ELSEVIER

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Dušan Repovš^a, Boaz Tsaban^{b,c,*}, Lyubomyr Zdomskyy^{c,1}

^a Institute of Mathematics, Physics and Mechanics and Faculty of Education, University of Ljubljana, PO Box 2964, Ljubljana, Slovenia 1001

^b Department of Mathematics, Bar-Ilan University, Ramat-Gan 52900, Israel

^c Department of Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel

ARTICLE INFO

Article history: Received 3 June 2007 Received in revised form 18 September 2007 Accepted 6 March 2008

MSC: primary 54C60, 54C65 secondary 26E25, 28B20

Keywords: σ -Space γ -Cover Fréchet filter Multivalued map Lower semicontinuity Clopen-valued map Continuous selection b-Scale

1. Introduction

All topological spaces considered in this note are assumed to have large inductive dimension 0, that is, disjoint closed sets can be separated by clopen sets.

By a *multivalued map* Φ from a set X into a set Y we understand a map from X into the power-set of Y, denoted by P(Y), and we write $\Phi : X \Rightarrow Y$. Let X, Y be topological spaces. A multivalued map $\Phi : X \Rightarrow Y$ is *lower semi-continuous* (*lsc*) if for each open $V \subseteq Y$, the set

$$\Phi_{\cap}^{-1}(V) = \left\{ x \in X \colon \Phi(x) \cap V \neq \emptyset \right\}$$

is open in X.

* Corresponding author.

ABSTRACT

Assume that $X \subseteq \mathbb{R} \setminus \mathbb{Q}$, and each clopen-valued lower semicontinuous multivalued map $\Phi: X \Rightarrow \mathbb{Q}$ has a continuous selection $\phi: X \rightarrow \mathbb{Q}$. Our main result is that in this case, X is a σ -space. We also derive a partial converse implication, and present a reformulation of the Scheepers Conjecture in the language of continuous selections.

© 2008 Elsevier B.V. All rights reserved.

^{*} The first and third authors were partially supported by the Slovenian Research Agency grants P1-0292-0101-04 and BI-UA/04-06-007. The second author was partially supported by the Koshland Center for Basic Research.

E-mail addresses: dusan.repovs@guest.arnes.si (D. Repovš), tsaban@math.biu.ac.il (B. Tsaban), lzdomsky@gmail.com (L. Zdomskyy).

¹ Current address: Kurt Gödel Research Center for Mathematical Logic, Währinger Str. 25, A-1090 Vienna, Austria.

A function $f : X \to Y$ is a selection of a multivalued map $\Phi : X \to Y$ if $f(x) \in \Phi(x)$ for all $x \in X$. Let $C \subseteq P(Y)$. A multivalued map $\Phi : X \to Y$ is *C*-valued if $\Phi(x) \in C$ for all $x \in X$. Similarly, we define *clopen-valued*, *closed-valued*, and *open-valued*. A general reference for selections of multivalued mappings is [11].

Theorem 1 (Michael [9]). Assume that X is a countable space, Y is a first-countable space, and $\Phi : X \Rightarrow Y$ is lsc. Then Φ has a continuous selection $\phi : X \to Y$.

This result was extended in [17, Theorem 3.1], where it was proved that a space X is countable if and only if for each first-countable Y, each lsc multivalued map from X to Y has a continuous selection. In fact, their proof gives the following.

Theorem 2 (Yan and Jiang [17]). A separable space X is countable if and only if for each first-countable space Y and each open-valued lsc map $\Phi : X \Rightarrow Y$, there is a continuous selection $\phi : X \to Y$.

We extend Theorems 1 and 2 by considering a qualitative restriction on the space X (instead of the quantitative restriction "X is countable"). We also point out a connection to a conjecture of Scheepers.

2. σ -Spaces

Define a topology on $P(\mathbb{N})$ by identifying $P(\mathbb{N})$ with the Cantor space $\{0, 1\}^{\mathbb{N}}$. The standard base of the topology of $P(\mathbb{N})$ consists of the sets of the form

 $[s;t] = \{A \subseteq \mathbb{N}: A \cap s = t\},\$

where *s* and *t* are finite subsets of \mathbb{N} . Let *Fr* denote the *Fréchet filter*, consisting of all cofinite subsets of \mathbb{N} , and let $[\mathbb{N}]^{\aleph_0}$ be the family of all infinite subsets of \mathbb{N} . *Fr* and $[\mathbb{N}]^{\aleph_0}$ are subspaces of $P(\mathbb{N})$ and are homeomorphic to \mathbb{Q} and to $\mathbb{R} \setminus \mathbb{Q}$, respectively (see [7]). Let

 $\mathcal{B} = \{ [s; \emptyset] : s \text{ is a finite subset of } \mathbb{N} \};$

$$\mathcal{B}_{Fr} = \{B \cap Fr: B \in \mathcal{B}\}.$$

Note that \mathcal{B} is the standard clopen base at the point $\emptyset \in P(\mathbb{N})$.

A topological space X is a σ -space if each F_{σ} subset of X is a G_{δ} subset of X [10].

The main result of this note is the following.

Theorem 3. The following are equivalent:

(1) X is a σ -space;

(2) Each \mathcal{B}_{Fr} -valued lsc map $\Phi : X \Rightarrow$ Fr has a continuous selection.

The proof of Theorem 3 and subsequent results use the following notions. A family $\mathcal{U} = \{U_n: n \in \mathbb{N}\}$ of subsets of a set X is a γ -cover of X if for each $x \in X$, $x \in U_n$ for all but finitely many n. A bijectively enumerated family $\mathcal{U} = \{U_n: n \in \mathbb{N}\}$ of subsets of a set X induces a *Marczewski map* $\mathcal{U} : X \to P(\mathbb{N})$ defined by

 $\mathcal{U}(x) = \{n \in \mathbb{N}: x \in U_n\}$

for each $x \in X$ [8].

Remark 4. Marczewski maps can be naturally associated to any sequence of sets, not necessarily bijectively enumerated. Our restriction to bijective enumerations allows working with the classical notion of γ -cover. An alternative approach would be to use *indexed* γ -covers, that is, sequences of sets (U_n : $n \in \mathbb{N}$) such that each $x \in X$ belongs to U_n for all but finitely many n. All results of the present paper hold in this setting, too.

For a function $f : X \to Y$, f[X] denotes $\{f(x): x \in X\}$, the image of f.

Lemma 5. Let $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$ be a bijectively enumerated family of subsets of a topological space X. Then

(1) \mathcal{U} is a clopen γ -cover of X if and only if $\mathcal{U}[X] \subseteq Fr$ and $\mathcal{U} : X \to P(\mathbb{N})$ is continuous;

(2) \mathcal{U} is an open γ -cover of X if and only if $\mathcal{U}[X] \subseteq Fr$ and the multivalued map $\Phi : X \Rightarrow Fr$ defined by $\Phi(x) = P(\mathcal{U}(x)) \cap Fr$ is lsc.

Proof. The first assertion follows immediately from the corresponding definitions. To prove the second assertion, let us assume that $\mathcal{U} = \{U_n: n \in \mathbb{N}\}$ is an open γ -cover of X. Fix some finite subsets s, t of \mathbb{N} and $x \in X$ such that $[s; t] \cap \Phi(x) \neq \emptyset$. There exists $A \in Fr$ such that $A \subseteq \mathcal{U}(x)$ and $A \cap s = t$.

Let $V = \bigcap_{n \in \mathcal{U}(x) \cap s} U_n$. The set *V* is open in *X*, being an intersection of finitely many open sets, and it contains *x* by definition of \mathcal{U} . Thus it suffices to show that $[s,t] \cap \Phi(y) \neq \emptyset$ for all $y \in V$. A direct verification indeed shows that $(A \cap s) \cup (\mathcal{U}(y) \setminus s)$ belongs to [s,t] as well as to $\Phi(y)$.

To prove the converse implication, it suffices to note that $U_n = \Phi_{\cap}^{-1}[\{n\}; \{n\}]$, and use the lower semi-continuity of Φ .

The following is a key result of Sakai. A cover $\{U_n: n \in \mathbb{N}\}$ of X is γ -shrinkable [12] if there is a clopen γ -cover $\{C_n: n \in \mathbb{N}\}$ of X such that $C_n \subseteq U_n$ for all n. Note that \mathcal{U} is a γ -cover of X if and only if $\mathcal{U}[X] \subseteq Fr$.

Theorem 6 (Sakai [12]). X is a σ -space if and only if each open γ -cover of X is γ -shrinkable.

Proof of Theorem 3. $(2 \Rightarrow 1)$. Assume that each \mathcal{B}_{Fr} -valued lsc $\Phi : X \Rightarrow Fr$ has a continuous selection. We will show that X is a σ -set by using Sakai's characterization (Theorem 6).

Let \mathcal{U} be an open γ -cover of X. Define $\Phi(x) = P(\mathcal{U}(x)) \cap Fr$. Φ is \mathcal{B}_{Fr} -valued, and by Lemma 5, Φ is lsc. By our assumption, Φ has a continuous selection. The following lemma implies that \mathcal{U} is γ -shrinkable.

Lemma 7. Let $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$ be a bijectively enumerated open γ -cover of a space X. The following are equivalent:

(1) \mathcal{U} is γ -shrinkable;

(2) The multivalued map $\Phi(x) = P(\mathcal{U}(x)) \cap Fr$ has a continuous selection.

Proof. $(1 \Rightarrow 2)$. If $\mathcal{V} = \{V_n : n \in \mathbb{N}\}$ is a witness for (1), then the map $x \mapsto \mathcal{V}(x)$ is a continuous selection of Φ .

 $(2 \Rightarrow 1)$. If $\phi : X \to Fr$ is a continuous selection of Φ , then $\{V_n := \{x \in X : \phi(x) \ni n\}$: $n \in \mathbb{N}\}$ is a clopen γ -cover of X with the property $V_n \subseteq U_n$, for all $n \in \mathbb{N}$. Indeed, if $x \in V_n$, then $n \in \phi(x) \in P(\mathcal{U}(x)) \cap Fr$, and hence $n \in \mathcal{U}(x)$, which is equivalent to $x \in U_n$. \Box

 $(1 \Rightarrow 2)$. Assume that X is a σ -space and $\Phi: X \Rightarrow Fr$ is lsc and \mathcal{B}_{Fr} -valued. The following is easy to verify.

Lemma 8. For each \mathcal{B}_{Fr} -valued $\Phi : X \Rightarrow Fr$, there exists a map $\phi : X \to Fr$ such that $\Phi(x) = P(\phi(x)) \cap Fr$ for all $x \in X$. Conversely, for each map $\phi : X \to Fr$, the multivalued map $\Phi : X \Rightarrow Fr$ defined by $\Phi(x) = P(\phi(x)) \cap Fr$ is \mathcal{B}_{Fr} -valued.

Let ϕ be as in Lemma 8. For each *n*, let $U_n = \{x \in X : n \in \phi(x)\} = \{x \in X : \phi(x) \cap [\{n\}; \{n\}] \neq \emptyset\}$. Each U_n is open, and $\mathcal{U} = \{U_n : n \in \mathbb{N}\}$ is a γ -cover of *X*. By Sakai's Theorem 6, \mathcal{U} is γ -shrinkable.

Note that the Marczewski map induced by the family \mathcal{U} is exactly the map ϕ . Thus, by Lemma 7, $\Phi(x) = P(\phi(x)) \cap Fr = P(\mathcal{U}(x)) \cap Fr$ has a continuous selection. \Box

Corollary 9. *If each clopen-valued lsc map* $\Phi : X \Rightarrow$ *Fr has a continuous selection, then X is a* σ *-space.*

Problem 10. Assume that $X \subseteq \mathbb{R}$ is a σ -space. Does each clopen-valued lsc map $\Phi : X \Rightarrow \mathbb{Q}$ have a continuous selection?

It is consistent (relative to ZFC) that each metrizable separable σ -space X is countable [10]. Thus, by Theorems 1 and 3, we have the following extension of Theorem 2.

Corollary 11. It is consistent that the following statements are equivalent, for metrizable separable spaces X:

(1) Every clopen-valued lsc map $\Phi : X \Rightarrow \mathbb{Q}$ has a continuous selection;

(2) X is countable.

Problem 12. Is Corollary 11 provable in ZFC?

b is the minimal cardinality of a subset of $\mathbb{N}^{\mathbb{N}}$ which is unbounded with respect to \leq^* ($f \leq^* g$ means: $f(n) \leq g(n)$ for all but finitely many n). b is uncountable, and consistently, $\aleph_1 < \mathfrak{b}$ [2]. If $|X| < \mathfrak{b}$, then X is a σ -set [4,15]. By Theorem 3, we have the following quantitative result.

Corollary 13. Assume that |X| < b. Then for each \mathcal{B}_{Fr} -valued lsc map $\Phi : X \Rightarrow Fr$, Φ has a continuous selection.

3. b-Scales

Let $\mathbb{N}^{\uparrow\mathbb{N}}$ be the set of all (strictly) increasing elements of $\mathbb{N}^{\mathbb{N}}$. $B = \{b_{\alpha}: \alpha < b\} \subseteq \mathbb{N}^{\uparrow\mathbb{N}}$ is a b-scale if $b_{\alpha} \leq b_{\beta}$ for all $\alpha < \beta$, and B is unbounded with respect to \leq^* . $\overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$ is a convergent sequence with the limit point ∞ , which is assumed

Fig. 1. The Scheepers Diagram.

to be larger than all elements of \mathbb{N} . $\overline{\mathbb{N}}^{\uparrow\mathbb{N}}$ is the set of all nondecreasing elements of $\overline{\mathbb{N}}^{\mathbb{N}}$, and $Q = \{x \in \overline{\mathbb{N}}^{\uparrow\mathbb{N}}: (\exists m) \ (\forall n \ge m) x(n) = \infty\}$ is the set of all "eventually infinite" elements of $\overline{\mathbb{N}}^{\uparrow\mathbb{N}}$.

Sets of the form $B \cup Q$ where B is a b-scale were extensively studied in the literature (see [1,10,16] and references therein). $B \cup Q$ is concentrated on Q and is therefore not a σ -space. Consequently, it does not have the properties stated in Theorem 3. In fact, we have the following.

Theorem 14. Let $X = B \cup Q$, where $B \subseteq \mathbb{N}^{\mathbb{N}}$ is a b-scale. Then there exists a clopen-valued lsc map $\Phi : X \Rightarrow \mathbb{Q}$ with the following properties:

(i) $\Phi(x) = \mathbb{Q}$, for all $x \in B$; and

(ii) For each $Y \subseteq X$ such that $Q \subseteq Y$, and each continuous $\phi : Y \to \mathbb{Q}$ such that $\phi(y) \in \Phi(y)$ for all $y \in Y$, |Y| < |X|.

Proof. Write $Q = \{q_n: n \in \mathbb{N}\}$, and consider the γ -cover $\mathcal{U} = \{U_n: n \in \mathbb{N}\}$ of X, where $U_n = X \setminus \{q_n\}, n \in \mathbb{N}$.

Lemma 15. For each $B' \subseteq B$ with |B'| = b, and each choice of clopen sets $V_n \subseteq U_n$, $n \in \mathbb{N}$, there is $x \in B'$ such that $\{n: x \notin V_n\}$ is infinite.

Proof. Assuming the converse, we could find a clopen γ -cover $\{V'_n : n \in \mathbb{N}\}$ of $B' \cup Q$ such that $V'_n \subseteq U_n$. Let V_n be a closed subspace of $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$ such that $V_n \cap X = V'_n$. Then $W_n = \overline{\mathbb{N}}^{\uparrow \mathbb{N}} \setminus V_n$ is an open neighborhood of q_n in $\overline{\mathbb{N}}^{\uparrow \mathbb{N}}$. Set $G_n = \bigcup_{k \ge n} W_k$ and $G = \bigcap_{n \in \mathbb{N}} G_n$. For each $n \in \mathbb{N}$ the set $\mathbb{N}^{\uparrow \mathbb{N}} \setminus G_n$ is a cofinite subset of the compact space $\overline{\mathbb{N}}^{\uparrow \mathbb{N}} \setminus G_n$, and hence it is σ -compact.

Therefore $\mathbb{N}^{\uparrow\mathbb{N}} \cap (\overline{\mathbb{N}}^{\uparrow\mathbb{N}} \setminus G) = \bigcup_{n \in \mathbb{N}} \mathbb{N}^{\uparrow\mathbb{N}} \cap (\overline{\mathbb{N}}^{\uparrow\mathbb{N}} \setminus G_n)$ is a σ -compact subset of $\mathbb{N}^{\uparrow\mathbb{N}}$ as well. Since B' is unbounded, there exists $x \in B' \cap G$, and hence x belongs to W_n for infinitely many $n \in \mathbb{N}$, which implies that $\{n \in \mathbb{N} : x \notin V_n\} = \{n \in \mathbb{N} : x \notin V'_n\}$ is infinite, a contradiction. \Box

Recall that *Fr* is homeomorphic to \mathbb{Q} . Thus, it suffices to construct an lsc $\Psi : X \Rightarrow Fr$ with the properties (i) and (ii). Set $\Psi(x) = P(\mathcal{U}(x)) \cap Fr$.

By Lemma 5, the multivalued map Ψ is lsc and there are no partial selections $f : Y \to Fr$ defined on subsets $Y \subseteq X$ such that $|Y| = |X| = \mathfrak{b}$ and $Y \supset Q$. Indeed, it suffices to use Lemmata 7 and 15, asserting that there is no clopen refinement $\{V_n: n \in \mathbb{N}\}$ of $\{U_n: n \in \mathbb{N}\}$ which is a γ -cover of such a subspace Y of X. \Box

Theorem 14 can be compared with Theorem 1.7 and Example 9.4 of [9].

The undefined terminology in the following discussion is standard and can be found in, e.g., [13]. Lemma 15 motivates the introduction of the following covering property of a space *X*:

(θ) There exists an open γ -cover $\mathcal{U} = \{U_n: n \in \mathbb{N}\}$ of X and a countable $D \subseteq X$ such that for any family $\mathcal{V} = \{V_n: n \in \mathbb{N}\}$ of clopen subsets of X with $V_n \subseteq U_n$ for all n, if \mathcal{V} is a γ -cover of some $Y \subseteq X$ such that $D \subseteq Y$, then |Y| < |X|.

Theorem 14 implies the following.

Corollary 16. Assume that $X = B \cup Q$ where $B \subseteq \mathbb{N}^{\mathbb{N}}$ is a b-scale. Then X satisfies (θ).

The property (θ) seems to stand apart from the classical selection principles considered in [13,6]. Fig. 1 (reproducing [6, Fig. 3, p. 245]) summarizes the relations among these properties.

Every countable space satisfies the strongest property in that figure, namely $S_1(\Omega, \Gamma)$ [5], and it is clear that countable spaces do not satisfy (θ). Moreover, by Sakai's Theorem 6, no σ -space satisfies (θ).

Assuming the Continuum Hypothesis there is a b-scale *B* such that $B \cup Q$ is not a σ -space, but satisfies $S_1(\Omega, \Gamma)$ [5] as well as (θ) (Corollary 16).

Consider the topological sum $X = \mathbb{R} \oplus (\mathbb{R} \setminus \mathbb{Q})$. The open sets $U_n = (-n, n) \oplus (\mathbb{R} \setminus \mathbb{Q})$, $n \in \mathbb{N}$, form a γ -cover of X and show that X satisfies (θ) for a trivial reason, and does not satisfy the weakest property in the Scheepers Diagram, namely $S_{fin}(\mathcal{O}, \mathcal{O})$, because it contains ($\mathbb{R} \setminus \mathbb{Q}$) as a closed subspace. A less trivial (zero-dimensional) example is given in the following consistency result.

Theorem 17. Assume that $\mathfrak{b} = \mathfrak{d} = \mathrm{cf}(\mathfrak{c}) < \mathfrak{c}$. There is a set $X \subseteq \mathbb{R} \setminus \mathbb{Q}$ satisfying (θ) but not $\mathsf{S}_{\mathrm{fin}}(\mathcal{O}, \mathcal{O})$.

Proof. Let $B = \{b_{\alpha}: \alpha < b\}$ be a b-scale and $\mathfrak{c} = \bigcup_{\alpha < \mathfrak{b}} \lambda_{\alpha}$ with $\lambda_{\alpha} < \mathfrak{c}$. Fix $D_{\alpha} \subseteq \mathbb{N}^{\uparrow \mathbb{N}}$ such that $|D_{\alpha}| = \lambda_{\alpha}$ and for each $f \in D_{\alpha}, |f(n) - b_{\alpha}(n)| < 2$ for all n.

Let $Y \subseteq \mathbb{N}^{\mathbb{N}}$ be a dominating family. The direct sum of $X = Q \cup \bigcup_{\alpha < b} D_{\alpha}$ and Y satisfies (θ) by the methods of Theorem 14. But Y is a closed subset of this space and does not satisfy $S_{\text{fin}}(\mathcal{O}, \mathcal{O})$ [13]. \Box

4. Connections with the Scheepers Conjecture

Let A and B be any two families. Motivated by works of Rothberger, Scheepers introduced the following prototype of properties [13]:

 $S_1(\mathcal{A}, \mathcal{B})$: For each sequence $\{\mathcal{U}_n\}_{n \in \mathbb{N}}$ of members of \mathcal{A} , there exist members $U_n \in \mathcal{U}_n$, $n \in \mathbb{N}$, such that $\{U_n: n \in \mathbb{N}\} \in \mathcal{B}$.

Let Γ and C_{Γ} be the collections of all open and clopen γ -covers of a set $X \subseteq \mathbb{R}$, respectively. Scheepers [14] has conjectured that the property $S_1(\Gamma, \Gamma)$ is equivalent to a certain local property in the space of continuous real-valued functions on X. Sakai [12] and independently Bukovský and Haleš [3] proved that Scheepers' Conjecture holds if and only if $S_1(\Gamma, \Gamma) = S_1(C_{\Gamma}, C_{\Gamma})$ for sets of reals.

Lemma 5 establishes a bijective correspondence between open γ -covers of a space X and maps $\phi : X \to Fr$ for which the multivalued map $\Phi(x) = P(\phi(x)) \cap Fr$ is lsc. This is used in the proof of the following characterizations, which give an alternative justification for the Scheepers Conjecture.

Theorem 18. *X* satisfies $S_1(C_{\Gamma}, C_{\Gamma})$ if and only if for each continuous $\phi : X \to Fr^{\mathbb{N}}$ there is $f \in \mathbb{N}^{\mathbb{N}}$ such that $f(k) \in \phi(x)(k)$ for each $x \in X$ and all but finitely many k.

Since the proof of Theorem 18 is easier than that of the following theorem, we omit it.

Theorem 19. *X* satisfies $S_1(\Gamma, \Gamma)$ if and only if for each $\phi : X \to Fr^{\mathbb{N}}$ such that the multivalued map $\Phi : x \mapsto \Pi_{k \in \mathbb{N}}(P(\phi(x)(k)) \cap Fr)$ is lsc, there is $f \in \mathbb{N}^{\mathbb{N}}$ such that $f(k) \in \phi(x)(k)$ for each $x \in X$ and all but finitely many *k*.

Proof. Assume that X satisfies $S_1(\Gamma, \Gamma)$. Fix a map $\phi : X \to Fr^{\mathbb{N}}$ as in the second assertion. The multivalued map $\Phi_k : X \Rightarrow Fr$ assigning to each point $x \in X$ the subset $\Phi_k(x) = P(\phi(x)(k)) \cap Fr$ of Fr, is lsc for all k.

The family $\{U_{k,n}: n \in \mathbb{N}\}$, where $U_{k,n} = \{x \in X: \ \Phi_k(x) \cap [\{n\}; \{n\}] \neq \emptyset\} = \{x \in X: n \in \phi(x)(k)\}$, is an open γ -cover of X. Since X satisfies $S_1(\Gamma, \Gamma)$, there exists $f \in \mathbb{N}^{\mathbb{N}}$ such that $\{U_{k,f(k)}: k \in \mathbb{N}\}$ is a γ -cover of X. This implies that $f(k) \in \phi(x)(k)$ for all $x \in \mathbb{N}$ and all but finitely many k.

The proof of the converse implication is similar, using Lemma 5. \Box

Acknowledgement

We thank Taras Banakh for stimulating conversations.

References

- [1] T. Bartoszynski, B. Tsaban, Hereditary topological diagonalizations and the Menger-Hurewicz conjectures, Proc. Amer. Math. Soc. 134 (2006) 605–615.
- [2] A.R. Blass, Combinatorial cardinal characteristics of the continuum, in: M. Foreman, A. Kanamori, M. Magidor (Eds.), Handbook of Set Theory, Kluwer Academic Publishers, Dordrecht, in press, http://www.math.lsa.umich.edu/~ablass/hbk.pdf.
- [3] L. Bukovský, J. Haleš, QN-space, wQN-space and covering properties, Topology Appl. 154 (2007) 848-858.
- [4] D.H. Fremlin, A.W. Miller, On some properties of Hurewicz, Menger and Rothberger, Fund. Math. 129 (1988) 17–33.
- [5] F. Galvin, A. Miller, γ -Sets and other singular sets of real numbers, Topology Appl. 17 (1984) 145–155.
- [6] W. Just, A.W. Miller, M. Scheepers, P.J. Szeptycki, The combinatorics of open covers II, Topology Appl. 73 (1996) 241-266.
- [7] A. Kechris, Classical Descriptive Set Theory, Grad. Texts in Math., vol. 156, Springer-Verlag, Berlin, 1995.
- [8] E. Marczewski (Szpilrajn), The characteristic function of a sequence of sets and some of its applications, Fund. Math. 31 (1938) 207–233.
- [9] E. Michael, Continuous selections and countable sets, Fund. Math. 111 (1981) 1-10.
- [10] A. Miller, Special subsets of the real line, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 201–235.
- [11] D. Repovš, P.V. Semenov, Continuous Selections of Multivalued Mappings, vol. 455, Kluwer Academic Publishers, Dordrecht, 1998.
- [12] M. Sakai, The sequence selection properties of $C_p(X)$, Topology Appl. 154 (2007) 552–560.

- [13] M. Scheepers, Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996) 31–62. [14] M. Scheepers, Sequential convergence in $C_p(X)$ and a covering property, East-West J. Math. 1 (1999) 207–214.
- [15] M. Scheepers, B. Tsaban, The combinatorics of Borel covers, Topology Appl. 121 (2002) 357–382.
 [16] B. Tsaban, L. Zdomskyy, Scales, fields, and a problem of Hurewicz, J. Eur. Math. Soc., in press.
- [17] P.-F. Yan, S.-L. Jiang, Countable sets, BCO spaces and selections, Topology Appl. 148 (2005) 1-5.