
Topology and its Applications 156 (2009) 1192–1198
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Hereditary invertible linear surjections and splitting problems
for selections

Dušan Repovš a,∗, Pavel V. Semenov b

a Faculty of Mathematics and Physics, and Faculty of Education, University of Ljubljana, PO Box 2964, Ljubljana, Slovenia 1001
b Department of Mathematics, Moscow City Pedagogical University, 2-nd Selskokhozyastvennyi pr. 4, Moscow, Russia 129226

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 January 2007
Received in revised form 11 July 2007

MSC:
primary 54C60, 54C65, 41A65
secondary 54C55, 54C20

Keywords:
Convex-valued mapping
Continuous selection
Banach space
Lower semicontinuous map
Minkowski sum

Let A + B be the pointwise (Minkowski) sum of two convex subsets A and B of a
Banach space. Is it true that every continuous mapping h : X → A + B splits into a sum
h = f + g of continuous mappings f : X → A and g : X → B? We study this question
within a wider framework of splitting techniques of continuous selections. Existence of
splittings is guaranteed by hereditary invertibility of linear surjections between Banach
spaces. Some affirmative and negative results on such invertibility with respect to an
appropriate class of convex compacta are presented. As a corollary, a positive answer to
the above question is obtained for strictly convex finite-dimensional precompact spaces.
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1. Introduction

Recall that a single-valued mapping f : X → Y is said to be a selection of a multivalued mapping F : X → Y provided
that f (x) ∈ F (x), for every x ∈ X . Classically, selections exist in the category of topological spaces (for details see [3–6]), or
in the category of measurable spaces (see [1,6]). Here we shall restrict ourselves only to the first case. A very typical and
most known example of a selection theorem is the celebrated theorem of Michael. It states that every lower semicontinuous
(LSC) mapping F : X → Y from a paracompact domain X into a Banach range space Y admits a continuous single-valued
selection whenever each value F (x), x ∈ X , is a nonempty convex and closed subset of Y .

Consider now two multivalued mappings F1 : X → Y1, F2 : X → Y2 and a single-valued mapping L : Y1 × Y2 → Y . Denote
by L(F1; F2) the composite mapping, which associates to each x ∈ X the set

{
y ∈ Y : y = L(y1; y2), y1 ∈ F1(x), y2 ∈ F2(x)

}
.

Definition 1.1. Let f be a selection of the composite mapping L(F1; F2). A pair ( f1, f2) is said to be a splitting of f if f1 is
a selection of F1, f2 is a selection of F2 and f = L( f1; f2).
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In Sections 2 and 3 below we work in the category of topological spaces. Thus the splitting problem (see [7]) for the triple
(F1, F2, L) is the problem of finding continuous selections f1 and f2 which split a continuous selection f of the composite
mapping L(F1; F2).

For Y1 = Y2 = Y and L(y1; y2) = y1 + y2 we see the specific problem of splitting into a sum of two items. More generally,
for constant multivalued mappings, the splitting problem can be interpreted as the problem of continuous dependence of
solutions of the linear equation y = L(y1; y2) on the data y and with constraints y1 ∈ A and y2 ∈ B .

One more example: let Y1 = Y2 = R, F1(·) ≡ [0,+∞), F2(·) ≡ (−∞;0] and again L(y1; y2) = y1 + y2. Then
L(F1; F2)(·) ≡ R and an arbitrary selection of L(F1; F2) is simply an arbitrary mapping from the domain into R. So in
this case the solvability of the splitting problem means the existence of a decomposition f = f + + f − , e.g. in the theory of
the Lebesgue integral (see [2, Section 25]).

Within the framework of the general theory of continuous selections and due to the Banach open mapping principle
it is quite natural to restrict ourselves to the case of paracompact domains X , Banach range spaces Y1, Y2, Y and LSC
convex-valued and closed-valued mappings F1, F2, and to the case of linear continuous surjections L : Y1 × Y2 → Y .

For a special case of the constant mappings F1(·) ≡ A and F1(·) ≡ B , the splitting problem can be reduced (Theorem 3.1)
to invertibility of a mapping L : Y1 × Y2 → Y with respect to an appropriate family C of subsets of Y1 × Y2.

Definition 1.2. A linear continuous mapping L : Z → Y between Banach spaces is said to be C -hereditary invertible for
a family C of subsets of Z if for every C ∈ C the restriction L|C : C → L(C) admits a right-inverse continuous mapping
s : L(C) → C , L|C ◦ s = id |L(C) .

In terms of continuous selections, L : Z → Y is C -hereditary invertible whenever the inverse multivalued mapping
(L|C )−1 : L(C) → C admits a continuous selection. Clearly, for a class C consisting of closed and convex sets the C -hereditary
invertibility of L : Z → Y follows from C -hereditary openess of L. This simply means that each restriction L|C : C → L(C) is
an open mapping. Therefore C -hereditary openess of L guarantees that the Michael selection theorem mentioned above is
applicable to each mapping (L|C )−1 : L(C) → C , C ∈ C .

Unfortunately, as a rule C -hereditary openess (and also C -hereditary invertibility) of an arbitrary map L : Z → Y is a
very restrictive property. For example, for the class C of all convex compacta this means that dim Z � 2 or dim Y = 1
(Theorem 2.1 and Remark (1)). In Theorem 2.3 we prove that if the boundary of a convex finite-dimensional compactum C
is “transversal” to Ker L then L|C : C → L(C) is an open mapping. On other hand, finite-dimensionality is here the principal
point. Namely, Theorem 2.4 shows that in any infinite-dimensional Banach space Z there is a subcompactum C for which
all assumptions of Theorem 2.3. hold, but L|C : C → L(C) is not open, and moreover the inverse mapping (L|C )−1 : L(C) → C
admits no (even local) continuous selection.

In Section 3 we apply positive results of Section 2 to finding of the splittings. In particular, for a single-valued mapping
f to a compact space L(A, B) we obtain results on splitting of f into mappings to A and to B (cf. Theorem 3.5 and
Corollary 3.6). As a corollary, we prove that for the Minkowski sum A + B of finite-dimensional strictly convex bounded
A and B the equality c = a(c) + b(c), c ∈ A + B holds for some continuous single-valued mappings a : A + B → A and
b : A + B → B .

Finally, recall that the lower semicontinuity of a multivalued mapping F : X → Y between topological spaces X and Y
means that for each points x ∈ X and y ∈ F (x), and each open neighborhood U (y), there exists an open neighborhood V (x)
such that F (x′) ∩ U (y) 
= ∅, whenever x′ ∈ V (x). If one identifies the mapping F : X → Y with its graph Gr F ⊂ X × Y , then
the lower semicontinuity of F is equivalent to the openess of the restriction p1|Gr F : Gr F → X , where p1 : X × Y → X is
the projector onto the first coordinate. Roughly speaking, lower semicontinuous multivalued mappings are exactly inverses
of open single-valued mappings.

2. Hereditary openess and invertibility

Theorem 2.1. For any Banach space Y the following statements are equivalent:

(a) each linear continuous surjection L : Z → Y from a Banach space Z is Fc(Z)-hereditary invertible with respect to the family
Fc(Z) of all convex closed subsets of Z ;

(b) each linear continuous surjection L : Z → Y from a Banach space Z is Cc-hereditary invertible with respect to the family Cc of all
convex subcompacta of Z ; and

(c) dim Y = 1.

Proof. The implication (a) ⇒ (b) is trivial. To check (b) ⇒ (c) we shall need the following lemma.

Lemma 2.2. In the Euclidean 3-space R
3 = R

2 ⊕ R
1 there is a convex compact set C such that the restriction P |C : C → P (C) of the

orthogonal projection P : R
3 → R

2 is not an open mapping. Moreover, the inverse multivalued mapping (P |C )−1 admits no continuous
selection.

Proof. Let K be one full rotation of the spiral
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K = {
(cos t, sin t, t): 0 � t � 2π

}
and C = conv K = convK . Suppose to the contrary that the point-preimages multivalued mapping (P |C )−1 : P (C) → C admits
a continuous selection, say s : P (C) → C . Observe that P (C) is the unit disk D = {(r cos t, r sin t,0): 0 � t � 2π, 0 � r � 1}
and that the mapping (P |C )−1 is single-valued over the whole boundary ∂ D of D except over the initial point (1,0,0).
Hence the continuous selection s coincides with (P |C )−1 on ∂ D\{(1,0,0)}.

Therefore limt→0+0 s(cos t, sin t,0) = (1,0,0) and limt→2π−0 s(cos t, sin t,0) = (1,0,2π), which contradicts the continuity
of s. Note that in fact, the mapping (P |C )−1 admits no selections which is continuous at the point (1,0,0). �

Now, suppose that the assumption (c) does not hold, i.e. dim Y � 2. Hence Y = R
2 ⊕ Y ′ for some Banach space Y ′ . Let

Z = R
3 ⊕ Y ′ . Then we can map R

3 → R
2 as in Lemma 2.2, and map Y ′ onto Y ′ identically, consider the direct sum of these

linear surjections and obtain a contradiction with the assumption (b) on the existence of the right inverse for the restriction
P |C : C → P (C).

In order to prove (c) ⇒ (a), let us first check that the restriction L|C : C → L(C) is an open mapping for every linear
continuous map L : Z → Y and for every convex set C ⊂ Z . Suppose to the contrary that L|C is not open at some point
z ∈ C . Then there exist a number ε > 0 and a sequence {yn}∞n=1 with yn ∈ L(C) such that yn → L(z), n → ∞ and

dist
(
z; L−1(yn) ∩ C

)
� ε, n ∈ N.

The set L(C) is convex and one-dimensional. Thus one can assume that {yn}∞n=1 is monotone. Let yn → L(z) + 0.
Then yn = (1 − tn)L(z) + tn y1, tn → 0 + 0. By the choice of {yn}∞n=1 there exists a point z1 ∈ L−1(y1) ∩ C . Hence zn =
(1 − tn)z + tnz1 ∈ [z, z1] ⊂ C and L(zn) = yn . So zn ∈ L−1(yn) ∩ C and zn → z. Thus dist(z; L−1(yn) ∩ C) → 0 which contra-
dicts the fact that dist(z; L−1(yn) ∩ C) � ε.

Now, let us return to the case when C ∈ Fc(Z). Since the set L(C) is metrizable and hence paracompact, all values of
the mapping y �→ L−1(y) ∩ C are nonempty, convex and closed. Such the mapping is LSC because L|C : C → L(C) is an open
mapping. So applying the Michael selection theorem we find the continuous right inverse of L|C : C → L(C). �
Remarks.

(1) In the same way one can prove that Cc-hereditary invertibility characterizes Banach spaces Z with dim Z � 2.
(2) The analog of Theorem 2.1 holds under substitution of hereditary openess instead of hereditary invertibility even with-

out closedness assumption for convex subsets of Z in (a). In fact, one can use instead of the example from Lemma 2.2
another (widely known) example of the convex hull C ⊂ R

3 of the set {(cos t, sin t,0): 0 � t � 2π} ∪ {(1,0,1)} and or-
thogonal projection p : R

3 → R
2, p(x, y, z) = (x, y,0). Note that (p|C )−1 here admits the obvious (identical) continuous

selection. This is the key difference with the example from Lemma 2.2.

Theorem 2.1 shows that separate and independent assumptions on linear mapping L and on a convex compact set C ⊂ Z
cannot give an essential result. So some linking properties on L and C are needed.

Let us recall that for a convex subset M of a Banach space Z there are (at least) two approaches to the notion of its
relatively inner point. First, a point m ∈ M is said to be inner (in the metric sense) point of M provided that for some
positive ε the intersection D(m;ε) ∩ aff(M) is subset of M . Here and below D(m;ε) denotes the open ball with radius ε
centered at m. Second, a point m ∈ M is said to be inner (in the convex sense) point of M provided that for each x ∈ M ,
x 
= m, there exists y ∈ M such that m ∈ [x; y). Here, [x; y) is the straight line semiinterval, i.e. the segment [x; y] without
the end point y.

A great advantage of finite-dimensional convex sets is that for them these approaches are equivalent (see [8, 2.3.6
and 2.6.10]). The Hilbert cube Q , lying in any Banach, or Frechet space, has no inner (in the metric sense) points. But Q
certainly has inner (in the convex sense) points: they constitute the so-called pseudo-interior of the Hilbert cube. Note that
each infinite-dimensional convex compact subset of a Frechet space is homeomorphic to Q , due to the Keller theorem [5].

Below we shall use this equivalence without any special reference and we shall denote by int(M) (resp., ∂(M)) the set
of all inner (resp., boundary) points of a finite-dimensional convex set M . Observe that int(A × B) = int(A) × int(B).

Theorem 2.3. Let L : X → Y be a linear continuous surjection between Banach spaces. Let C ⊂ X be a convex finite-dimensional
bounded subset of X such that the boundary ∂(C) contains no segments parallel to the kernel Ker(L). Then the restriction
L|C : C → L(C) is an open mapping.

Proof. (1) Let x ∈ int(C). Then the conclusion follows from the Banach open mapping principle, applied to the restriction
L|aff(C) .

(2) Let x ∈ C ∩ ∂(C), L(x) = y, but suppose that L−1(y) intersects int(C). So let x0 ∈ L−1(y) ∩ int(C). It is a well known
and fundamental fact that the whole semiinterval (x; x0] lies in int(C) [8, 2.3.4]. Thus for every ε > 0 there is xε ∈ L−1(y) ∩
int(C) ∩ D(x;ε). Choose δ > 0 such that D(xε; δ) ⊂ D(x;ε). Due to the case (1) the image L(D(xε; δ) ∩ C) contains some
neighborhood, say V (y) of the point y in L(C). This is why
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V (y) ⊂ L
(

D(xε; δ) ∩ C
) ⊂ L

(
D(x;ε) ∩ C

)
,

i.e. the restriction L|C : C → L(C) is open at the point x.
(3) Let x ∈ C ∩ ∂(C), L(x) = y and L−1(y) ∩ int(C) = ∅. Hence (L−1(y) ∩ C) ⊂ ∂(C). If x1 and x2 are two distinct points

in L−1(y) ∩ C then the segment [x1, x2] is parallel to Ker(L) and lies in the boundary ∂(C). This is a contradiction with the
assumption of the theorem. Thus L−1(y) ∩ C = {x}.

Suppose to the contrary, that the mapping L|C is not open at x. This means that for some ε > 0 and for some sequence
yn → y, yn ∈ L(C), n → ∞, each distance dist(L−1(yn) ∩ C, x) is greater than or equal to ε. For each n ∈ N pick xn ∈
L−1(yn) ∩ C . Due to precompactness of C we can choose convergent subsequence, say xnk → x0, x0 ∈ Cl(C), k → ∞. Then
ynk = L(xnk ) → L(x0) and L(x0) = y, or x0 ∈ L−1(y)∩ Cl(C). But L−1(y)∩ int(C) = ∅. Therefore x0 ∈ L−1(y)∩ ∂(C) and x0 = x,
due to the transversality type assumption that the boundary ∂(C) contains no segments parallel to the kernel Ker(L). So

dist(xnk , x) � dist
(
L−1(ynk ) ∩ C, x

) → 0, k → ∞,

hence we get a contradiction. �
The following theorem demonstrates that without the finite-dimensionality the restriction local invertibility can fail even

at the inner points.

Theorem 2.4. For every infinite-dimensional Banach space Z and for every continuous linear projector P : Z → Z with dim Ker(P ) = 1
there is an infinite-dimensional convex compact subset C ⊂ Z and an inner point z ∈ C such that the restriction P |C : C → P (C) is
not open at z. Moreover, the inverse multivalued mapping (P |C )−1 : P (C) → C admits no continuous selections over an arbitrary
neighborhood of the point P (z).

Proof. Choose any basic Schauder normalized sequence e1, e2, . . . , en, . . . , ‖en‖ = 1 with e1 ∈ Ker P and en ∈ Im P , n > 1. So,
P (e1) = 0, P (en) = en , n > 1. Define

C = conv

{
en

n
,2e1 − en

n

}∞

n=1
, K = conv

{
en

n
,2e1 − en

n

}∞

n=1
.

The set { en
n ,2e1 − en

n }∞n=1 is precompact because it consists of two convergent sequences en
n → 0 and 2e1 − en

n → 2e1.
Hence K is also precompact set and C is a convex compact subset of X . The point e1 is the center of symmetry of the set
C and hence is its inner point.

Suppose that we have already checked that the multivalued mapping (P |C )−1 : P (C) → C is single-valued over the set
{ en

n ,2e1 − en
n }∞n=1. In other words, suppose that we have proved that

(P |C )−1
(

en

n

)
= en

n
, (P |C )−1

(
−en

n

)
= 2e1 − en

n
.

In this assumption, if s : U ∩ P (C) → C is a continuous selection of (P |C )−1 over some neighborhood U of the point P (e1) = 0
then

lim
n→∞ s

(
en

n

)
= 0, lim

n→∞ s

(
−en

n

)
= 2e1,

which contradicts the continuity of s at 0.
In order to complete the proof it suffices to check that λe1 + en

n ∈ C if and only if λ = 0 and, analogously
μe1 + (2e1 − en

n ) ∈ C if and only if μ = 0.

Lemma 2.5. For each z = λe1 + en
n , λ > 0, n > 1 there exists d > 0 such that dist(z, K ) � d and hence dist(z, C) � d.

Proof. For every N ∈ N, let KN = conv{ ek
k ,2e1 − ek

k }N
k=1. Then K = ⋃N

n=1 KN and dist(z, K ) = inf{dist(z, KN ): N ∈ N}. Clearly,

Kn−1 ⊂ span{ek}n−1
k=1 and z /∈ span{ek}n−1

k=1 . Therefore z /∈ Kn−1 and dist(z, Kn−1) = d1 > 0.
Thus we must consider the case N � n. So let y ∈ KN , i.e.

y = α1e1 +
N∑

k=2

(
αk

ek

k
+ βk

(
2e1 − ek

k

))
=

(
α1 + 2

N∑
k=2

βk

)
e1 +

N∑
k=2

(αk − βk)
ek

k

for some nonnegative α1,α2, . . . ,αN , β2, . . . , βN with α1 + ∑N
k=2(αk + βk) = 1.

Hence

z − y =
(

λ −
(
α1 + 2

N∑
βk

))
e1 + (

1 − (αn − βn)
) en

n
+

N∑
(βk − αk)

ek

k
.

k=2 k=2,k 
=n
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Note that αn − βn � αn � 1 and therefore 1 − (αn − βn) � 0.

Case (a). Let 1 − (αn − βn) � λ
3 . Then

‖z − y‖ � 1 − (αn − βn)

n‖Pn‖ � λ

3n‖Pn‖ ,

where Pn : span{ek}∞k=1 → span{en} is the continuous linear projection onto the n-th coordinate. Recall that ‖Pn(u)‖ �
‖Pn‖ · ‖u‖. In our case u = z − y and Pn(u) = (1 − (αn − βn))en .

Case (b). Let 1 − (αn − βn) < λ
3 . Then 1 − λ

3 < αn − βn � αn and 1 − αn < λ
3 . So

β2 + · · · + βN � α1 + β2 + · · · + βN � 1 − αn <
λ

3

and α1 + 2
∑N

k=2 βk < 2λ
3 . Hence λ − (α1 + 2

∑N
k=2 βk) > λ

3 and ‖x − y‖ > λ
3‖P1‖ , where P1 : span{ek}∞k=1 → span{e1} is the

continuous linear projection onto the first coordinate.
Thus, in any case ‖z − y‖ � min{ λ

3n‖Pn‖ , λ
3‖P1‖ } = d2 > 0. Finally, for each N ∈ N

dist(z, KN ) = inf
{‖z − y‖: y ∈ KN

}
� min{d1,d2} = d > 0

and dist(z, K ) � d. This completes the proof of the lemma and also of the theorem. �
3. Splitting selections

To reduce the splitting problem for constant multivalued mappings to the hereditary invertibility property the following
simple statement is useful. We state it in a rather abstract form.

Theorem 3.1. Suppose that a continuous surjection L : Y1 × Y2 → Y between Banach spaces is (C1 × C2)-hereditary invertible with
respect to some families C1 subsets of Y1 and C2 subsets of Y2 . Let A ∈ C1 and B ∈ C2 . Then the splitting problem for the triple
(F1(·) ≡ A, F2(·) ≡ B, L) is solvable for an arbitrary domain X.

Proof. Under the assumptions the composite mapping F = L(F1, F2) is the constant multivalued mapping F (·) ≡ L(A, B).
Hence its continuous single-valued selection, say f , simply is an arbitrary continuous single-valued mapping f : X → L(A, B)

from a domain X . We define an auxiliary multivalued mapping Φ : X → Y1 × Y2, by setting

Φ(x) = {
(y1; y2)

∣∣ y1 ∈ A, y2 ∈ B, L(y1; y2) = f (x)
} = (A × B) ∩ L−1( f (x)

)
.

All values of Φ are nonempty because f (X) ⊂ L(A, B). So first, to each argument x ∈ X in the continuous fashion there
corresponds the point y = f (x) ∈ L(A, B) ⊂ Y . Second, to this point y corresponds the set (A × B) ∩ L−1(y). And the
(C1 × C2)-hereditary invertibility of L means exactly that the last multivalued correspondence has a continuous selection
(see Definition 1.2). Thus its composition with f is a continuous selection, say ϕ , of Φ .

So if f1 = p1 ◦ ϕ : X → A and f2 = p2 ◦ ϕ : X → B , where pi(y1, y2) = yi, i = 1,2 are “coordinate” projections pi :
Y1 × Y2 → Yi , then

L
(

f1(x), f2(x)
) = L

(
p1

(
ϕ(x)

)
, p2

(
ϕ(x)

)) = L
(
ϕ(x)

) = f (x),

because ϕ(x) ∈ Φ(x) ⊂ L−1( f (x)), x ∈ X . Thus the pair ( f1, f2) splits the mapping f . �
We emphasize that Theorem 3.1 is a conditional statement which simply reduces one problem to another: the checking

of (C1 × C2)-hereditary invertibility is a separate and nontrivial job. Theorem 3.1 gives a way of transferring the results from
the previous section to splitting of continuous selections. First we transfer the example from Lemma 2.2.

Example 3.2. For any 2-dimensional cell D there exist:

(a) constant multivalued mappings F1 : D → R
3 and F2 : D → R with convex compact values;

(b) a linear surjection L : R
3 ⊕ R → R

2; and
(c) a continuous selection f of the composite mapping F = L(F1, F2), such that f 
= L( f1, f2) for any continuous selections

f i of Fi , i = 1,2.

Proof. In the notations of Lemma 2.2 let

D = P (C), F1(·) ≡ C, F2(·) ≡ [0;1], L = P ⊕ 0|R: R
3 ⊕ R → R

2.
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Then L(C ⊕ [0;1]) = D , F (·) = L(F1, F2)(·) ≡ D and f = id |D is a continuous selection of F . Suppose to the contrary that
f = L( f1, f2) for some continuous selections f i of Fi , i.e. for mappings f1 : D → C and f2 : D → [0;1]. But the surjection L
“forgets” the second coordinate. Hence

D = f (x) = L
(

f1(x), f2(x)
) = P

(
f1(x)

)
, x ∈ D,

or f1(x) ∈ C ∩ P−1(x).
This means that f1 is a continuous selection of multivalued mapping x �→ C ∩ P−1(x), x ∈ D which contradicts

Lemma 2.2. �
For application of Theorem 2.3 we need some additional smoothness-like restriction on boundaries of convex sets (com-

pare with the notion of a strictly convex Banach space).

Definition 3.3. The convex subset C of a Banach space is said to be strictly convex if the middle point of any nontrivial
segment [x, y], x ∈ C , y ∈ C is an inner (in the convex sense) point of C .

Equivalently, the boundary of C contains no straight line segment.

Theorem 3.4. Let A and B be strictly convex finite-dimensional bounded subsets of Banach spaces Y1 and Y2 , respectively. Let
L : Y1 × Y2 → Y be a linear continuous surjection with kernel Ker(L) transversal to Y1 × {0} and {0} × Y2 . Then the restriction
L|A×B : A × B → L(A × B) is an open mapping.

Proof. In view of Theorem 2.3, it suffices to check only that the boundary ∂(A × B) contains no segment parallel to Ker(L).
Suppose to the contrary that c1 
= c2, [c1, c2] = [(a1,b1), (a2,b2)] ⊂ ∂(A × B) and [c1, c2] is parallel to Ker(L). This means
that (a1 − a2,b1 − b2) ∈ Ker(L). So if a1 = a2 then the transversality assumption implies that b1 = b2 and hence c1 = c2.
Contradiction. Hence a1 
= a2 and analogously b1 
= b2.

By strict convexity a′ = 0,5(a1 + a2) ∈ int(A) and b′ = 0,5(b1 + b2) ∈ int(B). But (a′,b′) ∈ [c1, c2]. So the segment [c1, c2]
intersects int(A × B) which contradicts the existence of inclusion [c1, c2] ⊂ ∂(A × B). �

Theorems 3.1 and 3.4 together imply:

Theorem 3.5. Let A and B be strictly convex finite-dimensional bounded subsets of Banach spaces Y1 and Y2 , respectively. Let
L : Y1 × Y2 → Y be a linear continuous surjection with kernel Ker(L) transversal to Y1 × {0} and {0} × Y2 . Then for every con-
tinuous single-valued mapping f : X → L(A, B) from a domain X there are continuous single-valued mappings f1 : X → A and
f2 : X → B such that

L
(

f1(x), f2(x)
) = f (x), x ∈ X .

Proof. Theorem 3.4 implies that the restriction L|A×B : A × B → L(A × B) is an open mapping. Its image is a metric (and
hence, perfectly normal) space. All its point-preimages are nonempty convex finite-dimensional subsets of a separable
(finite-dimensional, in fact) Banach space span(A) × span(B). Hence Theorem 3.1′′ ′ from [3] shows that L|A×B : A × B →
L(A × B) is C -hereditary invertible, where C is the family of all strictly convex finite-dimensional subsets of a Banach space
span(A) × span(B). So an application of Theorem 3.1 completes the proof. �

Remark that for a convex closed-valued LSC mappings F1 : X → Y1 and F2 : X → Y2 and for a linear continuous surjection
L : Y1 × Y2 → Y , the splitting problem has an affirmative solution in the case of one-dimensional Y1 and Y2 and arbitrary
paracompact domains (see [7, Theorem 3.1]). But in general, splittings of continuous selections exist only if members of the
triple (F1, F2, L) properly agree. See [7, Example 4.2] for a counterexample even for the case dim Y1 = 2, dim Y2 = 1 and for
a countable domain.

We conclude the section by showing the partial case of Theorem 3.5 applying it for the Minkowski sum of convex sets.

Corollary 3.6. Let A and B be strictly convex finite-dimensional bounded subsets of Banach spaces Y . Then there are continuous
single-valued mappings a : A + B → A and b : A + B → B such that c = a(c) + b(c) for all c ∈ A + B.

Proof. In assumptions of Theorem 3.5 we choose the very special linear continuous surjection L : Y1 × Y2 → Y and special
perfectly normal (in fact, metric) domain C . Namely, Y1 = Y2 = Y , L(y1, y2) = y1 + y2 and C = A + B .

Clearly (y1,0) ∈ Ker(L) ⇔ y1 = 0, i.e. the kernel Ker(L) is transversal to Y × {0} and to {0} × Y . So Theorem 3.5 implies
that the identity mapping id : C → C admits a splitting id = L( f1, f2) for some continuous single-valued a : C → A and
b : C → B .
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In other words, if c ∈ C and c �→ {(a,b): c = a + b} then we can always assume that a = a(c) and b = b(c) are continuous
items with respect to the data c ∈ C . �

Analogously, the another version of Theorem 3.5 states that the continuous mapping f from X to the Minkowski sum
A + B splits into a sum of two continuous mappings f1 : X → A and f2 : X → B , whenever A and B are strictly convex
finite-dimensional bounded subsets of a Banach spaces Y .

Finally, we guess that the strict convexity assumption can be weakened in some ways, but that in general, Corollary 3.6
does not hold for an arbitrary convex finite-dimensional compacta.
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