Continuous selections and σ-spaces ${ }^{\star}$

Dušan Repovš ${ }^{\text {a }}$, Boaz Tsaban ${ }^{\text {b,c,*, }}$ Lyubomyr Zdomskyy ${ }^{\text {c }, 1}$
${ }^{\text {a }}$ Institute of Mathematics, Physics and Mechanics and Faculty of Education, University of Ljubljana, PO Box 2964, Ljubljana, Slovenia 1001
${ }^{\mathrm{b}}$ Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel
c Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel

A R T I C L E I N F O

Article history:

Received 3 June 2007
Received in revised form 18 September 2007
Accepted 6 March 2008

MSC:

primary 54C60, 54C65
secondary 26E25, 28B20

Keywords:

σ-Space
γ-Cover
Fréchet filter
Multivalued map
Lower semicontinuity
Clopen-valued map
Continuous selection
\mathfrak{b}-Scale

Abstract

Assume that $X \subseteq \mathbb{R} \backslash \mathbb{Q}$, and each clopen-valued lower semicontinuous multivalued map $\Phi: X \Rightarrow \mathbb{Q}$ has a continuous selection $\phi: X \rightarrow \mathbb{Q}$. Our main result is that in this case, X is a σ-space. We also derive a partial converse implication, and present a reformulation of the Scheepers Conjecture in the language of continuous selections.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

All topological spaces considered in this note are assumed to have large inductive dimension 0 , that is, disjoint closed sets can be separated by clopen sets.

By a multivalued map Φ from a set X into a set Y we understand a map from X into the power-set of Y, denoted by $P(Y)$, and we write $\Phi: X \Rightarrow Y$. Let X, Y be topological spaces. A multivalued map $\Phi: X \Rightarrow Y$ is lower semi-continuous (lsc) if for each open $V \subseteq Y$, the set

$$
\Phi_{\cap}^{-1}(V)=\{x \in X: \Phi(x) \cap V \neq \emptyset\}
$$

is open in X.

[^0]A function $f: X \rightarrow Y$ is a selection of a multivalued map $\Phi: X \Rightarrow Y$ if $f(x) \in \Phi(x)$ for all $x \in X$. Let $\mathcal{C} \subseteq P(Y)$. A multivalued map $\Phi: X \Rightarrow Y$ is \mathcal{C}-valued if $\Phi(x) \in \mathcal{C}$ for all $x \in X$. Similarly, we define clopen-valued, closed-valued, and open-valued. A general reference for selections of multivalued mappings is [11].

Theorem 1 (Michael [9]). Assume that X is a countable space, Y is a first-countable space, and $\Phi: X \Rightarrow Y$ is lsc. Then Φ has a continuous selection $\phi: X \rightarrow Y$.

This result was extended in [17, Theorem 3.1], where it was proved that a space X is countable if and only if for each first-countable Y, each lsc multivalued map from X to Y has a continuous selection. In fact, their proof gives the following.

Theorem 2 (Yan and Jiang [17]). A separable space X is countable if and only if for each first-countable space Y and each open-valued lsc map $\Phi: X \Rightarrow Y$, there is a continuous selection $\phi: X \rightarrow Y$.

We extend Theorems 1 and 2 by considering a qualitative restriction on the space X (instead of the quantitative restriction " X is countable"). We also point out a connection to a conjecture of Scheepers.

2. σ-Spaces

Define a topology on $P(\mathbb{N})$ by identifying $P(\mathbb{N})$ with the Cantor space $\{0,1\}^{\mathbb{N}}$. The standard base of the topology of $P(\mathbb{N})$ consists of the sets of the form

$$
[s ; t]=\{A \subseteq \mathbb{N}: A \cap s=t\}
$$

where s and t are finite subsets of \mathbb{N}. Let $F r$ denote the Fréchet filter, consisting of all cofinite subsets of \mathbb{N}, and let $[\mathbb{N}]^{\aleph_{0}}$ be the family of all infinite subsets of \mathbb{N}. Fr and $[\mathbb{N}]^{N_{0}}$ are subspaces of $P(\mathbb{N})$ and are homeomorphic to \mathbb{Q} and to $\mathbb{R} \backslash \mathbb{Q}$, respectively (see [7]). Let

$$
\begin{aligned}
& \mathcal{B}=\{[s ; \not \emptyset]: s \text { is a finite subset of } \mathbb{N}\} ; \\
& \mathcal{B}_{F r}=\{B \cap F r: B \in \mathcal{B}\} .
\end{aligned}
$$

Note that \mathcal{B} is the standard clopen base at the point $\emptyset \in P(\mathbb{N})$.
A topological space X is a σ-space if each F_{σ} subset of X is a G_{δ} subset of X [10].
The main result of this note is the following.
Theorem 3. The following are equivalent:
(1) X is a σ-space;
(2) Each $\mathcal{B}_{F r}$-valued Isc map $\Phi: X \Rightarrow$ Fr has a continuous selection.

The proof of Theorem 3 and subsequent results use the following notions. A family $\mathcal{U}=\left\{U_{n}: n \in \mathbb{N}\right\}$ of subsets of a set X is a γ-cover of X if for each $x \in X, x \in U_{n}$ for all but finitely many n. A bijectively enumerated family $\mathcal{U}=\left\{U_{n}: n \in \mathbb{N}\right\}$ of subsets of a set X induces a Marczewski map $\mathcal{U}: X \rightarrow P(\mathbb{N})$ defined by

$$
\mathcal{U}(x)=\left\{n \in \mathbb{N}: x \in U_{n}\right\}
$$

for each $x \in X$ [8].
Remark 4. Marczewski maps can be naturally associated to any sequence of sets, not necessarily bijectively enumerated. Our restriction to bijective enumerations allows working with the classical notion of γ-cover. An alternative approach would be to use indexed γ-covers, that is, sequences of sets $\left(U_{n}: n \in \mathbb{N}\right)$ such that each $x \in X$ belongs to U_{n} for all but finitely many n. All results of the present paper hold in this setting, too.

For a function $f: X \rightarrow Y, f[X]$ denotes $\{f(x): x \in X\}$, the image of f.
Lemma 5. Let $\mathcal{U}=\left\{U_{n}: n \in \mathbb{N}\right\}$ be a bijectively enumerated family of subsets of a topological space X. Then
(1) \mathcal{U} is a clopen γ-cover of X if and only if $\mathcal{U}[X] \subseteq$ Fr and $\mathcal{U}: X \rightarrow P(\mathbb{N})$ is continuous;
(2) \mathcal{U} is an open γ-cover of X if and only if $\mathcal{U}[X] \subseteq$ Fr and the multivalued map $\Phi: X \Rightarrow$ Fr defined by $\Phi(x)=P(\mathcal{U}(x)) \cap F r$ is lsc.

Proof. The first assertion follows immediately from the corresponding definitions. To prove the second assertion, let us assume that $\mathcal{U}=\left\{U_{n}: n \in \mathbb{N}\right\}$ is an open γ-cover of X. Fix some finite subsets s, t of \mathbb{N} and $x \in X$ such that $[s ; t] \cap \Phi(x) \neq \emptyset$. There exists $A \in F r$ such that $A \subseteq \mathcal{U}(x)$ and $A \cap s=t$.

Let $V=\bigcap_{n \in \mathcal{U}(x) \cap s} U_{n}$. The set V is open in X, being an intersection of finitely many open sets, and it contains x by definition of \mathcal{U}. Thus it suffices to show that $[s ; t] \cap \Phi(y) \neq \emptyset$ for all $y \in V$. A direct verification indeed shows that $(A \cap s) \cup(\mathcal{U}(y) \backslash s)$ belongs to $[s ; t]$ as well as to $\Phi(y)$.

To prove the converse implication, it suffices to note that $U_{n}=\Phi_{\cap}^{-1}[\{n\} ;\{n\}]$, and use the lower semi-continuity of Φ.
The following is a key result of Sakai. A cover $\left\{U_{n}: n \in \mathbb{N}\right\}$ of X is γ-shrinkable [12] if there is a clopen γ-cover $\left\{C_{n}: n \in \mathbb{N}\right\}$ of X such that $C_{n} \subseteq U_{n}$ for all n. Note that \mathcal{U} is a γ-cover of X if and only if $\mathcal{U}[X] \subseteq F r$.

Theorem 6 (Sakai [12]). X is a σ-space if and only if each open γ-cover of X is γ-shrinkable.
Proof of Theorem 3. $(2 \Rightarrow 1)$. Assume that each $\mathcal{B}_{F r}$-valued lsc $\Phi: X \Rightarrow F r$ has a continuous selection. We will show that X is a σ-set by using Sakai's characterization (Theorem 6).

Let \mathcal{U} be an open γ-cover of X. Define $\Phi(x)=P(\mathcal{U}(x)) \cap F r$. Φ is $\mathcal{B}_{F r}$-valued, and by Lemma 5, Φ is lsc. By our assumption, Φ has a continuous selection. The following lemma implies that \mathcal{U} is γ-shrinkable.

Lemma 7. Let $\mathcal{U}=\left\{U_{n}: n \in \mathbb{N}\right\}$ be a bijectively enumerated open γ-cover of a space X. The following are equivalent:
(1) \mathcal{U} is γ-shrinkable;
(2) The multivalued map $\Phi(x)=P(\mathcal{U}(x)) \cap F r$ has a continuous selection.

Proof. $(1 \Rightarrow 2)$. If $\mathcal{V}=\left\{V_{n}: n \in \mathbb{N}\right\}$ is a witness for (1), then the map $x \mapsto \mathcal{V}(x)$ is a continuous selection of Φ.
$(2 \Rightarrow 1)$. If $\phi: X \rightarrow F r$ is a continuous selection of Φ, then $\left\{V_{n}:=\{x \in X: \phi(x) \ni n\}: n \in \mathbb{N}\right\}$ is a clopen γ-cover of X with the property $V_{n} \subseteq U_{n}$, for all $n \in \mathbb{N}$. Indeed, if $x \in V_{n}$, then $n \in \phi(x) \in P(\mathcal{U}(x)) \cap F r$, and hence $n \in \mathcal{U}(x)$, which is equivalent to $x \in U_{n}$.
$(1 \Rightarrow 2)$. Assume that X is a σ-space and $\Phi: X \Rightarrow F r$ is lsc and $\mathcal{B}_{F r}$-valued. The following is easy to verify.
Lemma 8. For each $\mathcal{B}_{F r}$-valued $\Phi: X \Rightarrow F r$, there exists a map $\phi: X \rightarrow$ Fr such that $\Phi(x)=P(\phi(x)) \cap$ Fr for all $x \in X$.
Conversely, for each map $\phi: X \rightarrow F r$, the multivalued map $\Phi: X \Rightarrow$ Fr defined by $\Phi(x)=P(\phi(x)) \cap$ Fr is $\mathcal{B}_{F r}$-valued.
Let ϕ be as in Lemma 8. For each n, let $U_{n}=\{x \in X: n \in \phi(x)\}=\{x \in X: \Phi(x) \cap[\{n\} ;\{n\}] \neq \emptyset\}$. Each U_{n} is open, and $\mathcal{U}=\left\{U_{n}: n \in \mathbb{N}\right\}$ is a γ-cover of X. By Sakai's Theorem $6, \mathcal{U}$ is γ-shrinkable.

Note that the Marczewski map induced by the family \mathcal{U} is exactly the map ϕ. Thus, by Lemma 7, $\Phi(x)=P(\phi(x)) \cap F r=$ $P(\mathcal{U}(x)) \cap F r$ has a continuous selection.

Corollary 9. If each clopen-valued lsc map $\Phi: X \Rightarrow F r$ has a continuous selection, then X is a σ-space.
Problem 10. Assume that $X \subseteq \mathbb{R}$ is a σ-space. Does each clopen-valued lsc map $\Phi: X \Rightarrow \mathbb{Q}$ have a continuous selection?
It is consistent (relative to ZFC) that each metrizable separable σ-space X is countable [10]. Thus, by Theorems 1 and 3, we have the following extension of Theorem 2.

Corollary 11. It is consistent that the following statements are equivalent, for metrizable separable spaces X :
(1) Every clopen-valued Isc map $\Phi: X \Rightarrow \mathbb{Q}$ has a continuous selection;
(2) X is countable.

Problem 12. Is Corollary 11 provable in ZFC?
\mathfrak{b} is the minimal cardinality of a subset of $\mathbb{N}^{\mathbb{N}}$ which is unbounded with respect to $\leqslant^{*}\left(f \leqslant^{*} g\right.$ means: $f(n) \leqslant g(n)$ for all but finitely many n). \mathfrak{b} is uncountable, and consistently, $\mathfrak{\aleph}_{1}<\mathfrak{b}$ [2]. If $|X|<\mathfrak{b}$, then X is a σ-set [4,15]. By Theorem 3, we have the following quantitative result.

Corollary 13. Assume that $|X|<\mathfrak{b}$. Then for each $\mathcal{B}_{F r}$-valued lsc map Φ : $X \Rightarrow F r, \Phi$ has a continuous selection.

3. \mathfrak{b}-Scales

Let $\mathbb{N}^{\uparrow \mathbb{N}}$ be the set of all (strictly) increasing elements of $\mathbb{N}^{\mathbb{N}} . B=\left\{b_{\alpha}: \alpha<\mathfrak{b}\right\} \subseteq \mathbb{N}^{\uparrow \mathbb{N}}$ is a \mathfrak{b}-scale if $b_{\alpha} \leqslant{ }^{*} b_{\beta}$ for all $\alpha<\beta$, and B is unbounded with respect to $\leqslant^{*} . \overline{\mathbb{N}}=\mathbb{N} \cup\{\infty\}$ is a convergent sequence with the limit point ∞, which is assumed

Fig. 1. The Scheepers Diagram.
to be larger than all elements of \mathbb{N}. $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$ is the set of all nondecreasing elements of $\overline{\mathbb{N}}^{\mathbb{N}}$, and $Q=\left\{x \in \overline{\mathbb{N}}^{\uparrow \mathbb{N}}\right.$: ($\exists m$) ($\forall n \geqslant m$) $x(n)=\infty\}$ is the set of all "eventually infinite" elements of $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$.

Sets of the form $B \cup Q$ where B is a \mathfrak{b}-scale were extensively studied in the literature (see $[1,10,16]$ and references therein). $B \cup Q$ is concentrated on Q and is therefore not a σ-space. Consequently, it does not have the properties stated in Theorem 3. In fact, we have the following.

Theorem 14. Let $X=B \cup Q$, where $B \subseteq \mathbb{N}^{\mathbb{N}}$ is a \mathfrak{b}-scale. Then there exists a clopen-valued lsc map $\Phi: X \Rightarrow \mathbb{Q}$ with the following properties:
(i) $\Phi(x)=\mathbb{Q}$, for all $x \in B$; and
(ii) For each $Y \subseteq X$ such that $Q \subseteq Y$, and each continuous $\phi: Y \rightarrow \mathbb{Q}$ such that $\phi(y) \in \Phi(y)$ for all $y \in Y,|Y|<|X|$.

Proof. Write $Q=\left\{q_{n}: n \in \mathbb{N}\right\}$, and consider the γ-cover $\mathcal{U}=\left\{U_{n}: n \in \mathbb{N}\right\}$ of X, where $U_{n}=X \backslash\left\{q_{n}\right\}, n \in \mathbb{N}$.
Lemma 15. For each $B^{\prime} \subseteq B$ with $\left|B^{\prime}\right|=\mathfrak{b}$, and each choice of clopen sets $V_{n} \subseteq U_{n}, n \in \mathbb{N}$, there is $x \in B^{\prime}$ such that $\left\{n: x \notin V_{n}\right\}$ is infinite.

Proof. Assuming the converse, we could find a clopen γ-cover $\left\{V_{n}^{\prime}: n \in \mathbb{N}\right\}$ of $B^{\prime} \cup Q$ such that $V_{n}^{\prime} \subseteq U_{n}$. Let V_{n} be a closed subspace of $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$ such that $V_{n} \cap X=V_{n}^{\prime}$. Then $W_{n}=\overline{\mathbb{N}}^{\uparrow \mathbb{N}} \backslash V_{n}$ is an open neighborhood of q_{n} in $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$. Set $G_{n}=\bigcup_{k \geqslant n} W_{k}$ and $G=\bigcap_{n \in \mathbb{N}} G_{n}$. For each $n \in \mathbb{N}$ the set $\mathbb{N}^{\uparrow \mathbb{N}} \cap\left(\overline{\mathbb{N}}^{\uparrow \mathbb{N}} \backslash G_{n}\right)$ is a cofinite subset of the compact space $\overline{\mathbb{N}}^{\uparrow \mathbb{N}} \backslash G_{n}$, and hence it is σ-compact.

Therefore $\mathbb{N}^{\uparrow \mathbb{N}} \cap\left(\overline{\mathbb{N}}^{\uparrow \mathbb{N}} \backslash G\right)=\bigcup_{n \in \mathbb{N}} \mathbb{N}^{\uparrow \mathbb{N}} \cap\left(\overline{\mathbb{N}}^{\uparrow \mathbb{N}} \backslash G_{n}\right)$ is a σ-compact subset of $\mathbb{N}^{\uparrow \mathbb{N}}$ as well. Since B^{\prime} is unbounded, there exists $x \in B^{\prime} \cap G$, and hence x belongs to W_{n} for infinitely many $n \in \mathbb{N}$, which implies that $\left\{n \in \mathbb{N}: x \notin V_{n}\right\}=\left\{n \in \mathbb{N}\right.$: $\left.x \notin V_{n}^{\prime}\right\}$ is infinite, a contradiction.

Recall that $F r$ is homeomorphic to \mathbb{Q}. Thus, it suffices to construct an lsc $\Psi: X \Rightarrow F r$ with the properties (i) and (ii). Set $\Psi(x)=P(\mathcal{U}(x)) \cap F r$.

By Lemma 5, the multivalued map Ψ is lsc and there are no partial selections $f: Y \rightarrow F r$ defined on subsets $Y \subseteq X$ such that $|Y|=|X|=\mathfrak{b}$ and $Y \supset Q$. Indeed, it suffices to use Lemmata 7 and 15 , asserting that there is no clopen refinement $\left\{V_{n}: n \in \mathbb{N}\right\}$ of $\left\{U_{n}: n \in \mathbb{N}\right\}$ which is a γ-cover of such a subspace Y of X.

Theorem 14 can be compared with Theorem 1.7 and Example 9.4 of [9].
The undefined terminology in the following discussion is standard and can be found in, e.g., [13]. Lemma 15 motivates the introduction of the following covering property of a space X :
(θ) There exists an open γ-cover $\mathcal{U}=\left\{U_{n}: n \in \mathbb{N}\right\}$ of X and a countable $D \subseteq X$ such that for any family $\mathcal{V}=\left\{V_{n}: n \in \mathbb{N}\right\}$ of clopen subsets of X with $V_{n} \subseteq U_{n}$ for all n, if \mathcal{V} is a γ-cover of some $Y \subseteq X$ such that $D \subseteq Y$, then $|Y|<|X|$.

Theorem 14 implies the following.
Corollary 16. Assume that $X=B \cup Q$ where $B \subseteq \mathbb{N}^{\mathbb{N}}$ is a \mathfrak{b}-scale. Then X satisfies (θ).
The property (θ) seems to stand apart from the classical selection principles considered in [13,6]. Fig. 1 (reproducing [6, Fig. 3, p. 245]) summarizes the relations among these properties.

Every countable space satisfies the strongest property in that figure, namely $\mathrm{S}_{1}(\Omega, \Gamma)$ [5], and it is clear that countable spaces do not satisfy (θ). Moreover, by Sakai's Theorem 6 , no σ-space satisfies (θ).

Assuming the Continuum Hypothesis there is a \mathfrak{b}-scale B such that $B \cup Q$ is not a σ-space, but satisfies $\mathrm{S}_{1}(\Omega, \Gamma)$ [5] as well as (θ) (Corollary 16).

Consider the topological sum $X=\mathbb{R} \oplus(\mathbb{R} \backslash \mathbb{Q})$. The open sets $U_{n}=(-n, n) \oplus(\mathbb{R} \backslash \mathbb{Q}), n \in \mathbb{N}$, form a γ-cover of X and show that X satisfies (θ) for a trivial reason, and does not satisfy the weakest property in the Scheepers Diagram, namely $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$, because it contains $(\mathbb{R} \backslash \mathbb{Q})$ as a closed subspace. A less trivial (zero-dimensional) example is given in the following consistency result.

Theorem 17. Assume that $\mathfrak{b}=\mathfrak{d}=\operatorname{cf}(\mathfrak{c})<\mathfrak{c}$. There is a set $X \subseteq \mathbb{R} \backslash \mathbb{Q}$ satisfying (θ) but not $\mathrm{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$.

Proof. Let $B=\left\{b_{\alpha}: \alpha<\mathfrak{b}\right\}$ be a \mathfrak{b}-scale and $\mathfrak{c}=\bigcup_{\alpha<\mathfrak{b}} \lambda_{\alpha}$ with $\lambda_{\alpha}<\mathfrak{c}$. Fix $D_{\alpha} \subseteq \mathbb{N}^{\uparrow \mathbb{N}}$ such that $\left|D_{\alpha}\right|=\lambda_{\alpha}$ and for each $f \in D_{\alpha},\left|f(n)-b_{\alpha}(n)\right|<2$ for all n.

Let $Y \subseteq \mathbb{N}^{\mathbb{N}}$ be a dominating family. The direct sum of $X=Q \cup \bigcup_{\alpha<\mathfrak{b}} D_{\alpha}$ and Y satisfies (θ) by the methods of Theorem 14. But Y is a closed subset of this space and does not satisfy $\mathrm{S}_{\text {fin }}(\mathcal{O}, \mathcal{O})$ [13].

4. Connections with the Scheepers Conjecture

Let \mathcal{A} and \mathcal{B} be any two families. Motivated by works of Rothberger, Scheepers introduced the following prototype of properties [13]:
$\mathrm{S}_{1}(\mathcal{A}, \mathcal{B})$: For each sequence $\left\{\mathcal{U}_{n}\right\}_{n \in \mathbb{N}}$ of members of \mathcal{A}, there exist members $U_{n} \in \mathcal{U}_{n}, n \in \mathbb{N}$, such that $\left\{U_{n}: n \in \mathbb{N}\right\} \in \mathcal{B}$.
Let Γ and C_{Γ} be the collections of all open and clopen γ-covers of a set $X \subseteq \mathbb{R}$, respectively. Scheepers [14] has conjectured that the property $\mathrm{S}_{1}(\Gamma, \Gamma)$ is equivalent to a certain local property in the space of continuous real-valued functions on X. Sakai [12] and independently Bukovský and Haleš [3] proved that Scheepers' Conjecture holds if and only if $\mathrm{S}_{1}(\Gamma, \Gamma)=$ $\mathrm{S}_{1}\left(C_{\Gamma}, C_{\Gamma}\right)$ for sets of reals.

Lemma 5 establishes a bijective correspondence between open γ-covers of a space X and maps $\phi: X \rightarrow F r$ for which the multivalued map $\Phi(x)=P(\phi(x)) \cap F r$ is lsc. This is used in the proof of the following characterizations, which give an alternative justification for the Scheepers Conjecture.

Theorem 18. X satisfies $S_{1}\left(C_{\Gamma}, C_{\Gamma}\right)$ if and only if for each continuous $\phi: X \rightarrow F^{\mathbb{N}}$ there is $f \in \mathbb{N}^{\mathbb{N}}$ such that $f(k) \in \phi(x)(k)$ for each $x \in X$ and all but finitely many k.

Since the proof of Theorem 18 is easier than that of the following theorem, we omit it.
Theorem 19. X satisfies $S_{1}(\Gamma, \Gamma)$ if and only if for each $\phi: X \rightarrow F r^{\mathbb{N}}$ such that the multivalued map $\Phi: x \mapsto \Pi_{k \in \mathbb{N}}(P(\phi(x)(k)) \cap F r)$ is lsc, there is $f \in \mathbb{N}^{\mathbb{N}}$ such that $f(k) \in \phi(x)(k)$ for each $x \in X$ and all but finitely many k.

Proof. Assume that X satisfies $S_{1}(\Gamma, \Gamma)$. Fix a map $\phi: X \rightarrow F r^{\mathbb{N}}$ as in the second assertion. The multivalued map $\Phi_{k}: X \Rightarrow F r$ assigning to each point $x \in X$ the subset $\Phi_{k}(x)=P(\phi(x)(k)) \cap F r$ of $F r$, is lsc for all k.

The family $\left\{U_{k, n}: n \in \mathbb{N}\right\}$, where $U_{k, n}=\left\{x \in X: \Phi_{k}(x) \cap[\{n\} ;\{n\}] \neq \emptyset\right\}=\{x \in X: n \in \phi(x)(k)\}$, is an open γ-cover of X. Since X satisfies $S_{1}(\Gamma, \Gamma)$, there exists $f \in \mathbb{N}^{\mathbb{N}}$ such that $\left\{U_{k, f(k)}: k \in \mathbb{N}\right\}$ is a γ-cover of X. This implies that $f(k) \in \phi(x)(k)$ for all $x \in \mathbb{N}$ and all but finitely many k.

The proof of the converse implication is similar, using Lemma 5.

Acknowledgement

We thank Taras Banakh for stimulating conversations.

References

[1] T. Bartoszynski, B. Tsaban, Hereditary topological diagonalizations and the Menger-Hurewicz conjectures, Proc. Amer. Math. Soc. 134 (2006) 605-615.
[2] A.R. Blass, Combinatorial cardinal characteristics of the continuum, in: M. Foreman, A. Kanamori, M. Magidor (Eds.), Handbook of Set Theory, Kluwer Academic Publishers, Dordrecht, in press, http://www.math.lsa.umich.edu/~ablass/hbk.pdf.
[3] L. Bukovský, J. Haleš, QN-space, wQN-space and covering properties, Topology Appl. 154 (2007) 848-858.
[4] D.H. Fremlin, A.W. Miller, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988) 17-33.
[5] F. Galvin, A. Miller, γ-Sets and other singular sets of real numbers, Topology Appl. 17 (1984) 145-155.
[6] W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, The combinatorics of open covers II, Topology Appl. 73 (1996) 241-266.
[7] A. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math., vol. 156, Springer-Verlag, Berlin, 1995.
[8] E. Marczewski (Szpilrajn), The characteristic function of a sequence of sets and some of its applications, Fund. Math. 31 (1938) $207-233$.
[9] E. Michael, Continuous selections and countable sets, Fund. Math. 111 (1981) 1-10.
[10] A. Miller, Special subsets of the real line, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 201-235.
[11] D. Repovš, P.V. Semenov, Continuous Selections of Multivalued Mappings, vol. 455, Kluwer Academic Publishers, Dordrecht, 1998.
[12] M. Sakai, The sequence selection properties of $C_{p}(X)$, Topology Appl. 154 (2007) 552-560.
[13] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996) 31-62.
[14] M. Scheepers, Sequential convergence in $C_{p}(X)$ and a covering property, East-West J. Math. 1 (1999) 207-214.
[15] M. Scheepers, B. Tsaban, The combinatorics of Borel covers, Topology Appl. 121 (2002) 357-382.
[16] B. Tsaban, L. Zdomskyy, Scales, fields, and a problem of Hurewicz, J. Eur. Math. Soc., in press.
[17] P.-F. Yan, S.-L. Jiang, Countable sets, BCO spaces and selections, Topology Appl. 148 (2005) 1-5.

[^0]: in The first and third authors were partially supported by the Slovenian Research Agency grants P1-0292-0101-04 and BI-UA/04-06-007. The second author was partially supported by the Koshland Center for Basic Research.

 * Corresponding author.

 E-mail addresses: dusan.repovs@guest.arnes.si (D. Repovš), tsaban@math.biu.ac.il (B. Tsaban), lzdomsky@gmail.com (L. Zdomskyy).
 ${ }^{1}$ Current address: Kurt Gödel Research Center for Mathematical Logic, Währinger Str. 25, A-1090 Vienna, Austria.

