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Abstract

The paper presents two subcontinua of R
n, one Peano-continuum, and one cellular continuum with trivial fundamental group.

Both of them have the remarkable property that neither the entire spaces nor (roughly speaking) any part of them is homotopy
equivalent to a lower-dimensional space. This extends work of the last three authors and of Karimov from the planar case to the
higher-dimensional case, but it also contains in the cellular case the first example with all these properties in dimension two.
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1. Introduction

It is a natural property of finite simplicial complexes in R
n that, by systematically collapsing n-dimensional

simplices with free faces, the entire complex can be homotopy equivalently transformed into an at most (n − 1)-
dimensional complex that is usually called “spine”. Also, open subsets of R

n have this property of being homotopy
equivalent to an at most (n − 1)-dimensional set; apparently this has been known and used as an exercise in the Bing-
School. However, we are not aware of any written version apart from [14]. Hence it came to some people as a kind
of surprise when [16, A.4.13] contained an example of a planar Peano-continuum, which apparently did not offer any
possibility for a collapse. In [4, §5] it was then rigorously proven for an analogously constructed space that this space
is definitely not homotopy equivalent to any lower-dimensional space. The examples of [16] and of [4] had large (i.e.
uncountable) fundamental groups. In [9, Example 1] it was shown that for a planar set, in order to achieve the property
of being not homotopy equivalent to any one-dimensional space, it is not necessary to have a non-trivial fundamental
group. By extending the use of the term “homotopy dimension” from complexes to arbitrary topological spaces, this
property was called “of homotopy dimension two” (cf. our Definition 3.1(i)). Ref. [9, Definition 2.1(ii)] also intro-
duced the term “everywhere homotopically two-dimensional” as a precise mathematical term that mimics the intuitive
feeling that every part of a space has homotopy dimension two. We will be also using this phrase here (cf. Defini-
tion 3.1(ii)). The codiscrete subsets of the two-sphere of homotopy dimension two have meanwhile been characterized
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by Cannon and Conner in [3, Theorem 1.1]. Ref. [9] already contains, apart from the cellular planar homotopically
two-dimensional continuum with trivial fundamental group (that was Example 1 that we mentioned before), an every-
where homotopically two-dimensional planar Peano-continuum [9, Example 3]. By the way, as was also shown in
[9, Proposition 1.1(i)], no planar continuum can have all three properties: being homotopically two-dimensional, with
trivial π1, and a Peano-continuum altogether.

In this paper now we are giving two examples of subcontinua of R
n which both also have (and have everywhere)

homotopy dimension n. One of them will be a Peano-continuum (Example B), the other a cellular continuum with
trivial fundamental group (Example A). We construct these spaces by using the same ideas as in [9, Example 1–3].
However since some theorems in topology do only hold in the plane, here at some places we do have to work harder
than it was necessary in [9, §2–3] (cf. 1.5 below). The idea for our Example B is using a fractal-like iterated gluing
of thickened Hawaiian earrings. I.e. the construction starts with a space H that is pictured in Fig. 1, and it uses
the property that the accumulation point of this space is homotopically fixed (cf. Definition 3.2). Then we will glue
infinitely many copies of H to a dense subset of the boundary of H , in this way making all attaching points again
homotopically fixed. Next, we will glue a second collection of copies of H to a dense subset of the boundary of the
previous set, and after infinitely many such steps we will take the closure of this construction. It will be necessary to
precisely understand how this space changes during this process for being able to prove that even after having taken
the closure of this space it still has the desired properties.

Example A is a similar fractal-like iterated gluing of thickened triangular doublecomb-spaces. Hence for n = 2
our Example A is a planar, simply connected, homotopically and everywhere homotopically two-dimensional cellular
continuum, and such an example was not contained in [9]. We will construct these examples in Section 2 of this paper,
and in Sections 3–6 we will prove that they have the following properties:

Properties 1.1. Our Example A is a pathwise connected subcontinuum of R
n (n � 2) which satisfies:

(a) It is cellular.
(b) It is simply connected.
(c) The local dimension at each of its points is n.
(d) It is homotopically n-dimensional.
(e) It is everywhere homotopically n-dimensional.
(f) Each of its boundary points is homotopically fixed (cf. Definition 3.2).
(g) There does not exist any deformation retraction onto a proper subset.
(h) Any map of our space into itself which is homotopic to the identity, is onto.

Properties 1.2. Our Example B is a subcontinuum of R
n (n � 2) which satisfies:

(a) It is a Peano-continuum.
(b) It is simply connected for n > 2.
(c) The local dimension at each of its points is n.
(d) It is homotopically n-dimensional.
(e) It is everywhere homotopically n-dimensional.
(f) Each of its boundary points is homotopically fixed (cf. Definition 3.2).
(g) There does not exist any deformation retraction onto a proper subset.
(h) Any map of our space into itself which is homotopic to identity, is onto.

In the following X might denote either one of our two examples. In both possible cases X has a collection Γ of
tame closed subspaces whose interiors are n-cells with the following remarkable

Properties 1.3.

(i) The interiors of the elements of Γ are pairwise disjoint and cover the interior of X in R
n.

(ii) For every γ ∈ Γ there is a retraction r :X → γ with r(X \ γ ) ⊂ ∂γ .
(iii) Every point of the boundary of every γ ∈ Γ is homotopically fixed in X.
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(iv) Every neighbourhood of every boundary point of X in R
n contains some γ ∈ Γ .

(v) Each γ is a closed cell in case of Example A, whereas in case of Example B it is homeomorphic to the closed
complementary domain of a standard wedge of two n-cells (identified at some boundary points) in Sn.

Remark 1.4. Roughly speaking, the last three sections are devoted to proving separately those properties which require
lengthy proofs. Therefore we will in Sections 4–6, respectively, prove that Example A is cellular (Property 1.1(a)), that
Example B is locally path-connected (the non-trivial claim from Property 1.2(a)), and that both of our examples are
in their appropriate dimensions simply connected (Properties 1.1(b) and 1.2(b)). The remaining proofs are shorter and
gathered together in Section 3 (including the path-connectivity claim for Example A, cf. Proposition 3.7). Partially
they are immediate consequences of how our spaces are built (cf. Remark 3.8), and partially they follow as immediate
corollaries from each other according to the following diagram:

Thus, roughly speaking, Properties 1.3(i)–(v) imply Properties (c)–(h) (cf. Remark 3.9). Proving these implications
will be analogous for both of our examples, and accordingly the entries (c), (d), . . . in the above diagram refer simul-
taneously to Properties 1.1(c) & 1.2(c), 1.1(d) & . . . , and so on, while (i), (ii), . . . are just abbreviations for Properties
1.3(i), 1.3(ii), . . . .

Remark 1.5. Cell-like sets can be interpreted as sets which have the shape of a point. In the planar case these sets
can be characterized by their Vietoris-homology (cf. [1, Chapter VII, Theorem 7.1]) and also by their Čech-homology
(cf. [11, Chapter VII, §6, Theorem 26.1]). However, this easy characterization is only available in the planar case.
Also Proposition 1.1(b) would in the planar case directly follow from known results, cf. [5, Corollary 6]. For higher
dimensions this is wrong, since Griffiths’ space (this is Example 0.12 from [15], but with the arc C removed, cf. also
[2, p. 315]) is a cellular continuum in R

3 with non-trivial fundamental group—as either follows from Griffiths’ original
proof for his Example C in [6, [3.4]], [6, Theorem 4], [8, Theorem 6.3] (corrections in [7] and [13]) or by using the
elementary proof that was sketched in [15, 3.11(ii)/0.12] for the space Â ∪ B̂ . Therefore the proof of Propositions 1.1
will require some concrete constructions.

2. Construction of our examples

We start with

Example B.
Step B1: Let B1 ⊃ B2 ⊃ B3 ⊃ · · · be the sequence of closed round n-balls in R

n, having radii 1/k and centerpoints
(0,1/k,0,0, . . . ,0), k = 1,2,3, . . . . The thickened Hawaiian earring is the space H ⊂ R

n defined as (see Fig. 1):

H := (B2 \ IntB3) ∪ (B4 \ IntB5) ∪ (B6 \ IntB7) ∪ · · · .
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Fig. 1. The space H (“Thickened Hawaiian earring”).

As already described before stating Properties 1.1, we will as a next step construct the space H∞ which is a fractal-
like iterated gluing of this space. By adding limit-points we will obtain the desired space H̃∞. Spaces Hi and H̃i will
occur as approximating spaces from inside and from outside. All these spaces are already infinite gluings of copies
of H . Since for some purposes we need also finite polyhedra as approximating spaces, it will also be necessary to
construct the spaces H ′

i and H ′
i,j in the forthcoming steps:

Step B2: Now construct the iterated Hawaiian earring H∞ as follows.
The space H is embedded in the n-ball C := B1. On the boundary ∂H choose a countable dense set of points

V := {vi | i ∈ N} 
� (0,0, . . . ,0) with the additional demand that vi /∈ B2i+1.
We will use the enumeration of points vi to inductively define H ′

i ,H
′
i,j and Ui .

In the zero-step we let H ′
0 := H , H ′

0,j = (B2 \ IntB3)∪ (B4 \ IntB5)∪· · ·∪ (B2j−2 \ IntB2j−1)∪B2j and U0 = R
n.

The induction will be exclusively over the index i, the index j will in any step mean that B2j ∪ ⋃j

ν=2(B2ν−2 \
IntB2ν−1) is used as a base-space.

As inductive hypothesis we assume that ∀l�k−1Ul,H
′
l and H ′

l,j have been chosen.
In the inductive step we first choose Uk as a regular open neighbourhood of H ′

k−1,k with the additional condi-

tions that Uk ⊂ Uk−1 and that Uk is contained in the metric neighbourhood U(H ′
k−1,k, (

1
2 )k). For all index tuples

(i1, . . . , ik) ∈ {1,2,3, . . . , k}k and for all such shorter index tuples (i1, . . . , im) ∈ {1,2,3, . . . , k}m which satisfy that at
least one of those indices il equals k we then choose similarities S∅ = idC , Si1,...,im :C → Si1,...,im−1(C) (1 � m � k)

which satisfy that

(1) If Si1,...,im was chosen in the previous inductive steps then it remains unchanged.
(2) Si1,...,im maps v := (0,0, . . . ,0) to Si1,...,im−1(vim).
(3) For all m � k and for all indices il � k all Si1,...,im(H) are disjoint apart from that (Si1,...,im(H)∩Si1,...,im−1(H)) =

{Si1,...,im−1(vim)}.
(4) For each m and all indices il � k all Si1,...,im(C) are disjoint and are contained in Um; if not chosen in the previous

inductive steps, then Si1,...,im(C) is even contained in Uk .
(5) For the same m and il , diam(Si1,...,im(C)) � ( 1

2 )m.

Observe that (5) is not a consequence of (4), since the metric neighbourhood of a non-convex set H ′
k−1,k might al-

low the placement of sets with a diameter bigger than the defining radius of the metric neighbourhood. Similarity maps
as demanded by Items (1)–(5) can be inductively chosen, based on the idea of taking their images in the neighbour-
hoods of the attaching points Si ,...,i (vim) of the previously chosen steps. The disjointness demands can be satisfied
1 m−1
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Fig. 2. The construction of H̃∞ in the two-dimensional case (Cν := Sν(C)).

by making the ratio of dilatation of each map Si1,...,im accordingly small. Based on such choices of similarities we
finally let:

H ′
k := H ′

k−1 ∪ Sk(H) ∪ · · · ∪
⋃

i1,...,im∈{1,2,...,k}
but at least one il equals k

Si1,...,im(H) ∪ · · ·

∪
⋃

i1,...,ik−1∈{1,2,...,k}
but at least one il equals k

Si1,...,ik−1(H) ∪
⋃

i1,...,ik∈{1,2,...,k}
Si1,...,ik (H). (∗)

Analogously H ′
k,j := H ′

k−1,j ∪ · · · , where in the remainder of (∗) the basic space H is each time to be replaced
by H ′

0,j .
These primed spaces H ′

i have been constructed as finite unions. Since the associated spaces H ′
i,j are simplicial

complexes, regular neighbourhoods must exist.
Step B3: However, in the remainder of the paper we will also need the following spaces, which are based on infinite

unions using the same set of similarities:

H0 := H, H1 := H0 ∪
⋃
i∈N

Si(H), H2 := H1 ∪
⋃

i,j∈N

Si,j (H), . . . . (1)

H̃0 := C, H̃1 := H0 ∪
⋃
i∈N

Si(C), H̃2 := H1 ∪
⋃

i,j∈N

Si,j (C), . . . (2)

Put H∞ := H0 ∪ H1 ∪ H2 ∪ · · · and H̃∞ := H̃0 ∩ H̃1 ∩ H̃2 ∩ · · · . (3)

In this way we have

H = H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ H∞ ⊂ H̃∞ ⊂ · · · ⊂ H̃2 ⊂ H̃1 ⊂ H̃0 = C.

We will call the points of H̃∞ \H∞ “limit points”; this notion will be justified by Proposition 3.5. Note that H∞ is by
construction just an infinite gluing of copies of thickened Hawaiian earring spaces H , hence

H ′
0 ∪ H ′

1 ∪ H ′
2 ∪ · · · = H∞.

We will associate to each of these copies a “generation index” and a “degree”. The generation index is the first index
k of a space H ′

k which contains this copy, while the degree of a copy Si1,...,ik (H) is the index k. H0 has degree and
generation index zero, and is the only copy with one of these indices being zero. Since being defined as properties
of the similarity copies of H , both types of indices are unique apart from the points where two different Hawaiian
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earrings are glued together. These points have precisely two of both types of indices. However, while for each number
k our space H∞ contains only finitely many copies of H which have generation index k, apart from index zero it
always contains infinitely many copies with the same finite degree. Vice versa, an earring of degree k must be glued
to a Hawaiian earring of degree k − 1, while an earring of generation index k might be glued to a Hawaiian earring of
any generation index � k.

H̃∞ is our Example B, see Sections 3, 5 and 6 for proofs that it has the above claimed properties.

Example A.
Step A1: Take the point a1 = (1,0) and the following sequences of points in the plane R

2:

a0 = (0,0), a2 = (1/2,0), a3 = (1/3,0), . . . , ak = (1/k,0), . . . ,

b0 = (0,1), b2 = (1/2,1/2), b3 = (1/3,2/3), . . . , bk = (1/k,1 − 1/k), . . . .

The triangular comb space is the following union of line segments:

T ′ := a0a1 ∪ a0b0 ∪
∞⋃

k=2

akbk

To construct the thickened triangular comb space T ⊂ R
n proceed as follows. Stick a sufficiently small polygonal

(n − 1)-disk orthogonally to each line segment except of the segment a0b0 (“accumulation line”), e.g. at its midpoint,
and then construct the suspensions of that disks, with the endpoints of the segments as suspension points (Fig. 3).
Those disks should be chosen so small that the suspensions along different segments aibi (“teeth”) are disjoint and
that ai is the only intersection point of the suspensions along aibi and along a0a1 (“stem”). Apart from this, each
thickened tooth is contained in the convex hull of each predecessor and of the accumulation line.

The thickened double comb space D ⊂ R
n is a wedge of two copies of T with common point b0.

In principle the forthcoming steps are analogous as in the Example B described above, with the comb-space D

taking over the role of the Hawaiian earring.
Step A2: Embed D into a circular n-cone C with v := b0 going to the vertex of the cone such that D \ {b0} lies in

Int(C). Analogously as for Example B we choose a countable dense set V = {vi | i ∈ N} ⊂ ∂D, V ∩ {b0, ai | i � 2} =
∅, and this time we require that vi does not lie in the convex hull of all teeth with index > i. Then choose pairwise
disjoint circular n-cones Ci (i � 1) with ∂D ∩ Ci = {vi} and let Si :C → C with Im(Si) = Ci be similarity maps
such that Si(v) = vi . These Si and similarities Si1,...,ik are in an analogous inductive process chosen as for Step B2,

Fig. 3. The spaces (Fig. 3(a)) and D = T ∨ T (Fig. 3(b)) in case of three dimensions.
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Fig. 4. The two figures above show the first two steps of the construction of D̃∞ . The top left subfigure is D′
1, the top right subfigure shows D′

1 as
a subspace of D′

2: In order to obtain the full D′
2 it would be necessary to attach further combs at the points v2, S1(v2), S1(v1), S2(v1) and S2(v2),

but these additional combs could not have been drawn for reasons of scale. For similar reasons we also refrained from drawing the space D in
a thickened way. The subfigure below shows a more advanced state in the construction of D̃∞ . Here all triangles in light grey replace analogous
iterated gluings of comb spaces as is the entire triangle C.

where instead of B1 we are now using the cone C, instead of B2 we are now using the wedge of two topological
balls each of which is defined as convex hull of each of our two thickened comb-spaces T of D, and instead of
B2j ∪⋃j

ν=2(B2ν−2 \ IntB2ν−1) we are using a space which is obtained by applying such a convex-hull operation only
to the (j +1)st, (j +2)nd, (j +3)rd, . . . teeth of each of the two subspaces T of D, i.e. to those teeth which originally
have been defined as suspensions over the lines aν, bν with ν > j in the definition of T . As in Step B2 we obtain that
such spaces are finite simplicial complexes, but in difference to Step B2 this time these complexes all are collapsible.
Therefore the regular neighbourhoods Ui that we define in this case will have all the topological type of a tame cell.
This property will have to be essentially used in the proof that this example is cellular (cf. Properties 1.1(a)).

With the above described substitutions, vi and Si1,...,im now with the new meaning, we will define spaces D′
k and

D′
k,j according to the scheme as described in Step B2. Note that in practice this means that in B2(∗) only the letter

“H ” has to be substituted by “D”.
Step A3: With symbols v and Si1,...,ik in their new meanings, and by replacing the letter “H ” by “D” in formulae (1),

(2) and (3) from Step B3, we obtain the following chain of sets:

D = D0 ⊂ D1 ⊂ D2 ⊂ · · · ⊂ D∞ ⊂ D̃∞ ⊂ · · · ⊂ D̃2 ⊂ D̃1 ⊂ D̃0 = C

Analogously as for Example B we regard the points of D̃∞ \ D∞ as “limit points”
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and introduce the generation index and the degree on D∞ by calling k the degree of the copy Si1,...,ik (D), and by
calling such a copy “of generation index m”, if m is the lowest index of a space D′

m that already contains this copy
of D.

The forthcoming sections of this paper are devoted to showing that both of our examples have Properties 1.1–1.3.

Convention 2.1. In the remainder of this paper the notation Ỹ∞ will address both of our examples simultaneously, i.e.
it will mean either H̃∞ or D̃∞ as defined before in this section. Analogously, notations like Y∞, Yi and Y ′

i are to be
understood, where Y = D or H will be considered as “building blocks”.

3. Analogous proofs for both of our examples

We shall need some preliminary definitions.

Definition 3.1. (Cf. [9, Definition 2.1].)

(i) A space X is said to be homotopically n-dimensional (or to have homotopy dimension n), if it is homotopy
equivalent to some n-dimensional space and is not homotopy equivalent to any (n − 1)-dimensional space. Here
by dimension of space we mean covering dimension.

(ii) We say that a space X is everywhere homotopically n-dimensional if for every non-empty open subset U of X

and every id-homotopy h :X × I → X which is stable on X \ U , i.e. h(x, t) = x for every x ∈ X \ U and for
every t , the intersection U ∩ h(X,1) is n-dimensional. By an id-homotopy we mean any mapping h :X × I → X

such that h(x,0) = x for all x ∈ X.

Definition 3.2. A point x0 of a space X is called a homotopically fixed point (hf-point, cf. [9, Definition 2.2]), if for any
id-homotopy h :X × I → X and for every t ∈ I the point x0 is a fixed point of the mapping h(· , t), i.e. h(x0, t) = x0
for all t ∈ I .

Proposition 3.3. The point (0,0, . . . ,0) is homotopically fixed in H .

Proof. An id-homotopy is a map which induces the identity on all homotopy and homology groups. Since therefore
it cannot map any element of these algebraic invariants in a degenerate way, it can only map points which contain
in any of their neighbourhoods non-trivial representatives of algebraic invariants to points which again satisfy this
condition. Since for the thickened Hawaiian earring the accumulation point is the only point with this property, it has
to be a homotopically fixed point. �
Remark 3.4. The ratio of dilatation of the unique similarity map that maps Y to some building block of the degree k

is at most ( 1
2 )k . This is an immediate consequence of our condition (5) of Step A2/B2 and of the fact that according

to its definition in Step A1/B1 Y is embedded into a cell C that has a height � 1.

Proposition 3.5. Y∞ = Ỹ∞.

Proof. By the fixed chosen embedding of Step A2/B2 a maximum is defined how much apart any point of C can lie
from the nearest point of Y0. With the geometric regression from Remark 3.4, it follows that any point from Ỹk can lie
at most(

1

2

)k

· that distance

apart from the nearest point of Yk . Since 1
2 < 1, in the limit Ỹ∞ can be at most the closure of Y∞. Since, on the other

hand, Ỹ∞ is closed as an infinite intersection of closed sets, it is the closure. �
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Proposition 3.6. Each limit point of Ỹ∞ is the limit point of exactly one sequence (y0, y1, y2, . . .), which is constructed
by one sequence of naturals i1, i2, . . . according to

y0 = Y0, ym = Si1,i2,...,im(Y0) for m > 0.

Proof. The fact that each limit point can be approximated like this only in one way, follows directly from the con-
struction of Ỹ∞. Since our point as a limit point lies in Ỹ∞ but not in Y∞, it also lies in Ỹk , but not in Yk , for all k ∈ N.
However,

Ỹk \ Yk ⊂
⋃

(j1,...,jk)

Sj1,...,jk
(C \ Y0). (∗)

In particular Ỹk and Yk do not differ in any part that has a degree smaller than k.
Since this argument holds for any k, and since all the attached building blocks of any fixed degree are disjoint,

Formula (∗) defines a unique sequence i1, i2, i3, . . . such that Si1,...,ik (C \ Y0) is for any k that copy of degree k that
contains our limit point. By Remark 3.4 this implies that Si1,...,ik (Y0) converges to our limit point. Conversely, for
any other sequence ν1, ν2, ν3, . . . , if (ν1, . . . , νk) 
= (i1, . . . , ik), any continuation of the ν-sequence could only yield
a limit point inside Sν1,...,νk

(C), where Sν1,...,νk
(C) ∩ Si1,...,ik (C) = ∅. �

Proposition 3.7. Ỹ∞ is pathwise connected.

Proof. By the iterative gluing construction, it is evident that Y∞ is pathwise connected. Hence the remaining question
is, whether the limit points of Ỹ∞ can be somehow connected by paths to the main body Y∞. Here is a method how to
construct such a path: Choose a limit point P and associate according to Proposition 3.6 a sequence (y0, y1, y2, . . .)

to this point. Recall that these sequences can be uniquely constructed so that each yk denotes a building block of
degree k. Choose a path u : [0,1] → Ỹ∞ which between the parameter values 0 and 1

2 runs from its start point in y0 to
some point in y1, between parameter values 1

2 and 3
4 from this point in y1 via the unique attaching point to some point

in y2, and so on. Finally define that u(1) = P . Observe that the compactness of our two possible building blocks gives
that the length � of a geodesic path connecting v to any possible vi is bounded. Since by Remark 3.4 the geometric
regression ( 1

2 )k · supi (�(v vi)) · (1 + 1
2 ) · diam(Y0) is an upper bound for the length of the above constructed path

between its parameter values 1
k

and 1
k+1 , the above construction gives a continuous path which hence connects P to

the main body Y∞. �
Remark 3.8. (On Properties 1.3.) The subspaces γ in the sense of Properties 1.3 are the thickened teeth and the thick-
ened stem of the double-comb D0 and all their similarity copies as subspaces of Si1,...,in (D0) in case of Example A;
in case of Example B these are the sets Si1,...,im(B2j \ IntB2j+1), i.e. the thickened rings of the Hawaiian earring H0
and the similarity copies of these rings. Therefore 1.3(v). Properties 1.3(iv), 1.3(i) and 1.3(ii) follow for points of Y∞
from the mere gluing structure. Regarding 1.3(ii) this is so, because this gluing structure was tree-like: In order to
connect a point P from and element γ ⊂ Y∞ with a point Q in another element γ ′, a connecting path can only leave
γ through one of its boundary points, and the retraction onto γ must then project Q to precisely this boundary point.
Due to Propositions 3.5 and 3.6 this statement extends to all points of Ỹ∞. Also, the extension of 1.3(i) and 1.3(iv)
to limit points follows from 3.6: Since in Proposition 3.6 each limit point is proven to be the limit of (homeomorphic
copies of) building blocks, it is the limit of boundary points of building blocks, and therefore it cannot have become
an interior point of Ỹ∞, but conversely it also contains elements of Γ in any of its neighbourhoods. In difference to
the above arguments, the proof of 1.3(iii) heavily relies on individual properties of the spaces D and H :

Note that all arguments that were given in Lemma 2.3 of [9] to prove that the wedge point of the ordi-
nary non-thickened double comb is a homotopically fixed point, are valid for this thickened version as well,
and in case of Example B we can use Proposition 3.3 above. Then analogously with the arguments from the
list of Remarks 2.4 of [9] it follows also in our case that all boundary points for which we attach such dou-
ble points (and thus their limit points also) remain homotopically fixed points also in the space that is composed
by these attaching processes. This includes in particular all boundary points of the sets from our collection Γ ,
hence 1.3(iii).
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Remark 3.9. (On the implications from Diagram 1.4(∗).)
On the implication “(iii,iv) �⇒ (f)”: This is immediate, since accumulation points of homotopically fixed points

are homotopically fixed.
On the implication “(i,iv,v) �⇒ (c)”: This is also almost immediate, since by 1.3(i) and 1.3(v) every neighbourhood

from every interior point of Ỹ∞ contains an open part of a Euclidean n-dimensional ball, and the same conclusion
holds for boundary points by 1.3(iv) and 1.3(v).

On the implication “(ii,iii,v) ∧ (f) �⇒ (h)”: If any point of Ỹ∞ is missing at the end of an id-homotopy h, then
it cannot be a boundary point of Ỹ∞, since those are homotopically fixed by Property (f). Hence a point x interior
to some γ must be missing (cf. 1.3). Let r : Ỹ∞ → γ be a retraction with r(Ỹ∞ \ γ ) ⊂ ∂γ . Then the composition
γ × I ↪→ Ỹ∞ × I h−→ Ỹ∞ r−→ γ is a homotopy of γ which fixes the boundary of γ such that x 
∈ h(γ,1). This allows
for the construction of a retraction of γ onto its boundary. This contradicts the fact that, if Ỹ∞ = D̃∞, the homology
group Hn−1(γ ) = 0 does not map onto Hn−1(∂γ ) = Z. The argument for Ỹ∞ = H̃∞ is identical, because in this case
Hn−1(γ ) = Z and Hn−1(∂γ ) = Z ⊕ Z.

On the implications “(h) �⇒ (g)” and “(h) ∧ (c) �⇒ (e)”: Both (g) and (e) follow as immediate consequences
of (h): A deformation retraction is a special kind of id-homotopy, and so is the map that qualifies a space for being
not everywhere homotopically n-dimensional: It is by Definition 3.1(ii) an id-homotopy with the additional demand
of keeping the exterior of some neighbourhood fixed. Now, by (c) the neighbourhood of each point in Ỹ∞ is n-
dimensional.

On the implication “(ii,iii,v) �⇒ (d)”: Here the same arguments as given in Remarks 2.4(i) and (ii) of [9] work,
of course, using n-dimensional cohomology instead of two-dimensional. Observe, that all connected components of
inner points of our spaces are just cells, namely the interiors of the sets from our collection Γ (cf. 1.3).

On the implication “(e) �⇒ (c)”: This arrow is due to the fact that according to Definition 3.1(ii) for any open
subset U and the appropriate homotopies h the intersection U ∩ h(X,1) is n-dimensional—with the case h = id in
any case being included.

As Diagram 1.4(∗) shows, the above proven implications together with the arguments from Remark 3.8 prove Prop-
erties (c)–(h) for both of our examples. The last ones of our properties from our Lists 1.1–1.3, namely Properties (a)
and (b), will be proven separately in the sections below, namely 1.1(a) in Section 4, 1.2(a) in Section 5, and 1.1(b) &
1.2(b) simultaneously in Section 6.

4. Proof that Example A is cellular

Remark 4.1. The proof of cellularity for Example A requires the construction of approximating n-dimensional cells
in the spirit of Fig. 4(b) of [9]. However, somewhat the construction here is more complicated than in [9, Proof 3.2],
since here we do not only have two degrees of spaces which need to be respected by the positions of our approximating
disks. However, the construction of our approximating cells has been prepared by choosing ball-neighbourhoods Ui

in Section 2, Step A2.

Proposition 4.2. Example A is cellular.

Proof. By construction, D∞ consists of copies Si1,...,ik (D), and in B2(4)/A2 each such copy has been placed in some
ball-neighbourhood Um, where m � k is the generation index of the copy Si1,...,ik (D). Therefore it is contained in all
neighbourhoods Ui with i < m, and by construction as part of the space D′

m ⊂ D′
i it lies also in all Ui with i > m.

Hence D∞ ⊂ ⋂∞
i=1 Ui . Since we have Um ⊂ Um−1, we also have that

⋂∞
i=1 Ui = ⋂∞

i=1 Ui and hence is closed, so

that we have D̃∞
3.5= D∞ ⊂ ⋂∞

i=1 Ui . Proving the opposite inclusion will complete the proof:
By closedness of D̃∞, any point not belonging to D̃∞ would lie at positive distance ε apart. Hence it cannot be

contained in a metric neighbourhood of radius ( 1
2 )m of D̃∞ with sufficiently high index m, and therefore also not in

the neighbourhood Um which is by construction contained in the metric neighbourhood of the same diameter of the
smaller space D′

m. �
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5. Proof that Example B is a Peano-continuum

Our space H̃∞ is by construction bounded, and by 3.5 closed, hence compact. By 3.7 we have also already pathwise
connectivity. Hence the only missing property that needs to be shown below is the local pathwise connectivity of H̃∞.

Proposition 5.1. H̃∞ is locally pathwise connected.

Proof. Thanks to all the self-symmetries of the fractal-like iteration in building H∞, the essential step has been done
with having proven Proposition 3.7 already. We have to construct an arbitrary small pathwise connected neighbour-
hood for each point in H̃∞. Therefore we distinguish cases according to the various types of points of H̃∞.

(1) Interior points of one of the domains B2i \ IntB2i+1 (in H0 or in its similarity images): As interior points of an
open domain these points clearly have appropriate neighbourhoods.

(2) Attaching points: The set of all attaching points is Ṽ = {Si1,...,ik (vj ) | k ∈ N0, j, i1, . . . , ik ∈ N}. Observe that
each w ∈ Ṽ has precisely two representations of that type according to w = Si1,...,ik (vj ) = Si1,...,ik,j (v). By
our construction in Step B2 of Section 2, for such a w the domain Si1,...,ik,j (C) gives a ball in R

n such that
∂(Si1,...,ik,j (C)) ∩ H̃∞ = {w}. The part of H̃∞ that sits inside this ball we call the “associated subspace of w”.
This space is analogously built as H̃∞.
A path-connected neighbourhood of w with a diameter smaller than ε can be constructed according to(

(w, δ) ∩ (
Si1,...,ik (H) ∪ Si1,...,ik,j

(
(B2 \ IntB3) ∪ · · · ∪ (B2l−2 \ IntB2l−1)

)))
∪ Si1,...,ik,j (H ∩ B2l ) ∪ all subspaces that are associated (∗)

to points of the boundary of the above described space.

By Proposition 3.7 the path-connectedness of such a neighbourhood is clear. It will be contained in U(w,ε),
provided that we choose the two variables l and δ as follows:

(i) First choose l sufficiently big, such that Si1,...,ik,j (B2l ) fits into U(w,ε), including all its subspaces that are
associated to points of this region. Since according to our construction in Step B2 of Section 2 every space
that is associated to a ring B2ν \ IntB2ν+1 with sufficiently high ν has to fit into a neighbourhood of diameter
( 1

2 )ν , this condition will be satisfied for sufficiently high l. In addition, by Remark 3.4, the ratio of dilatation
of all Si1,...,ik,j is < 1.

(ii) Let μ be the index so that vj is an element of ∂(B2μ \ IntB2μ+1).
(iii) Now choose δ′ < ε/2 and smaller than the width of Si1,...,ik (B2μ \ IntB2μ+1) at w.
(iv) Analyze how many subspaces that are associated to points of U(w, δ′) ∩ (Si1,...,ik (H) ∪ Si1,...,ik,j ((B2 \

IntB3)∪· · ·∪ (B2l−2 \ IntB2l−1))) are still sticking out of U(w,ε). Since each of them must have a diameter
of at least ε/2, there can be only finitely many of them. Now choose δ � δ′ such that each of the attaching
points of these sticking out subspaces lies more than δ apart from w.

Observe that according to our construction in (∗), it might happen that not the entire metric neighbourhood
of radius δ of w belongs to the set constructed there. U(w, δ) might contain points from subspaces that are
associated to points outside U(w, δ), but that are sticking into our metric neighbourhood. But if U(w, δ

2 ) would
still contain such points, then the corresponding subspaces would have to have a radius bigger than δ

2 , and hence
these points could only come from finitely many of such subspaces. Hence, with repeating this argument from
(iv) we see that at least some metric neighbourhood of w entirely belongs to the set that we constructed in (∗).
A similar argument can then be used for all boundary-points that belong to Si1,...,ik,j ((B2ν \ IntB2ν+1) (ν � l),
to Si1,...,ik,j (B2ν \ IntB2ν+1) ∩ U(w, δ) (ν < l) and to Si1,...,ik (H) ∩ U(w, δ). Since for the interior points of
these sets and of the associated spaces it is clear that they possess full metric neighbourhoods in the set that was
constructed in Formula (∗), we see that we have indeed constructed an open set.

(3) Boundary points of a ring hk which are not attaching points: The case is analogous, but just simpler as the case
before: The construction in Formula (∗) just corresponds to(

U(w, δ) ∩ Si1,...,ik (H)
) ∪ all subspaces that are associated

to points of the boundary of this space
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Fig. 5. This figure tries to give a geometric impression for how to construct a path-connected neighbourhood W inside an ε-neighbourhood: The
areas in grey are solidly filled parts of H̃∞, but only those in dark grey belong to W . Smaller copies of H̃∞ are in this figure indicated by circles,
and these circles are drawn solidly/dotted, according to whether these copies do belong entirely or do not belong at all to W , respectively.

and corresponding to the missing terms we have accordingly fewer steps in constructing this set.
(4) Limit points: Let P be a limit point and (h0, h1, h2, . . .) be the associated sequence in the sense of Proposition 3.6.

The basic idea is to construct a neighbourhood of P of the form Si1,...,ik (C), where hk = Si1,...,ik (H0). By choosing
the index k big, such neighbourhoods which are path-connected by Proposition 3.7 can be made arbitrarily small.
The only trouble comes from the fact that such a neighbourhood fails to be open at one point, namely at the
attaching point of hk to hk−1. However, we can make it open by attaching to our hk-neighbourhood an appropriate
semidisk-neighbourhood in hk−1 of this attaching point w. Such a neighbourhood can be analogously as in the
preceding steps (2) and (3) constructed by taking U(w, δ) ∩ Si1,...,ik−1(H) for a suitable δ and by uniting to it all
subspaces that are associated to points on the boundary of it.

Since we succeeded with the construction of such neighbourhoods for all types of points in H̃0, the proof of
Proposition 5.1 and hence of Property 1.2(a) is complete. �
Remark 5.2. Observe that for our Example A open neighbourhoods can analogously as in 5.1(1)–(4) be constructed,
of course, not claiming any local pathwise connectivity in this case. However, we do claim, that also limit points of
D̃∞ do have neighbourhoods that, as those from 5.1(4), consist of a homeomorphic copy of the entire space, in union
with some metric neighbourhood of the attaching point, in union with all subspaces that were associated to this metric
neighbourhood. Such a neighbourhood, in particular, will not contain any limit point on its boundary.

6. Proof that Examples A and B are simply connected

We are left with the task to show the last missing property of our Examples A & B, namely that the fundamental
group is trivial (with n = 2 for Example B excepted). Before we can start this proof, we need one observation:

Proposition 6.1. The set of limit points for our Examples A and B is pathwise totally disconnected.



J. Malešič et al. / Topology and its Applications 154 (2007) 639–654 651
Fig. 6. The figure shows the construction of F in the case of Example B. The subfigure on the right shows a part of H̃∞ , drawn essentially as in
Fig. 5. In dotting we also put a segment of a sample path u into this figure and indicated the parameter values of when this path passes through the
attaching points. These values then are used in the left subfigure where the corresponding steps of constructing a Kenyon-diagram are indicated.

Proof. The proof of both cases is analogous, and is essentially only based on the analogous gluing structures of these
spaces. We present it using Convention 2.1 to talk about both examples simultaneously. As in Proposition 3.6 for each
limit point construct the unique sequence (Y0 = y0, y1, y2, . . .), such that each yk is a building block of degree k and is
glued to its predecessor. Since these sequences are unique, the corresponding sequences for two different limit points
have to differ at least from some finite index on. If this happens, then the place from which on these sequences differ
determines different similarity maps which map C to disjoint regions in R

n. And these disjoint regions contain our
limit points and can be used to construct disjoint open neighbourhoods for our points as well, which do not have any
limit points on their boundaries (cf. 5.1(4)/5.2). Hence our points are not contained in the same connected component
of the subset of limit points of Ỹ∞. �
Remark 6.2. Observe that the building block for Example B in dimension n = 2 is the classical Hawaiian earring
based on rings ≈ S1. Therefore we cannot expect Example B in this dimension to be simply connected. However, this
obstruction vanishes for all higher n.

Proposition 6.3. Example A for n � 2 and Example B for n > 2 are simply connected.

Proof. Let u : [0,1] → Ỹ∞ be an arbitrary closed path in our space, with Ỹ∞ being defined according to Conven-
tion 2.1. Since it is just a homotopic process to shrink all constant domains of such a path to points, we can and will
in the forthcoming proof assume that u is free of constant segments.

In order to show that π1(Ỹ∞) = 1, we need to construct a nullhomotopy for such a path u. According to a proposal
of Kenyon [10], for that purpose we look at the closed unit-disk B

2, and we will use in the forthcoming constructions
the metric that can be put on such a disk to give the Poincaré Disk model for the hyperbolic (or “Lobachevskian”)
space H

2 (cf. [12, §9.2]. Accordingly we will talk of “hyperbolic lines” (which are Euclidean semicircles that are
perpendicular to the boundary) and similar things. We use ∂B

2 as a parameter domain for our path u, and hence by
using the parametrization for u we get a map f : ∂B

2 → Ỹ∞. If we manage to extend this map f to a continuous map
F : B2 → Ỹ∞, then we succeeded in proving that u was nullhomotopic.

F will be defined by an infinite iterative process where each iteration step enlarges the domain of definition of F ;
but in general only in the limit after infinitely many iterates we will have completely defined F . Although based on
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the same ideas, we give in the following separate descriptions for the initial step of this process and for the step that
will be infinitely many times iterated to enlarge the domain of definition of F .

Initial step: Let us, without loss of generality, assume that u passes through Y0, i.e. through the only building block
of degree zero (if it does not, then the building block of lowest degree through which u passes takes this role in the
forthcoming proof). We treat it as evident that also the thickened double-comb space D or the thickened Hawaiian
earring H for n � 3 has trivial fundamental group (a rigorous proof could be given by precisely the same method as
this proof when treating the various n-dimensional cells and line-segments or rings of which D or H , respectively,
are comprised as we treat the building blocks below). Our path might spend various different segments inside Y0.
According to the tree-like gluing structure of Y∞, if u leaves Y0 and goes into the building blocks of higher degrees, it
has to come back to Y0 through the same boundary point. Accordingly we can on ∂B

2 mark those (closed) segments
where our path is inside Y0, and those (open) segments where it is outside Y0, and we will find that f takes the same
boundary point of Y0 as value on the two endpoints of an interval where u is outside Y0, for each such interval. We
connect the start with the endpoint of each such interval by a hyperbolic line segment through B

2, and, as a first step
of extending f to F , we hereby agree that the restriction of F to such a line segment is the constant value that f has
on both endpoints of such a hyperbolic line.

This construction gives a system of non-nested hyperbolic lines which seal off various “semi-disks” near the bound-
ary of ∂B

2 from a “central region”. F has already been completely defined on the boundary of the central region, and
the restriction of F to the boundary of the central region can be interpreted as a path which entirely remains in Y0.
Since π1(Y0) = 1, this path is nullhomotopic in Y0, and we can use this nullhomotopy to assign to F now also a
continuous definition inside the entire central region. Hence we reduced the problem of defining F now to the remain-
ing semidisks near ∂B

2. Observe that the boundary of each of those semidisks consists of two segments, one “outer
boundary”, which is lying on ∂B

2, and an “inner boundary”, which is a hyperbolic line-segment.
Enlargement step: For some S = Si1,...,ik let S(v) be the value that f takes on the endpoints of the outer

boundary p of some semidisk, in which the definition of F is still missing. By assumption, f (p) is contained
in S(C). The subset of ∂B

2, where f (p) is not contained in S(Y ), is open, and can in the worst case consist
of countably many disjoint open subintervals. Here f will map to building blocks of degree k + 1 or higher. At
the beginning and at the endpoint of each of those subintervals f will take on the same value. As in the Ini-
tial Step of this construction, connect each pair of endpoints of those subintervals by a hyperbolic line, and use
the f -value from the endpoints of these lines as constant value for F on each line. These hyperbolic lines, to-
gether with the inner boundary of our semidisk and the appropriate segments of ∂B

2 in between form a closed
Jordan curve c, on which F is already defined and only takes on values in S(Y ). Since π1(Y ) = 1, a nullho-
motopy for F(c) exists inside S(Y ) and can be used to define F in the interior region of c. In addition, the
geometric shape of Y0 allows to choose this nullhomotopy in such a way, that its diameter does not exceed the
diameter of the loop to be contracted. Hence we have extended the definition of F to some parts of our outer
semidisk, and by iterating this construction we will continue to extend it to parts of the still missing smaller semi-
disks.

In the remainder of this section we will complete this proof by showing

(i) that this definition fills the entire interior of B
2,

(ii) that the gluing structure of the various subdisks on which F is independently defined is locally finite in the
interior and hence the resulting map is continuous, and

(iii) that this definition on Int(B2) continuously extends to the map that by the original path f is defined on ∂B
2.

Proof of (i): Assume that our construction mechanism fails to associate to some point P ∈ Int(B2) a definition.
This implies that P does not belong to the central region that we considered in the Initial step but has to lie in-
side one of the outer semidisks. And it has to lie inside one of the outer subsemidisks, when in a forthcoming
step of this proof we extended our definition of F into this semidisk. The same is true for each of the infinitely
many forthcoming steps of the construction. Since P had a fixed distance to ∂B

2, the hyperbolic geometry does
also not allow the endpoints of the inner boundaries of these semidisks to converge to each other in ∂B

2. Denote
these endpoints by (αi)i∈N and (βi)i∈N and denote by [αi,βi] the appropriate segment on ∂B

2, i.e. the appropri-
ate segment that is the outer boundary of the ith semidisk. According to our construction we know that f left at
the parameter value αi a building block of degree (i − 1), and did not return to this building block before the pa-
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rameter value βi . The sequences (αi)i∈N and (βi)i∈N are monotone sequences in opposite directions on ∂B
2 ≈ S1

and therefore converging. Hence [limi αi, limi βi] is an interval on which f can only take on limit points, and
hence by Proposition 6.1 it can only be constant. However this has been ruled out at the beginning of our proof-
construction.

Proof of (ii): If the segmentation by semidisks, according to the above construction should not be locally finite in
the interior, the geometry of non-intersecting hyperbolic straight lines would force that we have to obtain essentially
the same picture as in the preceding proof to have some accumulation in the interior of B

2. Hence we get the same
type of contradiction to this assumption.

Proof of (iii): By our construction in the Enlargement step, only something needs to be proven, if for some point
P in ∂B

2 we have infinitely many semidisks in its neighbourhood. In the forthcoming proof we need to distinguish
cases depending on whether f (P ) is a limit point or an element of Y∞.

(1) Let f (P ) be a limit point lying in some ε-neighbourhood U(f (P ), ε). The neighbourhoods that we constructed
in 5.1(4)/5.2 for both of our examples are, after removing the semidisk-part, small homeomorphic copies of our
space Ỹ∞. Hence such a copy can be described as S(Ỹ∞), where the homeomorphism S has to be defined for each
building block separately as a composition of the corresponding similarity mappings Si1,...,ik and of their inverses
for the appropriate choices of indices. By our gluing structure, the part S(Ỹ∞) is connected to the rest of our space
Ỹ∞ only through the point S(v) = Si1,...,ik (v). By Remark 3.4 such subspaces have for sufficient high index k a
diameter that is bounded from above by

∑∞
ν=k(

1
2 )ν = ( 1

2 )k−1. Hence they will be contained in U(f (P ), ε). Since
our continuous path f can have entered and left S(Ỹ∞) only through the point S(v), there are corresponding
parameter values on ∂B

2 which define a δ-neighbourhood in which we know that f takes on only values inside
S(Ỹ∞). By construction in the Enlargement step, these points on ∂B

2 have been connected by a semidisk, and
whatever has been defined as map F there, did also only take on values inside S(Ỹ∞). Hence this semidisk is
precisely that type of neighbourhood that needed to be constructed in an elementary proof of continuity for F at
the point P .

(2) Now let P ∈ ∂B
2 be a point where f (P ) is some point in Y∞. Hence f (P ) lies in a copy of Y with finite degree,

and therefore only k semidisks of B
2 can be nested at the point P . Hence, if P is an accumulation point of

semidisks, this can only be due to side-by-side situated disks. Of course, we cannot rule out that inside some
of these semidisks there are sitting finitely or infinitely many other semidisks, but there always do also exist
semidisks of degree k or k + 1 which are accumulating from aside to our point P . For our path this means that
f (P ) will be on the boundary of a building block yk−1 which might or might not be the attaching point to some yk .
An accumulation of semidisks near P means that f in the neighbourhood of the point P either infinitely many
times changes between yk and yk−1, or in this neighbourhood enters a lot of smaller building blocks that are in this
region attached either to yk or to yk−1. Either way, we can always place an arbitrarily small semidisk around P

so that such that all but finitely many filling regions for F from the Enlargement step are either completely inside
or completely outside this semidisk. The continuity of F at P now follows from the continuity of f and from the
fact that the filling nullhomotopies were chosen so as not to increase the diameter of the curves of f -values which
they contract.

Since by the above arguments we have seen that our construction gave a continuous map that can be interpreted
as a homotopy of our arbitrary path f , it has been proven to be nullhomotopic, and Ỹ∞ to have trivial fundamental
group. �
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