}(\psi, f \circ \varphi)<\delta$, there exists an extension $\hat{\varphi}: W \rightarrow X$ of φ satisfying $\operatorname{dist}(\psi, f \circ \hat{\varphi})<\varepsilon$.

In general, $\mathrm{a} \mathrm{UV}^{k-1}$-preimage of $\operatorname{ANE}(k)$-space is not an $\operatorname{ANE}(k)$-space. But there exists one important exception:
(3) If $X_{0} \hookrightarrow X \in \mathrm{UV}^{k-1}$ and $X \in \operatorname{ANE}(k)$, then $X_{0} \in \operatorname{ANE}(k)$.

The following criterion is well known (see [19]):
Proposition 2.4. If $f \in U V^{k-1}$, then f is an approximately polyhedrally k-soft map. Conversely, if f is an approximately polyhedrally k-soft map and $Y \in \operatorname{ANE}(k)$, then $f \in \mathrm{UV}^{k-1}$.

From Proposition 2.4 we deduce several known properties of UV^{k-1}-maps.
Proposition 2.5. If $f: X \rightarrow Y \in \mathrm{UV}^{k-1}$ and Y is complete, then $Y \in \mathrm{ANE}(k)$. If additionally $X \in \mathrm{AE}(k)$, then $Y \in \mathrm{AE}(k)$.
Proposition 2.6. Let $g: X \rightarrow Y$ be a UV^{k-1} _map, and let $f: X \rightarrow Z$ and $h: Y \rightarrow Z$ be maps between ANE (k)-spaces such that $f=h \circ g$. Then $f \in U V^{k-1}$ if and only if $h \in U V^{k-1}$.

Proposition 2.7. If $f: X \rightarrow Y$ is $a \mathrm{UV}^{k-1}$-map of ANE (k)-spaces, and $f^{-1}\left(Y_{0}\right) \hookrightarrow X \in U V^{k-1}$, then $f \upharpoonright: f^{-1}\left(Y_{0}\right) \rightarrow Y_{0} \in U V^{k-1}$.

Recall that the fiberwise product $W=X_{f} \times_{g} Z$ of X and Z with respect to $f: X \rightarrow Y$ and $g: Z \rightarrow Y$ is the subset $\{(x, z) \mid f(x)=g(z)\} \subset X \times Z$. The projections of $X \times Z$ onto Z and onto X generate the maps $f^{\prime}: W \rightarrow Z$ and $g^{\prime}: W \rightarrow X$ which are called the projections parallel f and g, respectively. We write it $f^{\prime} \| f$ and $g^{\prime} \| g$ for brevity.

Several properties of maps are inherited by parallel projections. For instance, the softness envelope $\mathfrak{S}(f)$ is contained in $\mathfrak{S}\left(f^{\prime}\right)$. The following is easily established:
(c) If f is n-soft and $g \in U V^{n-1}$, then $f^{\prime} \| f$ is n-soft, and $g^{\prime} \| g$ is a $U V^{n-1}$-map.

In [7] we described the reasonable part of softness envelope of Dranishnikov's resolution d_{n}.

Definition 2.8. The pair (Z, A) is called n-conservative if any partial lift $\phi: A \rightarrow S^{n} \times S^{n}$ of $\psi: Z \rightarrow S^{n}$ with respect to the projection $\mathrm{pr}_{2}: S^{n} \times S^{n} \rightarrow S^{n}$ of the n-spheres product onto the second factor is extended to the global lift $\hat{\phi}: Z \rightarrow S^{n} \times S^{n}$ of ψ such that $(\hat{\phi})^{-1}($ Diag $) \subset A$.

The map $f: X \rightarrow Y$ which is soft with respect to all n-dimensional n-conservative pairs (Z, A) is called n-conservatively soft. Dranishnikov's resolution d_{n} is n-conservatively soft [7]. This, in turn, implies all known soft properties of d_{n}.

Definition 2.9. The Polish space X (i.e. complete and separable) is called strongly k-universal with respect to Polish spaces if any map $\phi: Z \rightarrow X$ of Polish space $Z, \operatorname{dim} Z \leqslant k$ is arbitrarily closely approximated by closed embedding.

Definition 2.10. Let $\left\{I_{i}^{k}\right\}$ be a countable family of k-dimensional disks, and D - their discrete union $\left\lfloor\left\{I_{i}^{k} \mid 1 \leqslant i<\infty\right\}\right.$. The space X is called discretely I^{k}-approximated if any map $\phi: D \rightarrow X$ is arbitrarily closely approximated by a map $\tilde{\phi}: D \rightarrow X^{1}$ with discrete $\left\{\tilde{\phi}\left(I_{i}^{k}\right) \mid 1 \leqslant i<\infty\right\}$.

[^1]For Polish $\operatorname{ANE}(k)$-space the property of strong k-universality with respect to Polish spaces and discrete I^{k}-approximation are equivalent [10, p. 127]. In [1-4] the following criterion for the Nöbeling space was established.

Theorem 2.11. The Polish space X of dimension k is homeomorphic to the Nöbeling space v^{k} if and only if X is an $\operatorname{AE}(k)$-space which is strongly k-universal with respect to Polish spaces.

Let \mathcal{C} be a class of spaces. Recall [9] that a space X is called strongly \mathcal{C}-universal if any map $f: D \rightarrow X$ of $D \in \mathcal{C}$, the restriction of which on a closed subspace $C \in \mathcal{C}$ is a Z-embedding, is arbitrarily closely approximable by a Z-embedding $f^{\prime}: D \rightarrow X$ with $f \upharpoonright_{c}=f^{\prime}\left\lceil c\right.$. Under the universal k-dimensional pseudoboundary we understand a $\mathcal{C}_{c(k)}$-absorber X, where $\mathcal{C}_{c(k)}$ means the class of all k-dimensional compacta. This means that k-dimensional σ-compact $\mathrm{AE}(k)$-space X is strongly $\mathcal{C}_{C(k)}$-universal and discretely I^{k}-approximated. The paper [22] called attention to the fact that Theorem 2.11 implies the uniqueness of the topological type of the universal k-dimensional pseudoboundary.

Theorem 2.12. ([14,1]) Any two universal k-dimensional pseudoboundaries are homeomorphic.

3. Basic properties of $\mathbf{U V}{ }^{\boldsymbol{n}-1}$-divider

By \mathcal{P} we denote a subclass of n-soft maps of $\operatorname{ANE}(n)$-spaces, $\mathcal{P} \subset \mathfrak{S}_{n} .{ }^{2}$
Definition 3.1. A proper map $h: Y \rightarrow Z$ between ANE (n)-spaces is called
(i) A UV ${ }^{n-1}$-divider of $f: X \rightarrow Z$ if there exists a topological embedding $g: X \hookrightarrow Y \in U V^{n-1}$ such that $f=h \circ g$ (i.e. $Y_{0} \rightleftharpoons g(X)$ is dense G_{δ} in $Y, Y_{0} \hookrightarrow Y \in U V^{n-1}$ and $\left.f=h \upharpoonright_{Y_{0}}\right)$; and
(ii) $\mathrm{A} U V^{n-1}$-divider of \mathcal{P} if h is a $U V^{n-1}$-divider of some map $f: X \rightarrow Z \in \mathcal{P}$.

Our interest is basically in the $U V^{n-1}$-dividers $h: Y \rightarrow Z$ of \mathcal{P} with $\operatorname{dim} Y=n \leqslant \operatorname{dim} Z$. The first nontrivial example of a $U V^{n-1}$-divider was constructed in [13]. Prior to establishing that Dranishnikov's resolution is a $U V^{n-1}$-divider of Chigogidze's resolution we present their general properties. It follows from Proposition 2.6 that a $U V^{n-1}$-divider h of f is $U V^{n-1}$ iff $f \in \mathrm{UV}^{n-1}$. Hereafter and also from $\mathcal{P} \subset \mathfrak{S}_{n}$ it easily follows that:

Proposition 3.2. Any UV^{n-1}-divider of \mathcal{P} is an open UV^{n-1}-map between ANE(n)-spaces.
If in the definition of $U V^{n-1}$-divider we restricted ourselves to compact spaces, then the conclusion of Proposition 3.2 can be essentially strengthened [19,7].

Theorem 3.3 (On division of locally n-soft maps of compact spaces). Let the locally n-soft map $f: X \rightarrow Z$ be a composition of $a \mathrm{UV}^{n-1}$ _map $g: X \rightarrow Y$ and a map $h: Y \rightarrow Z$. If all spaces X, Y and Z are ANE (n)-compacta, then h is locally n-soft.

By Proposition 2.4, any $U V^{n-1}$-map is approximately polyhedrally k-soft. On the other hand, the passing to the preimage with respect to n-soft map preserves Z_{n}-sets. These facts easily imply:

Proposition 3.4. If $h: Y \rightarrow Z$ is $a U V^{n-1}$-divider of \mathcal{P}, then $h^{-1}(F) \subset z_{n} Y$, for each $F \subset z_{n} Z$.
We say that the subclass \mathcal{P} is closed with respect to
(1) Composition if for any $f: X \rightarrow Y \in \mathcal{P}$ and $g: Y \rightarrow Z \in \mathcal{P}, g \circ f: X \rightarrow Z \in \mathcal{P}$; and
(2) Passing to complete preimages if for any $f: X \rightarrow Y \in \mathcal{P}$ and ANE(n)-subspace $Y_{0} \hookrightarrow Y, f\left\lceil_{X_{0}}: X_{0} \rightleftharpoons f^{-1}\left(Y_{0}\right) \rightarrow Y_{0} \in \mathcal{P}\right.$.

It can be seen that the class of all n-soft strongly n-universal maps of Polish ANE (n)-spaces (which are the basic interest of this paper) satisfies the conditions (1) and (2).

Proposition 3.5. Let \mathcal{P} be a class which is closed both with respect to composition and passing to complete preimages. If $h_{1}: Y_{1} \rightarrow Y_{2}$ is a UV ${ }^{n-1}$-divider of $f_{1}: X_{1} \rightarrow Y_{2} \in \mathcal{P}$, where $g_{1}: X_{1} \hookrightarrow Y_{1} \in \mathrm{UV}^{n-1}$, and $h_{2}: Y_{2} \rightarrow Y_{3}$ is a UV ${ }^{n-1}$-divider of $f_{2}: X_{2} \rightarrow Y_{3} \in \mathcal{P}$, where $g_{2}: X_{2} \hookrightarrow Y_{2} \in U V^{n-1}$, then the composition $h_{2} \circ h_{1}: Y_{1} \rightarrow Y_{3}$ is $a U^{n-1}$-divider of the composition $X_{0} \rightleftharpoons X_{1} \cap\left(h_{1}\right)^{-1}\left(X_{2}\right) \xrightarrow{f_{1}\left\lceil x_{0}\right.} X_{2} \xrightarrow{f_{2}} Y_{3} \in \mathcal{P}$.

[^2]Proof. Since $f_{1} \upharpoonright x_{0} \in \mathcal{P}$ (as the restriction of f_{1} onto the complete preimage $\left.X_{0}=\left(f_{1}\right)^{-1}\left(X_{2}\right)\right)$ and $f_{2} \circ f_{1} \upharpoonright x_{0} \in \mathcal{P}$ (as the composition of maps from \mathcal{P}), it suffices to prove that $e: X_{0} \hookrightarrow Y_{1}$ is a UV^{n-1}-embedding. But the embedding $e_{1}: X_{0} \hookrightarrow X_{1} \in U V^{n-1}$, being a parallel projection in the fiberwise product of n-soft map $f_{1}: X_{1} \rightarrow Y_{2}$ and $U V^{n-1}$-embedding $g_{2}: X_{2} \hookrightarrow Y_{2}$ (see 2.7(a)). Then the embedding $e \in U V^{n-1}$, being a composition of $U V^{n-1}$-maps e_{1} and g_{1}.

We give one more property of $U V^{n-1}$-dividers.
Proposition 3.6. Let \mathcal{P} be closed with respect to passing to complete preimages, and $h: Y \rightarrow Z$ be $a U^{n-1}$-divider of $f: X \rightarrow Z \in \mathcal{P}$, where $g: X \hookrightarrow Y \in \mathrm{UV}^{n-1}$. Then for any $Z_{0} \hookrightarrow Z \in \mathrm{UV}^{n-1}$ the following holds:
(3) $f \upharpoonright_{X_{0}}: X_{0} \rightarrow Z_{0} \in \mathcal{P}$ where $X_{0} \rightleftharpoons f^{-1}\left(Z_{0}\right)=h^{-1}\left(Z_{0}\right) \cap X$;
(4) $X_{0} \hookrightarrow Y \in U V^{n-1}$;
(5) $h \upharpoonright_{Y_{0}}: Y_{0} \rightarrow Z_{0}$ is $a \mathrm{UV}^{n-1}$-divider of f where $Y_{0} \rightleftharpoons h^{-1}\left(Z_{0}\right)$; and
(6) $Y_{0} \hookrightarrow Y \in U V^{n-1}$.

Proof. By the n-softness of f it follows that $X_{0} \hookrightarrow X \in U V^{n-1}$ and $X_{0} \in \operatorname{ANE}(n)$. Since $Z \in \operatorname{ANE}(n)$ and $Z_{0} \hookrightarrow Z \in U V^{n-1}$, it follows by 2.3(3), that $Z_{0} \in \operatorname{ANE}(n)$. Then the conditions imposed on the subclass \mathcal{P} imply that $f\left\lceil_{X_{0}} \in \mathcal{P}\right.$, hence (3) is proved. Since $X_{0} \hookrightarrow X$ and $g: X \hookrightarrow Y \in U V^{n-1}$, Proposition 2.6 implies $X_{0} \hookrightarrow Y \in U V^{n-1}$ which proves (4).

The property (5) is equivalent to the following fact.
Lemma 3.7. $X_{0} \hookrightarrow Y_{0} \in U V^{n-1}$.
Proof. We consider a neighborhood $\mathcal{U} \subset Y$ of $y_{0} \in Y_{0}$ and a map of pairs $\varphi:\left(B^{n}, S^{n-1}\right) \rightarrow\left(\mathcal{U} \cap Y_{0}, \mathcal{U} \cap X_{0}\right)$. By virtue of $g \in U V^{n-1}$, the map φ can be arbitrarily closely approximated by $\varphi^{\prime}: B^{n} \rightarrow \mathcal{U} \cap X$ with $\varphi^{\prime}=\varphi$ on S^{n-1}. Also, by $Z_{0} \hookrightarrow Z \in \mathrm{UV}^{n-1}$, the map $f \circ \varphi^{\prime}$ can be arbitrarily closely approximated by $\psi: B^{n} \rightarrow Z_{0}$ with $\psi=f \circ \varphi$ on S^{n-1}. And finally, n-softness of f implies the existence of a lift $\tilde{\psi}: B^{n} \rightarrow X_{0}$ of ψ which coincides with φ on S^{n-1} and is arbitrarily close to φ^{\prime}.

It follows by Lemma 3.7 and Proposition 2.5 that $Y_{0} \in \operatorname{ANE}(n)$. Since the composition $X_{0} \hookrightarrow Y_{0} \hookrightarrow Y$ is a UV^{n-1} embedding it follows by 3.7 and 2.6 that $Y_{0} \hookrightarrow Y \in \mathrm{UV}^{n-1}$. Hence (6) is proved.

Up to the end of the section we fix an n-dimensional space Y and a $U V^{n-1}$-divider $h: Y \rightarrow Z$ of an n-soft map $f: X \rightarrow Z$ (with $g: X \hookrightarrow Y \in U V^{n-1}$).

Proposition 3.8. If Z is discretely I^{n}-approximated, then Y is also discretely I^{n}-approximated.
Proof. Consider maps $\varepsilon: Y \rightarrow(0,1)$ and $\varphi: D \rightarrow Y$, where D is a countable discrete union $\left\lfloor\left\{I_{i}^{n} \mid i<\infty\right\}\right.$ of n-dimensional cubes. Since h is proper, we can assume that ε coincides with $\zeta \circ f$ for a sufficiently small function $\zeta: Z \rightarrow(0,1)$.

Since $g \in U V^{n-1}, \varphi$ is approximated by a map $\varphi^{\prime}: D \rightarrow X$ such that dist $\left(\varphi^{\prime}, \varphi\right) \prec \varepsilon \circ \varphi$. Next, we approximate $\psi^{\prime} \rightleftharpoons f \circ \varphi^{\prime}$ sufficiently closely by a map $\psi: D \rightarrow Z$ for which the family $\left\{\psi\left(I_{i}^{n}\right) \mid i<\infty\right\}$ is discrete. By Proposition $2.3, \psi$ can be δ-lifted to the map $\tilde{\psi}: D \rightarrow X$ which is arbitrarily close to φ^{\prime}. It can be easily seen that the family $\left\{\tilde{\psi}\left(I_{i}^{n}\right)\right\}$ is discrete in Y, and $\tilde{\psi}$ is at the required distance from φ.

The proof of Theorem 1.5 will be given in the end of Section 8, and the rest of this section presents some necessary results for this.

Since the notions of strong n-universality with respect to Polish spaces and discrete I^{n}-approximateness are equivalent for Polish ANE (n)-spaces, we can assert, using the criterion of the Nöbeling space ν^{n} (Theorem 2.11), that
(a) If a Polish space $Z \in \operatorname{AE}(n)$ is strongly n-universal with respect to Polish spaces and $\operatorname{dim} Y=n$, then $Y=h^{-1}(Z) \cong v^{n}$.

Proposition 3.9. Let Z be a discretely I^{n}-approximated and strongly $\mathcal{C}_{C(n)}$-universal space, where we denote by $\mathcal{C}_{c(n)}$ the class of all n-dimensional compacta. Then $Y=h^{-1}(Z)$ is strongly $\mathcal{C}_{c(n)}$-universal.

Proof. By 3.8, $Y=h^{-1}(Z)$ is a discretely I^{n}-approximated space. Since any compactum in a discretely I^{n}-approximated $\operatorname{ANE}(n)$-space is a Z_{n}-set [9], it follows that
(iii) Any compactum in Z (as well as in Y) is a Z_{n}-set.

Let $\varphi: D \rightarrow Y$ be a map of an n-dimensional compactum D such that its restriction onto a closed subspace C is an embedding. Since $g \in U V^{n-1}$, we can assume without loss of generality that $\varphi(D \backslash C) \subset X$. It follows from (iii) that
$(h \circ \varphi)(C) \subset_{Z} Z$. Therefore $h \circ \varphi$ can be arbitrarily closely approximated by a map $\psi: D \rightarrow Z$ such that $\psi=h \circ \varphi$ on C, and $\psi \upharpoonright_{D \backslash C}$ is an embedding whose image does not intersect $(h \circ \varphi)(C)$.

Since $f: X \rightarrow Z$ is n-soft, $\psi \upharpoonright_{D \backslash C}$ can be lifted with respect to f, by Proposition 2.3 , to the map $\tilde{\psi}: D \backslash C \rightarrow X$, arbitrarily close to $\varphi \upharpoonright_{D \backslash C}: D \backslash C \rightarrow X$. If $\tilde{\psi}$ and $\varphi \upharpoonright_{D \backslash C}$ are sufficiently close, the map $\varphi^{\prime}: D \rightarrow Y$, defined as $\varphi^{\prime}=\varphi$ on C and $\varphi^{\prime}=\tilde{\psi}$ on $D \backslash C$, becomes continuous. It is clear that the map φ^{\prime} is an embedding which is arbitrarily close to φ. Hence the proof is completed.

The characterization theorem for universal pseudoboundary (Theorem 2.12) and Proposition 3.9 imply that
(b) If $\operatorname{dim} Y=n$ and $Z \in \mathrm{AE}(n)$ is σ-compact discretely I^{n}-approximated and strongly n-universal with respect to compact spaces, then Y is homeomorphic to the n-dimensional universal pseudoboundary σ^{n}.

4. Inverse limit properties of $U V^{\boldsymbol{n} \boldsymbol{1}}$-dividers

Definition 4.1. A map $f: X \rightarrow Y$ is called strongly n-universal with respect to Polish spaces if for each n-dimensional Polish space Q and also for all maps $\varepsilon: X \rightarrow(0,1)$ and $\varphi: Q \rightarrow X$ there exists a closed embedding $\varphi^{\prime}: Q \hookrightarrow X \varepsilon$-close to φ such that $f \circ \varphi^{\prime}=f \circ \varphi$.

Definition 4.2. A map $f: X \rightarrow Y$ is called n-filled if for each map $\varphi: Z \rightarrow X$ of n-dimensional Polish space Q there exists a closed embedding $\psi: Q \hookrightarrow X$ such that $f \circ \varphi=f \circ \psi$.

Note that the composition of n-soft and n-filled maps is n-filled.
The commutative diagrams \mathcal{D}_{t} for $t=1,2,3, \ldots$

generate the map $f: X \rightleftharpoons \lim \left\{X_{t}, \eta_{t}\right\} \rightarrow Z \rightleftharpoons \lim \left\{Z_{t}, \sigma_{t}\right\}$ of inverse limit of spectra. In general, n-softness (n-conservative softness and so on) of all maps $f_{t}, \sigma_{t}, \eta_{t}$ does not imply that f possesses the corresponding property. As care should be taken to see that the map properties are preserved by passage to the inverse limit of spectra, we introduce the following

Definition 4.3. The commutative diagram \mathcal{D}_{t} possesses a property \mathcal{Q}, if its characteristic map $\chi_{t}: X_{t+1} \rightarrow W_{t}$ into the fiberwise product $W_{t} \rightleftharpoons\left(Z_{t+1}\right)_{\sigma_{t}} \times_{f_{t}} X_{t}$, given by $\chi_{t}(x)=\left(f_{t+1}(x), \eta_{t}(x)\right) \in W_{t}$, possesses \mathcal{Q}.

Basically, we are interested in n-soft and n-filled commutative diagrams. The particular case of the following proposition is given in [17, 2.2.4].

Proposition 4.4. Let $f: X \rightarrow Z$ be a map of inverse limit of spectra $X \rightleftharpoons \lim \left\{X_{t}, \eta_{t}\right\}$ and $Z \rightleftharpoons \lim \left\{Z_{t}, \sigma_{t}\right\}$, generated by commutative diagrams $\mathcal{D}_{t}, t \geqslant 1$. Let also the diagrams $\mathcal{D}_{t}, t \geqslant 1$, be n-soft and n-filled, and f_{1} and all maps $\sigma_{t}, t \geqslant 1, n$-soft. Then the map f is n-soft and strongly n-universal with respect to Polish spaces.

Proof. Since f is n-soft by [17, 3.4.7], we complete the proof of 4.4 as soon as the strong n-universality of f will be established. For this purpose, pick any n-dimensional Polish space Q, any function $\varepsilon: X \rightarrow(0,1)$ assessing closeness of maps, and any map $\varphi: Q \rightarrow X$. Let us construct a closed embedding $\varphi^{\prime}: Q \hookrightarrow X$ which is ε-close to φ.

Note that the space $X=\lim \left\{X_{t}, \eta_{t}\right\}$ naturally lies in $\prod\left\{X_{i} \mid i \geqslant 1\right\}$ and $\varphi=\left(\varphi_{1}, \varphi_{2}, \ldots\right)$, where φ_{i} is a map of Q into X_{i}. It is clear that $\eta_{t} \circ \varphi_{t+1}=\varphi_{t}$, for all $t \geqslant 1$.

The open cylinder $\mathcal{U} \subset \prod\left\{X_{i} \mid i \geqslant 1\right\}$ with the base $\mathcal{V} \subset \prod\left\{X_{i} \mid 1 \leqslant i \leqslant n\right\}$ and generators $\left\{a \times \prod_{i>n} X_{i} \mid a \in \mathcal{V}\right\}$, being intersected with X, generates the corresponding structure in X : the open cylinder $\mathcal{U}_{X} \subset X$, the base $\mathcal{V}_{X} \subset \prod\left\{X_{i} \mid 1 \leqslant\right.$ $i \leqslant n\}$ and the family of generators. From the definition of $\lim \left\{X_{t}\right\}$ it easily follows that there exists a maximal subset $\tilde{\mathcal{V}} \subset \prod\left\{X_{i} \mid 1 \leqslant i \leqslant n\right\}$, the intersection of which with X equals the chosen base \mathcal{V}_{X} :
(1) $\tilde{\mathcal{V}}=X_{1} \times \cdots \times X_{n-1} \times \mathcal{W}_{X}$, where the set $\mathcal{W}_{X} \subset X_{n}$ is open (we further identify the base \mathcal{V}_{X} with this set \mathcal{W}_{X}).

It is easy to establish the existence of the increasing sequence $\mathcal{U}_{X}(1) \Subset \mathcal{U}_{X}(2) \Subset \cdots \subset X$ of open cylindrical sets for which
(2) $\cup \mathcal{U}_{X}(i)=X$;
(3) $\mathcal{U}_{X}(2 i-1) \Subset \mathcal{U}_{X}(2 i)$ have the bases $\mathcal{W}_{X}(2 i-1) \Subset \mathcal{W}_{X}(2 i) \subset X_{n_{i}}$ for all $i \geqslant 1$ (we can assume without loss of generality that $n_{i}=i$); and
(4) The map ε has small oscillation on generators of $\mathcal{U}_{X}(i)$, i.e. for any x and x^{\prime} from one generator we have $\left|\varepsilon(x)-\varepsilon\left(x^{\prime}\right)\right|<\frac{\varepsilon(x)}{10}$.

Let $\xi_{i}=\chi_{i} \circ \varphi_{i+1}: Q \rightarrow W_{i}$, where $\chi_{i}: X_{i+1} \rightarrow W_{i}=\left(Z_{i+1}\right)_{\sigma_{i}} \times f_{i} X_{i}$ is a characteristic map of $\mathcal{D}_{t} ; A_{2 i} \rightleftharpoons \xi_{i}^{-1}\left(Z_{i+1} \times\right.$ $\left.\mathcal{W}_{X}(2 i)\right) \subset Q$ and $A_{2 i-1} \rightleftharpoons \xi_{i}^{-1}\left(Z_{i+1} \times \mathcal{W}_{Y}(2 i-1)\right) \subset Q$. Since $\sigma_{i}^{\prime} \circ \chi_{i}=\eta_{i}$, we have
(5) $A_{1} \Subset A_{2} \Subset \cdots \subset Q$ and $\bigcup A_{i}=Q$.

Fix a refining sequence of open covers $\omega_{i} \in \operatorname{cov} Q$. As the characteristic map $\chi_{1}: X_{2} \rightarrow W_{1}$ is n-soft and n-filled, there exists a map $\varphi_{2}^{\prime}: Q \rightarrow X_{2}$ such that $\chi_{1} \circ \varphi_{2}^{\prime}$ equals $\xi_{1}=\chi_{1} \circ \varphi_{2}$, and moreover,
$(\dagger)_{1} \varphi_{2}^{\prime} \Gamma_{\mathrm{Cl} A_{1}}$ is an ω_{1}-map; and
$(\dagger)_{2} \varphi_{2}^{\prime}=\varphi_{2}$ outside $A_{2} \subset Q$.
By the same reason, there exists a map $\varphi_{3}^{\prime}: Q \rightarrow X_{3}$ such that $\chi_{2} \circ \varphi_{3}^{\prime}$ equals $\xi_{2}=\chi_{2} \circ \varphi_{3}$, and moreover,
$(\dagger)_{3} \varphi_{3}^{\prime} \Gamma_{\mathrm{Cl}_{3}}$ is an ω_{2}-map; and
$(\dagger) 4 \varphi_{3}^{\prime}=\varphi_{3}$ outside $A_{4} \subset Q$.
It should now be clear to the reader how to continue these constructions, a result of which are the maps $\left\{\varphi_{i}^{\prime} \mid i \geqslant 1\right\}$ (for definiteness sake we suppose $\varphi_{1}^{\prime}=\varphi_{1}$). Since $\eta_{t} \circ \varphi_{t+1}^{\prime}=\varphi_{t}^{\prime}$ for all $t \geqslant 1$, we have that $\varphi^{\prime} \rightleftharpoons\left(\varphi_{1}^{\prime}, \varphi_{2}^{\prime}, \varphi_{3}^{\prime}, \ldots\right.$) is a map passing Q into X. It is clear that
(6) $f \circ \varphi^{\prime}=f \circ \varphi$.

Let $q \in A_{2 m} \backslash A_{2 m-2}$. For $1 \leqslant l \leqslant m-1$ it follows from $(\dagger)_{2 l}$ that
(7) $\varphi_{i}(q)=\varphi_{i}^{\prime}(q)$ for all $i \leqslant m$.

Since the oscillation of ε on generators of the cylinder $U_{X}(2 m-2)$ is small, $\varphi(q)$ and $\varphi^{\prime}(q)$ are $\varepsilon(\varphi(q))$-close, i.e. $\varphi^{\prime} \stackrel{\varepsilon}{\sim} \varphi$. The straightforward check using "odd" properties $\left\{(\dagger)_{2 i-1}\right\}$ permits us to assert that φ^{\prime} is a closed embedding of Q into X.

Now we track the $U V^{n-1}$-division property by a passage to inverse limit of spectra. The following auxiliary assertion permits us to make further inductive step.

Proposition 4.5. Let the commutative diagram \mathcal{E}_{t}

(more precisely, its characteristic map) be a UV^{n-1}-divider of an n-soft n-filled map. If σ_{t} is n-soft, $h_{t}: K_{t} \rightarrow Z_{t}$ is a UV^{n-1}-divider of n-soft map $f_{t}: X_{t} \rightarrow Z_{t}$ where $X_{t} \hookrightarrow K_{t} \in U V^{n-1}$, then h_{t+1} is $a U V^{n-1}$-divider of n-soft map $f_{t+1}: X_{t+1} \rightarrow Z_{t+1}$ where $X_{t+1} \hookrightarrow$ $K_{t+1} \in U V^{n-1}$. Moreover $\theta_{t}\left(X_{t+1}\right) \subset X_{t}$, and the commutative diagram \mathcal{D}_{t} in which $\eta_{t} \rightleftharpoons \theta_{t} \upharpoonright X_{t+1}$, is n-soft and n-filled.

Proof. Let, for definiteness sake, the characteristic map $\chi_{t}: K_{t+1} \rightarrow W_{t}=\left(Z_{t+1}\right)_{\sigma_{t}} \times_{h_{t}} K_{t}$ be a UV ${ }^{n-1}$-divider of n-soft and n-filled map $r: K_{t+1}^{\prime} \rightarrow W_{t}$ where $K_{t+1}^{\prime} \hookrightarrow K_{t+1} \in \mathrm{UV}^{n-1}$. We use the notation for parallel projection: $\sigma_{t}^{\prime} \| \sigma_{t}$ and $h_{t}^{\prime} \| h_{t}$.

From n-softness of σ_{t} it follows that $\tilde{W}_{t} \rightleftharpoons\left(\sigma_{t}^{\prime}\right)^{-1}\left(X_{t}\right) \hookrightarrow W_{t} \in \mathrm{UV}^{n-1}$. From here and from Proposition 3.6 (applied to the class \mathcal{P} of all n-soft strongly n-universal maps of Polish ANE(n)-spaces) it easily follows that
(a) $X_{t+1} \rightleftharpoons \theta_{t}^{-1}\left(X_{t}\right) \cap K_{t+1}^{\prime}=\chi_{t}^{-1}\left(\tilde{W}_{t}\right) \cap K_{t+1}^{\prime} \hookrightarrow K_{t+1} \in \mathrm{UV}^{n-1}$; and
(b) h_{t}^{\prime} is a $U V^{n-1}$-divider of $h_{t}^{\prime} \Gamma_{\tilde{W}_{t}}$.

It follows by Proposition 3.5 on composition for \mathcal{P} that the composition $h_{t+1}=h_{t}^{\prime} \circ \chi_{t}$ is a $U V^{n-1}$-divider of $f_{t+1} \rightleftharpoons$ $h_{t+1} \upharpoonright X_{t+1}: X_{t+1} \rightarrow Z_{t+1}$.

From Propositions 4.4 and 4.5 one can derive the basic technical result, the further application of which for Dranishnikov's resolution permits us to represent it as a UV ${ }^{n-1}$-divider of the corresponding Chigogidze's resolution.

Theorem 4.6. Let $h: K \rightarrow Z$ be a map of inverse limits of spectra $K \rightleftharpoons \lim \left\{K_{t}, \theta_{t}\right\}$ and $Z \rightleftharpoons \lim \left\{Z_{t}, \sigma_{t}\right\}$, generated by commutative diagrams \mathcal{E}_{t}, which are n-conservatively soft for each $t \geqslant 1$. Let also for each t,
(c) The map σ_{t} be n-soft;
(d) The diagram \mathcal{E}_{t} be a UV^{n-1}-divider of n-soft n-filled map; and
(e) The map $h_{1}: K_{1} \rightarrow Z_{1} \in \operatorname{ANE}(n)$ be n-conservatively soft and a UV^{n-1}-divider of n-soft map $f_{1}: X_{1} \rightarrow Z_{1}$, where $X_{1} \hookrightarrow$ $K_{1} \in U V^{n-1}$.

Then the map $f: X \rightarrow Z$ of inverse limits of spectra $X \rightleftharpoons \lim \left\{X_{t}, \eta_{t}\right\}$ and Z, generated by commutative diagrams \mathcal{D}_{t}, $t \geqslant 1$, from Proposition 4.5, ${ }^{3}$ satisfies the following properties:
(f) f is n-soft strongly n-universal with respect to Polish spaces, and X, Z are Polish ANE(n)-spaces;
(g) h is n-conservatively soft; and
(h) h is $a U V^{n-1}$-divider of f.

Proof. By Proposition 4.4, the map $f: X \rightarrow Z$ is n-soft strongly n-universal with respect to Polish spaces. From n-softness of maps σ_{t} and $Z_{1} \in \operatorname{ANE}(n)$ it follows that $Z \in \operatorname{ANE}(n)$, and hence X is $\operatorname{ANE}(n)$. The property (g) follows from [17, 3.4.7].

Since the inverse spectrum $\left\{X_{t}, \eta_{t}\right\}$ consists of n-soft projections, and each embedding $X_{t} \hookrightarrow K_{t}$, by 4.5 , is UV^{n-1}, it follows that $X \hookrightarrow K \in U V^{n-1}$ which proves (h).

5. Multivalued retraction of a ball onto its boundary

In the next two sections we outline (after [16]) the base of the construction of Dranishnikov's resolution: a multivalued retraction of the ball onto its boundary (going back to I.M. Kozlowski) and multivalued retraction of a polyhedron onto its k-dimensional skeleton.

Let ∂B^{n+1} be the boundary of unit ball $B^{n+1}, n \geqslant 1$. By $B_{y}^{n+1}, y \in \partial B^{n+1}$, we denote the ball of radius $3 / 4$, tangent to the sphere ∂B^{n+1} in y. It is evident that the multivalued mappings $\mathcal{Q}_{n+1}: \partial B^{n+1} \rightsquigarrow B^{n+1}, \mathcal{Q}_{n+1}(y)=B_{y}^{n+1}$, and $\mathcal{P}_{n+1}: B^{n+1} \rightsquigarrow \partial B^{n+1}, \mathcal{P}_{n+1}(x)=\left\{y \in \partial B^{n+1} \mid B_{y}^{n+1} \ni x\right\}$, are inverse each to other. Since
(1) The restriction \mathcal{P}_{n+1} on ∂B^{n+1} is the identity, i.e. $\mathcal{P}_{n+1}(x)=x$, for each $x \in \partial B^{n+1}$,
\mathcal{P}_{n+1} is a multivalued retraction of the ball onto its boundary. It is the base of the construction of Dranishnikov's resolution. We list several rather easy properties of \mathcal{P}_{n+1} which will be used later:

Lemma 5.1.

(2) $\left\{x \in B^{n+1} \mid \mathcal{P}_{n+1}(x)=\partial B^{n+1}\right\}=\frac{1}{2} \cdot B^{n+1}$;
(3) $\mathcal{P}_{n+1}(x) \varsubsetneqq \mathcal{P}_{n+1}(a \cdot x)$ for all $x \in B^{n+1} \backslash \frac{1}{2} \cdot B^{n+1}$ and $a<1$; and
(4) $\mathcal{P}_{n+1}(a \cdot y) \nexists(-y)$, for all $y \in \partial B^{n+1}$ and $\frac{1}{2}<a \leqslant 1$.

Next, consider the graph $D_{n+1} \rightleftharpoons\left\{(y, x) \mid x \in B_{y}^{n+1}\right\} \subset \partial B^{n+1} \times B^{n+1}$ of the map \mathcal{Q}_{n+1}. It is clear that D_{n+1} and the graph of \mathcal{P}_{n+1} are symmetric with respect to the permutation of x - and y-coordinates. By (1), ∂B^{n+1} is naturally contained in D_{n+1}. Concerning the natural projections $p_{n+1}: D_{n+1} \rightarrow B^{n+1}$ and $q_{n+1}: D_{n+1} \rightarrow \partial B^{n+1}$ of the graph D_{n+1} onto its factors, the following is known [7]:

Proposition 5.2. p_{n+1} is n-conservatively soft, and q_{n+1} is a soft retraction.
Moreover, since $q_{n+1}^{-1}(y)=B_{y}^{n+1}$ and $\{y\} \subset_{Z} B_{y}^{n+1}, y \in \partial B^{n+1}$, it follows that
(5) $\partial B^{n+1} \subset D_{n+1}$ is a fiberwise Z-set with respect to q_{n+1}, i.e. for each partial map $Z \longleftrightarrow A \xrightarrow{\varphi} D_{n+1}$ which is the local lift of $\psi: Z \rightarrow \partial B^{n+1}$, there exists an extension $\hat{\varphi}: Z \rightarrow D_{n+1}$ of the map φ, which is a global lift of ψ, such that $\hat{\varphi}(Z \backslash A)$ does not intersect ∂B^{n+1}.

We conclude this section by studying of the $U V^{n}$-division of p_{n+1}. Let

$$
T^{n} \rightleftharpoons\left\{\left.\left(y,-\frac{1}{2} \cdot y\right) \right\rvert\, y \in \partial B^{n+1}\right\} \text { and } \quad C_{n+1} \rightleftharpoons D_{n+1} \backslash T^{n} \text { be an open subset } D_{n+1}
$$

[^3]Proposition 5.3. The map $p_{n+1}: D_{n+1} \rightarrow B^{n+1}$ is $a \mathrm{UV}^{n}$-divider of the n-soft map $p_{n+1} \upharpoonright c_{n+1}: C_{n+1} \rightarrow B^{n+1}$.
Proof. The fact that the map $p_{n+1} \mid c_{n+1}$ of complete spaces is n-soft follows from $\left\{\left(p_{n+1}\right)^{-1}(x) \cap C_{n+1} \mid x \in B^{n+1}\right\} \in$ equi-LC ${ }^{n-1}$.

The homotopy $h_{t}: B^{n+1} \rightarrow B^{n+1}, t \in I$, given by $h_{t}(x)=(1-t(1-\|x\|)) \cdot x$ is called radial. It joins Id with $h_{1}=\|x\| \cdot x$. Consider also the continuous homotopy $H_{t}: D_{n+1} \rightarrow \partial B^{n+1} \times B^{n+1}, 0 \leqslant t \leqslant 1$, given by $H(y, x)=\left(y, h_{t}(x)\right)$.

Finally, the property $C_{n+1}=D_{n+1} \backslash T^{n} \hookrightarrow D_{n+1} \in \mathrm{UV}^{n-1}$ easily follows from the assertion given below.
Lemma 5.4. For all $t \geqslant 0$, we have $H_{t}\left(D_{n+1}\right) \subset D_{n+1}$, and also
(a) $H_{0}=$ Id and $H_{t}\left(D_{n+1}\right) \cap T^{n}=\emptyset$ for all $t>0$.

Proof. Since $h_{t}(x)=a \cdot x$, where $a \leqslant 1$, it follows by 5.1(iii) that $\mathcal{P}_{n+1}(x) \subset \mathcal{P}_{n+1}\left(h_{t}(x)\right)$. Hence, if $y \in \mathcal{P}_{n+1}(x)$, then $y \in$ $\mathcal{P}_{n+1}\left(h_{t}(x)\right)$, i.e. $H_{t}\left(D_{n+1}\right) \subset D_{n+1}$.

Suppose that $H_{t}\left(y_{0}, x_{0}\right) \in T^{n}$, for some point $\left(y_{0}, x_{0}\right) \in D_{n+1}$, i.e. $h_{t}\left(x_{0}\right)=-\frac{1}{2} \cdot y_{0}$, where $y_{0} \in \partial B^{n+1}$. Since $h_{t}\left(x_{0}\right)=b \cdot x_{0}$ where $b<1, x_{0}=\alpha \cdot\left(-y_{0}\right)$ for $\alpha>\frac{1}{2}$. In view of (4) we have $\mathcal{P}_{n+1}\left(x_{0}\right) \not \nexists-\left(-y_{0}\right)=y_{0}$, i.e. $\left(y_{0}, x_{0}\right) \notin D_{n+1}$, a contradiction.

Fix a point (called a center) O of the relative interior rint Δ^{n+1} of a simplex. Then the dilation with center O generates a multiplication $a \cdot x$ for $x \in \Delta^{n+1}$ and $0 \leqslant a \leqslant 1$. By the antipode to $y \in \partial \Delta^{n+1}$ we understand the intersection of the ray $[y, O)$ with $\partial \Delta^{n+1}$. Then the multiplication $a \cdot x$ can be extended on all $x \in \Delta^{n+1}$ and $-1 \leqslant a \leqslant 1$. If $x=a \cdot y$, where $y \in \partial \Delta^{n+1}$ and $0 \leqslant a \leqslant 1$, then a is called the norm $\|x\|$ of x.

Let $\theta: \Delta^{n+1} \rightarrow B^{n+1}$ be a radial homeomorphism, i.e. $\theta(a \cdot x)=a \cdot \theta(x)$, for all $x \in \Delta^{n+1}$ and $-1 \leqslant a \leqslant 1$. The conjugacy operation with respect to homeomorphism θ transforms all early obtained constructions for pair ($B^{n+1}, \partial B^{n+1}$) into constructions for pair ($\Delta^{n+1}, \partial \Delta^{n+1}$). In particular, the radial homotopy $h_{t}: B^{n+1} \rightarrow B^{n+1}$ (see 5.3) passes to the radial homotopy $\theta^{-1} \circ h_{t} \circ \theta: \partial \Delta^{n+1} \rightarrow \partial \Delta^{n+1}$ which we continue to denote by h_{t}. Since all results obtained earlier are valid also for simplexes, in the case of simplex we will use the previous notations for the corresponding spaces and maps.

6. Multivalued retraction of a polyhedron onto its skeleton

Let $k \geqslant 1$ and P be a compact polyhedron of dimension m given with some triangulation L. Represent the $(n+1)$ dimensional skeleton $P^{(n+1)}, n \geqslant k$, as $\bigcup\left\{\Delta_{i}^{n+1} \mid i \geqslant 1\right\}$. By previous section, the following objects are defined for each i : the multivalued map $\mathcal{P}_{n+1}(i): \Delta_{i}^{n+1} \rightsquigarrow \partial \Delta_{i}^{n+1}$, the graph $D_{n+1}(i) \subset \partial \Delta_{i}^{n+1} \times \Delta_{i}^{n+1}$ of the mapping $\mathcal{Q}_{n+1}(i)=\left(\mathcal{P}_{n+1}(i)\right)^{-1}$ and the natural projections $p_{n+1}(i): D_{n+1}(i) \rightarrow \Delta_{i}^{n+1}$ and $q_{n+1}(i): D_{n+1}(i) \rightarrow \partial \Delta_{i}^{n+1}$ of $D_{n+1}(i)$ onto factors.

Since $\mathcal{P}_{n+1}(i): \Delta_{i}^{n+1} \rightsquigarrow \partial \Delta_{i}^{n+1}$ and $\mathcal{P}_{n+1}(j): \Delta_{j}^{n+1} \rightsquigarrow \partial \Delta_{j}^{n+1}$ for $\Delta_{i}^{n+1} \cap \Delta_{j}^{n+1} \neq \emptyset$ agree on the common domain (where they are identical), we have that

$$
D_{n+1}^{n} \rightleftharpoons\left\{\left(a_{n}, a_{n+1}\right) \in \partial \Delta_{i}^{n+1} \times \Delta_{i}^{n+1} \mid\left(a_{n}, a_{n+1}\right) \in D_{n+1}(i)\right\}
$$

contains in a natural manner the union of the boundaries of all simplexes Δ_{i}^{n+1}. Also, the natural projections $p_{n+1}^{n}: D_{n+1}^{n} \rightarrow$ $P^{(n+1)}$ and $q_{n+1}^{n}: D_{n+1}^{n} \rightarrow P^{(n)}$ are correctly defined. The following is true:
(i) $\left(a_{n}, a_{n+1}\right) \in D_{n+1}^{n}$ and $a_{n+1} \in P^{(n)}$ imply $a_{n}=a_{n+1}$.

Hence $P^{(n)}$ is naturally contained in D_{n+1}^{n}, and q_{n+1}^{n} is a retraction. It was known that p_{n+1}^{n} is n-conservatively soft map [7], but q_{n+1}^{n} fails to be soft map.

We consider the increasing sequence $P^{(s)} \subset P^{(s+1)} \subset \cdots \subset P^{(t-1)} \subset P^{(t)}, k \leqslant s<t \leqslant m$, of the skeleta of the m-dimensional polyhedron P which generates the following objects: $D_{t}^{s} \rightleftharpoons\left\{a=\left(a_{s}, a_{s+1}, \ldots, a_{t-1}, a_{t}\right) \in P^{(s)} \times \cdots \times\right.$ $\left.P^{(t-1)} \times P^{(t)} \mid\left(a_{i}, a_{i+1}\right) \in D_{i+1}^{i}, s \leqslant i<t\right\}$, the maps $p_{t}^{s}: D_{t}^{s} \rightarrow P^{(t)}$ and $q_{t}^{s}: D_{t}^{s} \rightarrow P^{(s)}$ by formulas $p_{t}^{s}(a) \rightleftharpoons a_{t}$ and $q_{t}^{s}(a) \rightleftharpoons a_{s}$, respectively.

We note that the map p_{t}^{s} is n-conservatively soft [7] and $q_{m}^{s} \circ\left(p_{m}^{s}\right)^{-1}$ is a multivalued retraction of P onto its skeleton $P^{(s)}$. Dranishnikov proved that $D_{t}^{s} \in$ ANE and formulated without proof the following plausible (and, apparently, difficult) assertion [16, p. 124].

Conjecture 6.1. The compactum D_{t}^{S} is a polyhedron (and therefore it is an ANE).
We also do not want to spend effort on the proof of this conjecture as the basic result of the present paper does not depend on its validity (in the case of the conjecture failure, one must draw on the Edwards Theorem and Chapman Theorem from Q-manifold theory as it was done in [16]). But for the simplicity of the text we do assume that D_{t}^{s} is a polyhedron.

Because of this we replace Theorem 1.2 with the following assertion.

Theorem 6.2. Let P be a compact polyhedron with the triangulation L and $k \geqslant 1$. Then there exist a compact polyhedron D and maps $p: D \rightarrow P$ and $q: D \rightarrow P^{(k)}$ such that 1.2(1)-(3) hold.

7. Synchronized Hurewich fibration and the proof of Theorem 6.2

The map $q_{t}^{s}: D_{t}^{s} \rightarrow P^{(s)}$ fails to be soft as for example it is not open. But nevertheless a weak softness property of q_{t}^{s} can be detected which will be a key moment in our arguments.

Theorem 7.1. The projection q_{t}^{s} is a synchronized Hurewich fibration.
Below we explain the introduced notion.
Definition 7.2. The homotopy $\varphi: X \times I \rightarrow P^{(s)}$ is called synchronized if
(1) $\varphi^{-1}(\Delta)=\left(\varphi_{0}\right)^{-1}(\Delta) \times I$, for each simplex $\Delta \subset P^{(s)}$.

In other words, (1) means that, if $\varphi_{0}(x) \in \Delta$, then $\varphi_{t}(x) \in \Delta$ for all $t \in I$.
Definition 7.3. The map $f: D_{t}^{S} \rightarrow P^{(s)}$ is called synchronized Hurewich fibration if for each synchronized homotopy $\varphi: X \times$ $I \rightarrow P^{(s)}$ and for each partial lift $\theta_{0}: X \times\{0\} \rightarrow D_{t}^{s}$ of φ_{0} with respect to f there exists a homotopy $\theta: X \times I \rightarrow D_{t}^{s}$ lifting the homotopy φ such that $p_{t}^{s} \circ \theta: X \times I \rightarrow P^{(t)}$ is also synchronized homotopy.

First we prove the partial case of Theorem 7.1:
Proposition 7.4. The projection q_{n+1}^{n} is a synchronized Hurewich fibration.
Then applying Proposition 7.4 several times, it can be easily proved that q_{t}^{s} is also a synchronized Hurewich fibration.
Proof. Let $\varphi: X \times I \rightarrow P^{(n)}$ be a synchronized homotopy and $\psi_{0}: X \times\{0\} \rightarrow P^{(n+1)}$ a map. It is sufficient to establish that if the map $\theta_{0} \rightleftharpoons\left(\varphi_{0}, \psi_{0}\right)$ transforms X into D_{n+1}^{n}, then there exists a synchronized homotopy $\psi: X \times I \rightarrow P^{(n+1)}$ extending ψ_{0} such that $\theta \rightleftharpoons(\varphi, \psi)$ is a homotopy of X into D_{n+1}^{n}.

Let $P^{(n+1)}=\left\{\Delta_{i}^{(n+1)} \mid i \geqslant 1\right\}$. Consider the following subsets of $X: X_{0} \rightleftharpoons\left(\psi_{0}\right)^{-1}\left(P^{(n)}\right)$ and $X_{i} \rightleftharpoons\left(\psi_{0}\right)^{-1}\left(\Delta_{i}^{(n+1)}\right)$. It is clear that $X=\bigcup X_{i}$ and
(2) $X_{i} \backslash X_{0} \subset \operatorname{Int} X_{i}$ for all $i \geqslant 1$.

It follows from (i) (see Section 6) that $\varphi_{0}=\psi_{0}$ on X_{0}. As $\psi_{0}\left(X_{i}\right) \subset \Delta_{i}^{(n+1)}$ and $\operatorname{Im}\left(\theta_{0}\right) \subset D_{n+1}^{n}$, then $\varphi_{0}\left(X_{i}\right) \subset \partial \Delta_{i}^{(n+1)}$. Since φ is the synchronized homotopy, we have $\varphi_{t}\left(X_{i}\right) \subset \partial \Delta_{i}^{(n+1)}$, for each $t \in I$.

Given $i \geqslant 1$, consider the following commutative diagram,

in which $A_{i} \rightleftharpoons\left(\left(X_{i} \cap X_{0}\right) \times I\right) \cup\left(X_{i} \times\{0\}\right), \sigma_{i}=\theta_{0}$ on $X_{i} \times\{0\}$ and $\sigma_{i}=(\varphi, \varphi)$ on $\left(X_{i} \cap X_{0}\right) \times I$. Since $q_{n+1}(i)$ is soft, there exists an extension $\theta_{i}: X_{i} \times I \rightarrow D_{n+1}(i)$ of σ_{i} such that $q_{n+1}(i) \circ \theta_{i}=\varphi \upharpoonright_{X_{i} \times I}$.

By Proposition 5.2, $\partial \Delta_{i}^{(n+1)} \subset D_{n+1}(i)$ is a fiberwise Z-set with respect to $q_{n+1}(i)$. Then θ_{i} can be chosen in a such manner that
(3) $\theta_{i}\left(X_{i} \times I \backslash A_{i}\right)$ is contained in $D_{n+1}(i) \backslash \partial \Delta_{i}^{(n+1)}$ (i.e. $p_{n+1}^{n} \circ \theta_{i}\left(X_{i} \times I \backslash A_{i}\right) \subset$ rint $\left.\Delta_{i}^{(n+1)}\right)$.

The desired homotopy $\theta: X \times I \rightarrow D_{n+1}^{n}$ equals θ_{i} on $X_{i} \times I$. We can check straightforwardly with help of (2) and (3) that θ is continuous, and $p_{n+1}^{n} \circ \theta$ is a synchronized homotopy.

The homotopy $h_{t}: P^{(n+1)} \rightarrow P^{(n+1)}$ is called radial, if its restriction on each simplex $\Delta_{i}^{n+1} \subset P^{(n+1)}$ is a radial homotopy. It is clear that h_{t} is identity on $P^{(n)}$. Let $C_{n+1}(i) \subset D_{n+1}(i)$ be an open subset taken from 5.3, and $C_{n+1}^{n} \rightleftharpoons \bigcup\left\{C_{n+1}(i) \mid i\right\}$ an open subset of D_{n+1}^{n}. The proof of the fact that
(4) The map $p_{n+1}^{n}: D_{n+1}^{n} \rightarrow P^{(n+1)}$ is a $U V^{n-1}$-divider of the n-soft map $p_{n+1}^{n} \upharpoonright_{n+1}^{n}: C_{n+1}^{n} \rightarrow P^{(n+1)}$
is performed analogously to that of Proposition 5.3 with the help of the fact given below.
Proposition 7.5. The continuous homotopy $H_{t}: D_{n+1}^{n} \rightarrow D_{n+1}^{n}, 0 \leqslant t \leqslant 1$, given by $H(y, x)=\left(y, h_{t}(x)\right)$ transforms D_{n+1}^{n} into C_{n+1}^{n} for each $t>0$.

By C_{t}^{s} we denote an open subset $\left\{a \mid\left(a_{i}, a_{i+1}\right) \in C_{i+1}^{i}\right.$ for all $\left.i, s \leqslant i<t\right\} \subset D_{t}^{s}$. The essential complement of [7] where the k-conservative softness of p_{t}^{s} was established is the following key result which proves Theorem 6.2:

Theorem 7.6. The map $p_{m}^{k}: D_{m}^{k} \rightarrow P=P^{(m)}$ is a UV^{k-1}-divider of the k-soft map $\left.p_{m}^{k}\right|_{C_{m}^{k}}: C_{m}^{k} \rightarrow P$.
Proof. Consider a closed subset

$$
F=D_{m}^{k} \backslash C_{m}^{k}=\left\{a \mid\left(a_{i}, a_{i+1}\right) \notin C_{i+1}^{i} \text { for some } i, k \leqslant i<m\right\} \subset D_{m}^{k}
$$

and its closed filtration $F_{m} \subset F_{m+1} \subset \cdots \subset F_{k+2} \subset F_{k+1}=F$ where

$$
F_{s}=\left\{a \in F \mid\left(a_{i}, a_{i+1}\right) \in C_{i+1}^{i} \text { for all } i, k \leqslant i<s-1\right\} .
$$

Lemma 7.7. The restriction $\left.p_{m}^{k}\right|_{C_{m}^{k}}: C_{m}^{k} \rightarrow P=P^{(m)}$ is a k-soft map.
Proof. Suppose that the partial map $Z \supset A \xrightarrow{\varphi} C_{m}^{k} \xrightarrow{p_{m}^{k}} P$, $\operatorname{dim} Z \leqslant k$, has an extension $\psi: Z \rightarrow P$. Represent φ in the coordinate form $\left(\varphi_{k}, \varphi_{k+1}, \ldots, \varphi_{m}\right)$ where φ_{i} is the map from A into $P^{(i)}$. Then $\varphi_{m}=\psi \Gamma_{A}$. Since $p_{i+1}^{i}: C_{i+1}^{i} \rightarrow P^{(i+1)}$ is k-soft for all i, we can construct, by inverse induction on $m, m-1, \ldots, k+1$, the maps $\psi_{m}=\psi, \psi_{m-1}, \ldots, \psi_{k+1}$ from Z into $P^{(i)}$ such that $\varphi_{i}=\psi_{i} \upharpoonright_{A}$ and $\left(\psi_{i+1}, \psi_{i}\right) \in C_{i+1}^{i}$ for all i. In view of $p_{m}^{k} \circ \hat{\varphi}=\psi$ it is clear that $\hat{\varphi} \rightleftharpoons\left(\psi_{k}, \psi_{k+1}, \ldots, \psi_{m}\right): Z \rightarrow C_{m}^{k}$ is the desired extension of ψ.

To complete the proof of Theorem 7.6 and therefore Theorem 6.2 it is sufficient to show that $C_{m}^{k} \hookrightarrow D_{m}^{k} \in U V^{k-1}$, i.e. each map $\varphi: A \rightarrow D_{m}^{k}$ of a compactum $A, \operatorname{dim} A \leqslant k$, is arbitrarily closely approximable by a map which does not intersect F. Let $h_{t}: P^{(m)} \rightarrow P^{(m)}$ be a radial homotopy and $H_{t}: D_{m}^{k} \rightarrow D_{m}^{k}$ a homotopy given by $H_{t}\left(a_{k}, a_{k+1}, \ldots, a_{m-1}, a_{m}\right)=$ $\left(a_{k}, a_{k+1}, \ldots, a_{m-1}, h_{t}\left(a_{m}\right)\right)$. It is clear that the homotopy $H_{t} \circ \varphi$ removes A from F_{m}.

Taking this remark into account, it is sufficient to show that if $\varphi(A) \cap F_{s+1}=\emptyset, k \leqslant s<m$, then there exists a map $\varphi^{\prime}: A \rightarrow D_{m}^{k}$ arbitrarily close to φ such that $\varphi^{\prime}(A) \cap F_{s}=\emptyset$. Again represent φ in the coordinate form $\left(\varphi_{k}, \varphi_{k+1}, \ldots, \varphi_{m}\right)$, where φ_{i} is the map from A into $P^{(i)}$. Let $h_{t}: P^{(s)} \rightarrow P^{(s)}$ be a radial homotopy. Then $\Psi_{t}^{s} \rightleftharpoons h_{t} \circ \varphi_{s}: A \rightarrow P^{(s)}, 0 \leqslant t \leqslant 1$, is a synchronized homotopy.

The final accord sounds due to Theorem 7.1: the map $q_{m}^{s}: D_{m}^{s} \rightarrow P^{(s)}, q_{m}^{s}(a)=a_{s}$, is a synchronized Hurewich fibration. Therefore there exist synchronized homotopies $\Psi_{t}^{S+1}, \Psi_{t}^{S+2}, \ldots, \Psi_{t}^{m}$ from A into $P^{(s+1)}, P^{(s+2)}, \ldots, P^{(m)}$ such that the formula $\Psi_{t} \rightleftharpoons\left(\Psi_{t}^{s}, \Psi_{t}^{s+1}, \Psi_{t}^{s+2}, \ldots, \Psi_{t}^{m}\right)$ defines the homotopy from A into D_{m}^{s}.

We take
$\left(\varphi_{k}, \varphi_{k+1}, \ldots, \varphi_{s-1}, \Psi_{t}\right)=\left(\varphi_{k}, \varphi_{k+1}, \ldots, \varphi_{s-1}, \Psi_{t}^{s}, \Psi_{t}^{s+1}, \Psi_{t}^{s+2}, \ldots, \Psi_{t}^{m}\right)$
as a homotopy $\Phi_{t}: A \rightarrow D_{m}^{k}$ removing A from F_{s}. Since $\left(\varphi_{s-1}, \Psi_{t}^{s}\right)(A) \subset D_{s}^{s-1}$, for each $t \geqslant 0$, we easily deduce that $\Phi_{t}(A) \subset D_{m}^{k}$. Next, we note that, due to Proposition 7.5, $\left(\varphi_{s-1}, \Psi_{t}^{s}\right)$ maps A into C_{s}^{s-1} for each $t>0$. Hence, we have proved that for each $\delta>0, \varphi \stackrel{\delta}{\sim} \Phi_{t}$ for sufficiently small $t>0$, and $\operatorname{Im}\left(\Phi_{t}\right) \cap F_{s}=\emptyset$.

8. The construction of Dranishnikov's resolution and the proof of Theorem 1.1

To construct Dranishnikov's resolution, take a cube R of sufficiently high dimension, and represent the Hilbert cube $R \times Q$ as the inverse limit of the spectrum $\lim \left\{Z_{t} \rightleftharpoons R \times I^{t}, \sigma_{t}\right\}$ where $\sigma_{t}: Z_{t+1} \rightarrow Z_{t}$ is the projection along the last factor I. The goal is to construct consecutively the inverse spectrum $\left\{K_{t}, \theta_{t}\right\}$ consisting of polyhedra whose limit is $K=\mu^{k}$, and the morphism $\left\{h_{t}: K_{t} \rightarrow Z_{t}\right\}$ of these spectra which will generate Dranishnikov's resolution $h=d_{k}: \mu^{k} \rightarrow Z=R \times Q \cong Q$.

For $t=1$ we set $K_{t}=R \times I^{1}=Z_{1}$ and $h_{t}=I d$. Suppose that for some $t>1$ there is a map $h_{t}: K_{t} \rightarrow Z_{t} \rightleftharpoons R \times I^{t}$. The cornerstone in the construction of Dranishnikov's resolution and the proof of Theorem 1.1 consists in producing of the commutative diagram,

$$
\begin{array}{cc}
K_{t+1} \xrightarrow{\theta_{t}} & K_{t} \tag{t}\\
h_{t+1} \downarrow & \\
& \\
Z_{t+1} \xrightarrow{\sigma_{t}} & \downarrow h_{t} \\
> & Z_{t}
\end{array}
$$

the characteristic map of which is
(1) k-conservatively soft;
(2) $A U V^{k-1}$-divider of k-filled k-soft map; and such that
(3) K_{t+1} admits a $\theta_{t}^{-1}(\omega)$-map into k-dimensional polyhedron with arbitrarily fine cover $\omega \in \operatorname{cov} K_{t}$.

To make sure that this the case, let us consider the compactum $K \rightleftharpoons \lim \left\{K_{t}, \theta_{t}\right\}$ and the limit map $h=\delta_{k}: K \rightarrow R \times Q$, generated by commutative diagrams $\mathcal{E}_{t}, t \geqslant 1$. It was established in [16] that K is a strongly k-universal $\mathrm{AE}(k)$-compactum of dimension k, and δ_{k}^{-1} preserves $\mathrm{AE}(k)$-spaces. From Bestvina's criterion [8] it follows that K is homeomorphic to the Menger compactum μ^{k}. By Proposition 4.4, $h=\delta_{k}$ is k-conservatively soft.

We point out that, by virtue of (1)-(3), Theorem 4.6 is applied. As a result we get that
(i) The map δ_{k} is a UV^{k-1}-divider of the limit map $\chi_{k}: X \rightarrow Z=R \times Q$ which is k-soft strongly k-universal with respect to Polish spaces. ${ }^{4}$

Now, it easily follows that $X \subset K$ is a strongly k-universal Polish $\mathrm{AE}(k)$-space of dimension $k=\operatorname{dim} K$. By characterization Theorem 2.11 for Nöbeling space, it follows that $X \cong v^{k}$, which completes the proof of Theorem 1.1. The evident application of (i), 3.8(a) and 3.9(b) proves Theorem 1.5 .

Now we show that Theorem 6.2 implies the proof of the (1)-(3). To this end, we consider the polyhedron $P \rightleftharpoons K_{t} \times I$ simultaneously with an arbitrarily fine triangulation L. It is clear that P is a fiberwise product of $Z_{t+1}=R \times I^{t+1}$ and K_{t} with respect to σ_{t} and h_{t}. By Theorem 6.2 there exists a polyhedron D and maps $p: D \rightarrow P$ and $q: D \rightarrow P^{(k)}$ such that 1.2(1)-(3) hold. It is easily seen that
(4) The projection π of the compactum $K_{t+1} \rightleftharpoons D \times T$ onto D along the cube T of dimension $t \geqslant 2 k+1$ is a UV^{k-1}-divider of k-soft k-filled projection $D \times N_{k}^{t}$ onto D along the standard k-dimensional Nöbeling space $N_{k}^{t} \hookrightarrow T \in U V^{k-1}$ (see, for example, [2-4]).

Complete the definition of the diagram \mathcal{E}_{t} as $\theta_{t} \rightleftharpoons \sigma_{t}^{\prime} \circ p \circ \pi: K_{t+1} \rightarrow K_{t}$ and $h_{t+1} \rightleftharpoons h_{t}^{\prime} \circ p \circ \pi: K_{t+1} \rightarrow Z_{t+1}$, where $\sigma_{t}^{\prime} \| \sigma_{t}$ is a projection along I and $h_{t}^{\prime} \| h_{t}$. It follows from 1.2(2) and (4) that the characteristic map of $\tilde{\mathcal{E}}_{t}$ - the map $p \circ \pi: K_{t+1} \rightarrow K_{t}$, is a UV ${ }^{k-1}$-divider of a k-filled k-soft map. It follows from $1.2(3)$ that if the triangulation L is sufficiently fine, then the composition $q \circ \pi: K_{t+1} \rightarrow P^{(k)}$ satisfies (3).

9. Epilogue

Here we list a selection of unsolved problems.
Uniqueness problem of Chigogidze's resolution. By the k-dimensional Chigogidze's resolution over $Y \in \operatorname{ANE}(k)$ we understand a k-soft map $f: X \rightarrow Y$ of k-dimensional space X onto Y, which is strongly k-universal with respect to maps of Polish spaces. One of the central problems of the Nöbeling space theory consists in establishing of the topological uniqueness of such a resolution [17].

Problem 9.1. Prove that any two Chigogidze's resolution $f, g: v^{k} \rightarrow Q$ are homeomorphic, i.e. there exists a homeomorphism $h: v^{k} \rightarrow \nu^{k}$ such that $f=g \circ h$.

For $k=\infty$ this problem was solved in affirmative [21]. The case $k=0$ was also settled (see, for example, [6]).
Problem of the characterization of Dranishnikov's resolution. This resolution no doubt represent the analogy of the Menger compactum in the category of maps. In analogy with compacta, the question of its characterization arises naturally. But prior to doing this, we should understand what is Dranishnikov's resolution. In view of the results of this paper, the k-dimensional Dranishnikov's resolution over $Y \in \operatorname{ANE}(k)$ is any proper map $f: X \rightarrow Y$ from a k-dimensional space X onto Y such that
(a) f is k-conservatively soft strongly k-universal with respect to compacta;
(b) f is a $U V^{k-1}$-divider of k-dimensional Chigogidze's resolution over Y; and
(c) f^{-1} preserves $\operatorname{ANE}(k)$-spaces.

These properties imply all other properties of k-dimensional Dranishnikov's resolution. There is a definite hope that the topological type of this resolution is unique.

[^4]Problem 9.2. Are any two k-dimensional Dranishnikov's resolutions over Q homeomorphic?
Problem of geometrization of Dranishnikov's resolution. Initially Dranishnikov's and Chigogidze's resolutions were obtained in a nonconstructive manner as the limit projections of some countable spectra. We can identify their domains lying in Hilbert cube with Menger and Nöbeling spaces only with help of corresponding characterization theorems. On the other hand, in [5] Chigogidze's resolution was constructed in a geometric manner as the orthogonal projection of the standard Nöbeling space. The fractal structure of this resolution was thereby revealed. It was interesting to realize Dranishnikov's resolution also in a geometric manner. We precede the formulation of the corresponding conjecture by the series of definitions.

The standard Menger space $M_{k}^{m} \subset[0,1]^{m}$ and geometric pseudointerior $I\left(M_{k}^{m}\right) \subset[0,1]^{m}$ can be defined as follows:
$M_{k}^{m}=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \mid\right.$ each x_{n} can be recorded as an infinite ternary fraction $0, \xi_{1}^{n} \xi_{2}^{n} \xi_{3}^{n} \ldots$ such that for each $p \geqslant 1$ at most k numbers ξ_{p}^{i} is equal to 1$\}$ and $I\left(M_{k}^{m}\right)=\left\{x=\left(x_{1}, x_{2}, \ldots, x_{m}\right) \mid\right.$ each record of arbitrary x_{n} as an infinite ternary fraction $0, \xi_{1}^{n} \xi_{2}^{n} \xi_{3}^{n} \cdots$ is so that for each $p \geqslant 1$ at most k numbers ξ_{p}^{i} equal 1$\}$. The standard Menger space M_{k}^{m} and geometric pseudointerior $I\left(M_{k}^{m}\right)$ for $m \geqslant(2 k+1)$ are homeomorphic to μ^{k} and ν^{k}, respectively.

Conjecture 9.3. Let $m \geqslant(2 k+1)+(k+1)^{2}$. Is it true that there exists an orthogonal projection $p: \mathbb{R}^{m} \rightarrow \Sigma$ onto (2k+1)dimensional subspace Σ such that $p \upharpoonright: M_{k}^{m} \rightarrow p\left(M_{k}^{m}\right)$ has the same soft properties as Dranishnikov's resolution? Is it UV^{k-1} ? Is it true that $p \upharpoonright: I\left(M_{k}^{m}\right) \rightarrow p\left(I\left(M_{k}^{m}\right)\right)$ is a Chigogidze's resolution? Is it true that $p \upharpoonright_{M_{k}^{m}}$ is a $\mathrm{UV} V^{k-1}$-divider of $p \upharpoonright_{I\left(M_{k}^{m}\right)}$?

Problem of the \boldsymbol{k}-soft core. In [7] it was proved that Dranishnikov's resolution δ_{k} is not homogeneous which breaks its analogy with the Menger space. This result follows from the fact that the k-soft core of δ_{k}

$$
\mathfrak{s}_{k}\left(\delta_{k}\right) \rightleftharpoons\left\{x \in \mu^{k} \mid \text { the collection of all fibers of } \delta_{k} \text { is equi-locally }(k-1) \text {-connected at } x\right\}
$$

does not coincide with μ^{k}, but $\mathfrak{s}_{k}\left(\delta_{k}\right) \hookrightarrow \mu^{k} \in \mathrm{UV}^{k-1}$. With the help of additional analysis we can show that $\mathfrak{s}_{k}\left(d_{k}\right)$ contains the domain of Chigogidze's resolution which is a $U V^{n-1}$-divider of Dranishnikov's resolution δ_{k}. In this connection the series of questions arises.

Problem 9.4. Is it true that k-soft core $\mathfrak{s}_{k}\left(\delta_{k}\right)$ is homeomorphic to ν^{k} ? the restriction of δ_{k} on $\mathfrak{s}_{k}\left(\delta_{k}\right)$ is Chigogidze's resolution?

Since $\delta_{k}: \mu_{k} \rightarrow Q$ is k-invertible, there exists a section $s: P \rightarrow \mu_{k}$ for each polyhedron $P \subset Q, \operatorname{dim} P \leqslant k$. The following question is concerned with the possibility of constructing the section s in the equi-continuous manner, in the following sense.

Problem 9.5. For each $\varepsilon>0$ there exists $\delta>0$ such that for any polyhedron $P \subset Q$, $\operatorname{dim} P \leqslant k$, there exists a section s of δ_{k} such that $\operatorname{diam} s(A)<\varepsilon, A \subset P$, as soon as $\operatorname{diam} A<\delta$.

References

[1] S.M. Ageev, Axiomatic method of partitions in the theory of Menger and Nöbeling spaces, preprint, 2000; http://at.yorku.ca/v/a/a/a/87.htm.
[2] S.M. Ageev, Axiomatic method of partitions in the theory of Nöbeling spaces. I. Improvement of partition connectivity, Mat. Sb. 198 (3) (2007) 3-50 (in Russian).
[3] S.M. Ageev, Axiomatic method of partitions in the theory of Nöbeling spaces. II. Unknotting theorem, Mat. Sb. 198 (5) (2007) 3-32 (in Russian).
[4] S.M. Ageev, Axiomatic method of partitions in the theory of Nöbeling spaces. III. Consistency of the axiom system, Mat. Sb. 198 (7) (2007) 3-30 (in Russian).
[5] S.M. Ageev, Geometric Chigogidze's resolution, Fund. Math., submitted for publication.
[6] S.M. Ageev, G. Gruzdev, Z. Silaeva, On characterization of 0-dimensional Chigogidze's resolution, Vestnik BGU 2 (2006) 45-48 (in Russian).
[7] S.M. Ageev, D. Repovš, E.V. Shchepin, On the softness of the Dranishnikov resolution, Proc. Steklov Inst. Math. 212 (1) (1996) 3-27.
[8] M. Bestvina, Characterizing k-dimensional universal Menger compacta, Mem. Amer. Math. Soc. 71 (380) (1988).
[9] M. Bestvina, J. Mogilski, Characterizing certain incomplete infinite-dimensional absolute retracts, Michigan Math. J. 33 (1986) $291-313$.
[10] P.L. Bowers, Dense embedding of sigma-compact, nowhere locally compact metric spaces, Proc. Amer. Math. Soc. 95 (1) (1985) 123-130.
[11] A. Chigogidze, Theory of n-shapes, Uspekhi Mat. Nauk 44 (1989) 117-140 (in Russian).
[12] A. Chigogidze, K. Kawamura, E.D. Tymchatyn, Nöbeling spaces and the pseudo-interiors of Menger compacta, Topology Appl. 68 (1996) 33-65.
[13] A. Chigogidze, UV ${ }^{n}$-equivalence and n-equivalence, Topology Appl. 45 (1992) 283-291.
[14] A. Chigogidze, M. Zarichnyi, Universal Nöbeling spaces and pseudo-boundaries of Euclidean spaces, Mat. Stud. 19 (2) (2003) 193-200.
[15] T. Dobrowolski, J. Mogilski, Problems on topological classification of incomplete metric spaces, in: J. van Mill, G.M. Reed (Eds.), Open Problems in Topology, North-Holland, Amsterdam, 1990, pp. 409-429.
[16] A.N. Dranishnikov, Universal Menger compacta and universal mappings, Mat. Sb. 129 (1) (1986) 121-139 (in Russian).
[17] V.V. Fedorchuk, A.Ch. Chigogidze, Absolute Retracts and Infinite-Dimensional Manifolds, Nauka, Moscow, 1992 (in Russian).
[18] S.T. Hu, Theory of Retracts, Wayne State Univ. Press, 1965.
[19] E.V. Shchepin, On homotopically regular mappings of manifolds, in: Geometric and Algebraic Topology, in: Banach Center Publ., vol. 18, PWN, Warsaw, 1986, pp. 139-151.
[20] E.V. Shchepin, N.B. Brodskyi, Selections of filtered multivalued mapping, Proc. Steklov Inst. Math. 212 (1) (1996) 209-229.
[21] H. Toruńczyk, Characterizing Hilbert space topology, Fund. Math. 111 (1981) 247-262.
[22] M.M. Zarichnyi, Absorbing sets for n-dimensional spaces in absolutely Borel and projective classes, Mat. Sb. 188 (3) (1997) 435-447.

[^0]: th The first author was supported by a grant from the Ministry of Education of the Republic of Belarus. The second and third author were supported by a grant from the Slovenian Research Agency. We thank the referee for comments and suggestions.

 * Corresponding author at: Faculty of Education, University of Ljubljana, Kardeljeva pl. 16, Ljubljana, Slovenia 1000.

 E-mail addresses: ageev.sergei@yahoo.com (S.M. Ageev), matija.cencelj@guest.arnes.si (M. Cencelj), dusan.repovs@guest.arnes.si (D. Repovš).

[^1]: 1 This means that for each function $\varepsilon: X \rightarrow(0,1)$ there exists a map $\tilde{\phi}$ such that $\operatorname{dist}(\tilde{\phi}(d), \phi(d))<\varepsilon(\phi(d))$ for all $d \in D$.

[^2]: ${ }^{2}$ Recall that throughout this paper all spaces (in particular, all ANE(n)-spaces) are assumed to be Polish.

[^3]: ${ }^{3}$ More precisely, the commutative diagram \mathcal{E}_{t} and the map f_{t} (from \mathcal{E}_{t-1} for $t>1$) generates, by 4.5 , the commutative diagram $\mathcal{D}_{t}, t=1,2, \ldots$

[^4]: ${ }^{4}$ We leave the proof of the following strengthening of (i) to the reader: Given $\operatorname{ANE}(k)$-space $A \subset R, \chi_{k} \upharpoonright: \chi_{k}^{-1}(A \times Q) \rightarrow A \times Q$ is a k-soft strongly k-universal with respect to Polish spaces, and $\delta_{k} \upharpoonright: \delta_{k}^{-1}(A \times Q) \rightarrow A \times Q$ is a UV^{k-1}-divider of χ_{k}.

