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Assume that X ⊆ R \ Q, and each clopen-valued lower semicontinuous multivalued map
Φ : X ⇒ Q has a continuous selection φ : X → Q. Our main result is that in this case, X is
a σ -space. We also derive a partial converse implication, and present a reformulation of
the Scheepers Conjecture in the language of continuous selections.
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1. Introduction

All topological spaces considered in this note are assumed to have large inductive dimension 0, that is, disjoint closed
sets can be separated by clopen sets.

By a multivalued map Φ from a set X into a set Y we understand a map from X into the power-set of Y , denoted
by P (Y ), and we write Φ : X ⇒ Y . Let X, Y be topological spaces. A multivalued map Φ : X ⇒ Y is lower semi-continuous
(lsc) if for each open V ⊆ Y , the set

Φ−1
∩ (V ) = {

x ∈ X: Φ(x) ∩ V �= ∅}

is open in X .
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A function f : X → Y is a selection of a multivalued map Φ : X ⇒ Y if f (x) ∈ Φ(x) for all x ∈ X . Let C ⊆ P (Y ). A multival-
ued map Φ : X ⇒ Y is C -valued if Φ(x) ∈ C for all x ∈ X . Similarly, we define clopen-valued, closed-valued, and open-valued.
A general reference for selections of multivalued mappings is [11].

Theorem 1 (Michael [9]). Assume that X is a countable space, Y is a first-countable space, and Φ : X ⇒ Y is lsc. Then Φ has a
continuous selection φ : X → Y .

This result was extended in [17, Theorem 3.1], where it was proved that a space X is countable if and only if for each
first-countable Y , each lsc multivalued map from X to Y has a continuous selection. In fact, their proof gives the following.

Theorem 2 (Yan and Jiang [17]). A separable space X is countable if and only if for each first-countable space Y and each open-valued
lsc map Φ : X ⇒ Y , there is a continuous selection φ : X → Y .

We extend Theorems 1 and 2 by considering a qualitative restriction on the space X (instead of the quantitative restric-
tion “X is countable”). We also point out a connection to a conjecture of Scheepers.

2. σ -Spaces

Define a topology on P (N) by identifying P (N) with the Cantor space {0,1}N . The standard base of the topology of P (N)

consists of the sets of the form

[s; t] = {A ⊆ N: A ∩ s = t},
where s and t are finite subsets of N. Let Fr denote the Fréchet filter, consisting of all cofinite subsets of N, and let [N]ℵ0

be the family of all infinite subsets of N. Fr and [N]ℵ0 are subspaces of P (N) and are homeomorphic to Q and to R \ Q,
respectively (see [7]). Let

B = {[s; ∅]: s is a finite subset of N
};

BFr = {B ∩ Fr: B ∈ B}.
Note that B is the standard clopen base at the point ∅ ∈ P (N).

A topological space X is a σ -space if each Fσ subset of X is a Gδ subset of X [10].
The main result of this note is the following.

Theorem 3. The following are equivalent:

(1) X is a σ -space;
(2) Each BFr-valued lsc map Φ : X ⇒ Fr has a continuous selection.

The proof of Theorem 3 and subsequent results use the following notions. A family U = {Un: n ∈ N} of subsets of a set X
is a γ -cover of X if for each x ∈ X , x ∈ Un for all but finitely many n. A bijectively enumerated family U = {Un: n ∈ N} of
subsets of a set X induces a Marczewski map U : X → P (N) defined by

U (x) = {n ∈ N: x ∈ Un}
for each x ∈ X [8].

Remark 4. Marczewski maps can be naturally associated to any sequence of sets, not necessarily bijectively enumerated. Our
restriction to bijective enumerations allows working with the classical notion of γ -cover. An alternative approach would be
to use indexed γ -covers, that is, sequences of sets (Un: n ∈ N) such that each x ∈ X belongs to Un for all but finitely many n.
All results of the present paper hold in this setting, too.

For a function f : X → Y , f [X] denotes { f (x): x ∈ X}, the image of f .

Lemma 5. Let U = {Un: n ∈ N} be a bijectively enumerated family of subsets of a topological space X. Then

(1) U is a clopen γ -cover of X if and only if U [X] ⊆ Fr and U : X → P (N) is continuous;
(2) U is an open γ -cover of X if and only if U [X] ⊆ Fr and the multivalued map Φ : X ⇒ Fr defined by Φ(x) = P (U (x)) ∩ Fr is lsc.

Proof. The first assertion follows immediately from the corresponding definitions. To prove the second assertion, let us
assume that U = {Un: n ∈ N} is an open γ -cover of X . Fix some finite subsets s, t of N and x ∈ X such that [s; t]∩Φ(x) �= ∅.

There exists A ∈ Fr such that A ⊆ U (x) and A ∩ s = t .
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Let V = ⋂
n∈U (x)∩s Un . The set V is open in X , being an intersection of finitely many open sets, and it contains x

by definition of U . Thus it suffices to show that [s; t] ∩ Φ(y) �= ∅ for all y ∈ V . A direct verification indeed shows that
(A ∩ s) ∪ (U (y) \ s) belongs to [s; t] as well as to Φ(y).

To prove the converse implication, it suffices to note that Un = Φ−1
∩ [{n}; {n}], and use the lower semi-continuity of Φ . �

The following is a key result of Sakai. A cover {Un: n ∈ N} of X is γ -shrinkable [12] if there is a clopen γ -cover
{Cn: n ∈ N} of X such that Cn ⊆ Un for all n. Note that U is a γ -cover of X if and only if U [X] ⊆ Fr.

Theorem 6 (Sakai [12]). X is a σ -space if and only if each open γ -cover of X is γ -shrinkable.

Proof of Theorem 3. (2 ⇒ 1). Assume that each BFr-valued lsc Φ : X ⇒ Fr has a continuous selection. We will show that X
is a σ -set by using Sakai’s characterization (Theorem 6).

Let U be an open γ -cover of X . Define Φ(x) = P (U (x)) ∩ Fr. Φ is BFr-valued, and by Lemma 5, Φ is lsc. By our assump-
tion, Φ has a continuous selection. The following lemma implies that U is γ -shrinkable.

Lemma 7. Let U = {Un: n ∈ N} be a bijectively enumerated open γ -cover of a space X. The following are equivalent:

(1) U is γ -shrinkable;
(2) The multivalued map Φ(x) = P (U (x)) ∩ Fr has a continuous selection.

Proof. (1 ⇒ 2). If V = {Vn: n ∈ N} is a witness for (1), then the map x �→ V (x) is a continuous selection of Φ .
(2 ⇒ 1). If φ : X → Fr is a continuous selection of Φ , then {Vn := {x ∈ X: φ(x)  n}: n ∈ N} is a clopen γ -cover of X with

the property Vn ⊆ Un , for all n ∈ N. Indeed, if x ∈ Vn , then n ∈ φ(x) ∈ P (U (x)) ∩ Fr, and hence n ∈ U (x), which is equivalent
to x ∈ Un . �

(1 ⇒ 2). Assume that X is a σ -space and Φ : X ⇒ Fr is lsc and BFr-valued. The following is easy to verify.

Lemma 8. For each BFr-valued Φ : X ⇒ Fr, there exists a map φ : X → Fr such that Φ(x) = P (φ(x)) ∩ Fr for all x ∈ X.
Conversely, for each map φ : X → Fr, the multivalued map Φ : X ⇒ Fr defined by Φ(x) = P (φ(x)) ∩ Fr is BFr-valued.

Let φ be as in Lemma 8. For each n, let Un = {x ∈ X: n ∈ φ(x)} = {x ∈ X: Φ(x) ∩ [{n}; {n}] �= ∅}. Each Un is open, and
U = {Un: n ∈ N} is a γ -cover of X . By Sakai’s Theorem 6, U is γ -shrinkable.

Note that the Marczewski map induced by the family U is exactly the map φ. Thus, by Lemma 7, Φ(x) = P (φ(x)) ∩ Fr =
P (U (x)) ∩ Fr has a continuous selection. �
Corollary 9. If each clopen-valued lsc map Φ : X ⇒ Fr has a continuous selection, then X is a σ -space.

Problem 10. Assume that X ⊆ R is a σ -space. Does each clopen-valued lsc map Φ : X ⇒ Q have a continuous selection?

It is consistent (relative to ZFC) that each metrizable separable σ -space X is countable [10]. Thus, by Theorems 1 and 3,
we have the following extension of Theorem 2.

Corollary 11. It is consistent that the following statements are equivalent, for metrizable separable spaces X :

(1) Every clopen-valued lsc map Φ : X ⇒ Q has a continuous selection;
(2) X is countable.

Problem 12. Is Corollary 11 provable in ZFC?

b is the minimal cardinality of a subset of NN which is unbounded with respect to �∗ ( f �∗ g means: f (n) � g(n) for
all but finitely many n). b is uncountable, and consistently, ℵ1 < b [2]. If |X | < b, then X is a σ -set [4,15]. By Theorem 3,
we have the following quantitative result.

Corollary 13. Assume that |X | < b. Then for each BFr-valued lsc map Φ : X ⇒ Fr, Φ has a continuous selection.

3. b-Scales

Let N↑N be the set of all (strictly) increasing elements of NN . B = {bα: α < b} ⊆ N↑N is a b-scale if bα �∗ bβ for all α < β ,
and B is unbounded with respect to �∗ . N = N ∪ {∞} is a convergent sequence with the limit point ∞, which is assumed
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Fig. 1. The Scheepers Diagram.

to be larger than all elements of N. N↑N is the set of all nondecreasing elements of NN , and Q = {x ∈ N↑N: (∃m) (∀n � m)

x(n) = ∞} is the set of all “eventually infinite” elements of N↑N .
Sets of the form B ∪ Q where B is a b-scale were extensively studied in the literature (see [1,10,16] and references

therein). B ∪ Q is concentrated on Q and is therefore not a σ -space. Consequently, it does not have the properties stated
in Theorem 3. In fact, we have the following.

Theorem 14. Let X = B ∪ Q , where B ⊆ NN is a b-scale. Then there exists a clopen-valued lsc map Φ : X ⇒ Q with the following
properties:

(i) Φ(x) = Q, for all x ∈ B; and
(ii) For each Y ⊆ X such that Q ⊆ Y , and each continuous φ : Y → Q such that φ(y) ∈ Φ(y) for all y ∈ Y , |Y | < |X |.

Proof. Write Q = {qn: n ∈ N}, and consider the γ -cover U = {Un: n ∈ N} of X , where Un = X \ {qn}, n ∈ N.

Lemma 15. For each B ′ ⊆ B with |B ′| = b, and each choice of clopen sets Vn ⊆ Un, n ∈ N, there is x ∈ B ′ such that {n: x /∈ Vn} is
infinite.

Proof. Assuming the converse, we could find a clopen γ -cover {V ′
n: n ∈ N} of B ′ ∪ Q such that V ′

n ⊆ Un . Let Vn be a closed
subspace of N↑N such that Vn ∩ X = V ′

n . Then Wn = N↑N \ Vn is an open neighborhood of qn in N↑N . Set Gn = ⋃
k�n Wk

and G = ⋂
n∈N Gn . For each n ∈ N the set N↑N ∩ (N↑N \ Gn) is a cofinite subset of the compact space N↑N \ Gn , and hence it

is σ -compact.
Therefore N↑N ∩ (N↑N \ G) = ⋃

n∈N N↑N ∩ (N↑N \ Gn) is a σ -compact subset of N↑N as well. Since B ′ is unbounded, there
exists x ∈ B ′ ∩ G , and hence x belongs to Wn for infinitely many n ∈ N, which implies that {n ∈ N: x /∈ Vn} = {n ∈ N: x /∈ V ′

n}
is infinite, a contradiction. �

Recall that Fr is homeomorphic to Q. Thus, it suffices to construct an lsc Ψ : X ⇒ Fr with the properties (i) and (ii). Set
Ψ (x) = P (U (x)) ∩ Fr.

By Lemma 5, the multivalued map Ψ is lsc and there are no partial selections f : Y → Fr defined on subsets Y ⊆ X such
that |Y | = |X | = b and Y ⊃ Q . Indeed, it suffices to use Lemmata 7 and 15, asserting that there is no clopen refinement
{Vn: n ∈ N} of {Un: n ∈ N} which is a γ -cover of such a subspace Y of X . �

Theorem 14 can be compared with Theorem 1.7 and Example 9.4 of [9].
The undefined terminology in the following discussion is standard and can be found in, e.g., [13]. Lemma 15 motivates

the introduction of the following covering property of a space X :

(θ) There exists an open γ -cover U = {Un: n ∈ N} of X and a countable D ⊆ X such that for any family V = {Vn: n ∈ N} of
clopen subsets of X with Vn ⊆ Un for all n, if V is a γ -cover of some Y ⊆ X such that D ⊆ Y , then |Y | < |X |.

Theorem 14 implies the following.

Corollary 16. Assume that X = B ∪ Q where B ⊆ NN is a b-scale. Then X satisfies (θ).

The property (θ) seems to stand apart from the classical selection principles considered in [13,6]. Fig. 1 (reproducing
[6, Fig. 3, p. 245]) summarizes the relations among these properties.

Every countable space satisfies the strongest property in that figure, namely S1(Ω,Γ ) [5], and it is clear that countable
spaces do not satisfy (θ). Moreover, by Sakai’s Theorem 6, no σ -space satisfies (θ).

Assuming the Continuum Hypothesis there is a b-scale B such that B ∪ Q is not a σ -space, but satisfies S1(Ω,Γ ) [5] as
well as (θ) (Corollary 16).
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Consider the topological sum X = R ⊕ (R \ Q). The open sets Un = (−n,n) ⊕ (R \ Q), n ∈ N, form a γ -cover of X and
show that X satisfies (θ) for a trivial reason, and does not satisfy the weakest property in the Scheepers Diagram, namely
Sfin(O, O), because it contains (R \ Q) as a closed subspace. A less trivial (zero-dimensional) example is given in the
following consistency result.

Theorem 17. Assume that b = d = cf(c) < c. There is a set X ⊆ R \ Q satisfying (θ) but not Sfin(O, O).

Proof. Let B = {bα: α < b} be a b-scale and c = ⋃
α<b λα with λα < c. Fix Dα ⊆ N↑N such that |Dα | = λα and for each

f ∈ Dα , | f (n) − bα(n)| < 2 for all n.
Let Y ⊆ NN be a dominating family. The direct sum of X = Q ∪ ⋃

α<b Dα and Y satisfies (θ) by the methods of Theo-
rem 14. But Y is a closed subset of this space and does not satisfy Sfin(O, O) [13]. �
4. Connections with the Scheepers Conjecture

Let A and B be any two families. Motivated by works of Rothberger, Scheepers introduced the following prototype of
properties [13]:

S1(A, B): For each sequence {Un}n∈N of members of A, there exist members Un ∈ Un , n ∈ N, such that {Un: n ∈ N} ∈ B.

Let Γ and CΓ be the collections of all open and clopen γ -covers of a set X ⊆ R, respectively. Scheepers [14] has conjectured
that the property S1(Γ,Γ ) is equivalent to a certain local property in the space of continuous real-valued functions on X .
Sakai [12] and independently Bukovský and Haleš [3] proved that Scheepers’ Conjecture holds if and only if S1(Γ,Γ ) =
S1(CΓ , CΓ ) for sets of reals.

Lemma 5 establishes a bijective correspondence between open γ -covers of a space X and maps φ : X → Fr for which
the multivalued map Φ(x) = P (φ(x)) ∩ Fr is lsc. This is used in the proof of the following characterizations, which give an
alternative justification for the Scheepers Conjecture.

Theorem 18. X satisfies S1(CΓ , CΓ ) if and only if for each continuous φ : X → FrN there is f ∈ NN such that f (k) ∈ φ(x)(k) for each
x ∈ X and all but finitely many k.

Since the proof of Theorem 18 is easier than that of the following theorem, we omit it.

Theorem 19. X satisfies S1(Γ,Γ ) if and only if for each φ : X → FrN such that the multivalued map Φ : x �→ Πk∈N(P (φ(x)(k)) ∩ Fr)
is lsc, there is f ∈ NN such that f (k) ∈ φ(x)(k) for each x ∈ X and all but finitely many k.

Proof. Assume that X satisfies S1(Γ,Γ ). Fix a map φ : X → FrN as in the second assertion. The multivalued map Φk : X ⇒ Fr
assigning to each point x ∈ X the subset Φk(x) = P (φ(x)(k)) ∩ Fr of Fr, is lsc for all k.

The family {Uk,n: n ∈ N}, where Uk,n = {x ∈ X: Φk(x) ∩ [{n}; {n}] �= ∅} = {x ∈ X: n ∈ φ(x)(k)}, is an open γ -cover of X .
Since X satisfies S1(Γ,Γ ), there exists f ∈ NN such that {Uk, f (k): k ∈ N} is a γ -cover of X . This implies that f (k) ∈ φ(x)(k)

for all x ∈ N and all but finitely many k.
The proof of the converse implication is similar, using Lemma 5. �
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