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We study M-separability as well as some other combinatorial versions of separability.
In particular, we show that the set-theoretic hypothesis b = d implies that the class of
selectively separable spaces is not closed under finite products, even for the spaces of
continuous functions with the topology of pointwise convergence. We also show that there
exists no maximal M-separable countable space in the model of Frankiewicz, Shelah, and
Zbierski in which all closed P -subspaces of ω∗ admit an uncountable family of nonempty
open mutually disjoint subsets. This answers several questions of Bella, Bonanzinga,
Matveev, and Tkachuk.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Scheepers [12] introduced a number of combinatorial properties of a topological space stronger than separability. In
this paper we concentrate mainly on M-separability1 defined as follows: a topological space X is said to be M-separable
if for every sequence 〈Dn: n ∈ ω〉 of dense subsets of X , one can pick finite subsets Fn ⊂ Dn such that

⋃
n∈ω Fn is dense.

A topological space X is said to be maximal if it has no isolated points but any strictly stronger topology on X has an
isolated point. The following theorems are the main results of this paper.

Theorem 1.1. It is consistent that no countable maximal space X is M-separable.

Theorem 1.2 (b = d). There exist subspaces X0 and X1 of 2ω such that C p(X0) and C p(X1) are M-separable, whereas C p(X0) ×
C p(X1) is not.

Theorem 1.1 answers [5, Problem 3.3] in the affirmative and Theorem 1.2 shows that the negative answer to [5, Prob-
lems 3.7 and 3.9] is consistent.

Regarding Theorem 1.1, we show in Section 2 that a countable maximal space which is M-separable yields a separable
closed P -subset of ω∗ , the remainder of the Stone–Czech compactification of ω. A model of ZFC without c.c.c. (in particular
separable) closed P -subset of ω∗ was constructed in [7]. We recall that a subset A of a topological space X is called a
P -subset, if for every countable collection U of open neighborhoods of A there exists an open neighborhood V of A such
that V ⊂ U for all U ∈ U .
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The proof of Theorem 1.2 relies on the fact that for a metrizable separable space X , C p(X) is M-separable if and only
if all finite powers of X have the Menger property (see [4, §3] and references therein). We recall that a space X is said to
have the Menger property if for every sequence 〈un: n ∈ ω〉 of open covers of X there exists a sequence 〈vn: n ∈ ω〉 such
that vn ∈ [un]<ω and

⋃
n∈ω vn is a cover of X . Assuming b = d, we construct in Section 3 spaces X0, X1 ⊂ 2ω all of whose

finite powers have the Menger property, whereas X0 × X1 does not. Then the square of the disjoint union X0 � X1 does
not have the Menger property (since it contains a closed copy of X0 × X1, and the Menger property is inherited by closed
subspaces), and hence C p(X0 � X1) = C p(X0) × C p(X1) fails to be M-separable. At this point we would like to note that it is
not even known whether there is a ZFC example of two spaces with the Menger property whose product fails to have this
property (see [13, Problem 6.7]).

Under CH Theorem 1.2 can be substantially improved. Namely, by [1, Theorem 2.1] there are spaces X, Y ⊂ ωω all finite
powers of which have the Rothberger property whereas X × Y does not have the Menger property, provided that CH holds.
We recall that a space X is said to have the Rothberger property if for every sequence 〈un: n ∈ ω〉 of open covers of X there
exists a sequence 〈Un: n ∈ ω〉 such that Un ∈ un and

⋃
n∈ω Un = X .

While preparing this manuscript we have learned from A. Miller and B. Tsaban that CH implies the existence of γ -sets
Y0, Y1 ⊂ 2ω such that Y0 × Y1 does not have the Menger property. It is known (see [13] and references therein) that finite
powers of γ -sets are again γ -sets, and every γ -set has the Rothberger property. On the other hand, Luzin sets have the
Rothberger property but they are not γ -sets. Thus this is an improvement of the result of Babinkostova [1] mentioned
above.

Presently it is unknown whether the above-mentioned construction of γ -sets can be carried out under, e.g., ω1 = d.
Regarding the Babinkostova result, in the Laver model we have that all sets with the Rothberger property are countable
while b = d = c. Therefore we still believe that Theorem 1.2 can be of some interest.

In Section 4 we provide answers to a number of other questions regarding various notions of separability. These are given
by citing results obtained in the framework of selection principles in topology, a rapidly growing area of general topology (see
e.g., [13]). In this way we hope to bring more attention to this area.

In what follows, by a space we understand a metrizable separable topological space.

2. Proof of Theorem 1.1

Throughout the paper we standardly denote by

• ωω the space of all functions from ω to ω endowed with the Tychonov topology (here ω is equipped with the discrete
topology);

• [ω]ω the set of all infinite subsets of ω;
• [ω]<ω the set of all finite subsets of ω; and
• [ω](ω,ω) the set {a ⊂ ω: |a| = |ω \ a| = ω} of all infinite subsets of ω with infinite complements.

A nonempty subset A ⊂ [ω]ω is called a semifilter [3], if for every A ∈ A and X ⊂ ω such that A ⊂∗ X , X ∈ A (A ⊂∗ X
means |A \ X | < ω). A semifilter A is called a (free) filter, if it is closed under finite intersections of its elements. Filters
which are maximal with respect to the inclusion are called ultrafilters. We recall that a filter A is a called a P -filter, if for
every sequence 〈An: n ∈ ω〉 of elements of A there exists A ∈ A such that A ⊂∗ An for all n ∈ ω.

For a semifilter A ⊂ [ω]ω we denote by A⊥ the set {B ∈ [ω]ω: ∀A ∈ A(|A ∩ B| = ω)}.
Now suppose that (ω, τ ) is a countable maximal M-separable space. We shall construct a separable P -subset of ω∗ . This

suffices to prove Theorem 1.1 by the discussion following it.

Claim 2.1. Every dense subset D of ω is open, i.e. it belongs to τ .

Proof. Since D is dense, the topology on ω generated by τ ∪{D} has no isolated points. If D is not open, then this topology
is strictly stronger than τ . �
Claim 2.2. Suppose that F and A are filters such that A ⊂ F ⊥ . Then there exists an ultrafilter U such that A ⊂ U ⊂ F ⊥ .

Proof. Let U be a maximal filter with respect to the property A ⊂ U ⊂ F ⊥ . We claim that U is an ultrafilter. If this is not
true, then there exists X ⊂ ω such that X,ω \ X /∈ U . The maximality of U implies that neither U ∪ {X} nor U ∪ {ω \ X}
generates a filter contained in F ⊥ , which means that there exist U0, U1 ∈ U and F0, F1 ∈ F such that U0 ∩ F0 ∩ X = ∅
and U1 ∩ F1 ∩ (ω \ X) = ∅. It follows that U0 ∩ F0 ⊂ ω \ X and U1 ∩ F1 ⊂ X , and hence (U0 ∩ U1) ∩ (F0 ∩ F1) = ∅, which
contradicts the fact that U ⊂ F ⊥ . �

Let us denote by D the collection of all dense subsets of (ω, τ ). Claim 2.1 implies that D is a filter. It is easy to verify
that (

⋃
n∈ω An)⊥ = ⋂

n∈ω A⊥
n for any semifilters A, A0, A1, . . . (see [3]).

Claim 2.3. There exists a sequence of ultrafilters 〈Un: n ∈ ω〉 such that D = ⋂
n∈ω Un.
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Proof. Let

Fn = {
X ∪ (

A \ {n}): X ⊂ ω, n ∈ A ∈ τ
}
.

It is clear that Fn is a filter for every n and D = (
⋃

n∈ω Fn)⊥ = ⋂
n∈ω F ⊥

n . Claim 2.2 yields for every n an ultrafilter Un such
that D ⊂ Un ⊂ F ⊥

n . It follows from the above that

D ⊂
⋂

n∈ω

Un ⊂
⋂

n∈ω

F ⊥
n = D,

which completes the proof. �
The M-separability of X simply means that D is a P -filter. Thus we have proved that there exists a sequence 〈Un: n ∈ ω〉

of ultrafilters such that
⋂

n∈ω Un is a P -filter. This obviously implies that the closure in ω∗ of {Un: n ∈ ω} is a P -set, which
finishes our proof.

3. Proof of Theorem 1.2

First we introduce some notations and definitions.
The Cantor space 2ω is identified with the power-set of ω via characteristic functions. Each infinite subset a of ω can

also be viewed as an element of ωω , namely the increasing enumeration of a. Define a preorder �∗ on ωω by f �∗ g if
and only if f (n) � g(n) for all but finitely many n ∈ ω. A subset A ⊂ ωω is called dominating (resp. unbounded), if for every
x ∈ ωω there exists a ∈ A such that x �∗ a (resp. a �∗ x). The minimal cardinality of an unbounded (resp. dominating) subset
of ωω is denoted by b (resp. d). It is a direct consequence of the definition that b � d. The strict inequality is consistent:
it holds, e.g., in the Cohen model of ¬CH. For more information about b,d, and many other cardinal characteristics of this
kind we refer the reader to [15].

Given a relation R on ω and x, y ∈ ωω , we denote the set {n ∈ ω: x(n) R y(n)} by [x R y]. For a filter F and elements
x, y ∈ ωω we write x �F y if [x � y] ∈ F . The relation �F is easily seen to be a preorder. The minimal cardinality of an
unbounded with respect to �F subset of ωω is denoted by b(F ). It is easy to see that b � b(F ) � d for any filter F ,
�∗ =�Fr , and hence b = b(Fr), where Fr denotes the filter of all cofinite subsets of ω.

For a filter F , we say that S = { fα: α < b(F )} is a cofinal b(F )-scale if fα �F fβ for all α � β , and for every g ∈ ωω

there exists α < b(F ) such that g �F fα . Cofinal b(Fr)-scales are simply called scales. It is easy to see that for every filter
F there exists a cofinal b(F )-scale provided b = d.

The following fact is a direct consequence of [14, Theorem 4.5].

Theorem 3.1. Assume that F is a filter and S = { fα: α < b(F )} ⊂ [ω]ω is a cofinal b(F )-scale. Then all finite powers of the set
X = S ∪ [ω]<ω have the Menger property.

We shall also need the following characterization of the Menger property which is due to Hurewicz (see [11]).

Theorem 3.2. Let X be a zero-dimensional set of reals. Then X has the Menger property if and only if no continuous image of X in ωω

is dominating.

A family F ⊂ [ω]ω is said to be centered if each finite subset of F has an infinite intersection. Centered families generate
filters by taking finite intersections and supersets. We will denote the generated filter by 〈F 〉. For Y ⊂ ωω , let maxfin Y
denote its closure under pointwise maxima of finite subsets. The proof of the following theorem is reminiscent of that of
Theorem 9.1 in [14].

Theorem 3.3 (b = d). There are subspaces X0 and X1 of 2ω such that all finite powers of X0 and X1 have the Menger property, whereas
X0 × X1 does not.

Proof. Let {dα: α < b} ⊂ [ω](ω,ω) be a scale.
Since P := [ω](ω,ω) ∪ [ω]<ω is a nowhere locally compact Polish space, it is homeomorphic to Zω . Therefore there exists

a map � : P × P → P which turns P into a Polish topological group.
For i ∈ 2, we construct by induction on α < b a filter Fi and a dominating b(Fi)-scale {ai

α: α < b} ⊂ [ω](ω,ω) such
that a0

α � a1
α = ω \ dα . Assume that ai

β have been defined for each β < α and i ∈ 2. Let Ai
α = maxfin{dβ,ai

β : β < α},

F̃ i
α = ⋃

β<α F i
β , and G i

α = { f ◦ b: f ∈ Ai
α, b ∈ F̃ i

α}, where i ∈ 2.

We inductively assume that F i
β , β < α, is an increasing chain of filters such that |F i

β | � |β| for each β < α and i ∈ 2.

This implies that |G i
α | � |α| < b. Therefore there exists c ∈ [ω]ω such that x �∗ c for all x ∈ G 0

α ∪ G 1
α . Since Yα := {y ∈

[ω](ω,ω): y ��∗ c} is a dense Gδ subset of [ω](ω,ω) , there are a0
α,a1

α ∈ Yα such that a0
α � a1

α = ω \ dα . Set
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F i
α = 〈

F̃ i
α ∪ {[

f � ai
α

]
: f ∈ Ai

α

}〉
, i ∈ 2.

We must show that F i
α ’s remain filters. Fix i ∈ 2. Since Ai

α is closed under pointwise maxima, it suffices to show that
b ∩ [ f � ai

α] is infinite for all b ∈ F̃ i
α and f ∈ Ai

α . Suppose, to the contrary, that b ∩ [ f � ai
α] is finite. Then ai

α � ai
α ◦ b �∗

f ◦ b ∈ G i
α , which contradicts with ai

α ��∗ c and f ◦ b �∗ c.
Set Xi = {ai

α: α < b} ∪ [ω]<ω and Fi = ⋃
α<b F i

α , i ∈ 2. By construction, {ai
α: α < b} is a cofinal b(Fi)-scale. By Theo-

rem 3.1, all finite powers of Xi have the Menger property. Let φ : 2ω → 2ω be the map assigning to x ⊂ ω its complement
ω \ x. It follows from the above that {dα}α<b ⊂ (φ ◦ �)(X0 × X1) ⊂ [ω]ω , and hence X0 × X1 can be continuously mapped
onto a dominating subset of [ω]ω , which means that it does not have the Menger property. �

One can also prove Theorem 3.3 by methods developed in [6] (see e.g., [2]). Moreover, one just has to “add an ε” to [6]
to do this, and hence we believe that Theorem 3.3 might be considered as a folklore for those who had a chance to read [6].

4. Epilogue

We recall from [8] that X ⊂ 2ω is called a γ -set, if C p(X) has the Fréchet–Urysohn property, i.e. for every f ∈ C p(X)

and a subset A ⊂ C p(X) containing f in its closure, there exists a sequence of elements of A converging to f . The recent
groundbreaking result of Orenstein and Tsaban [10] states that under p = b there exists a γ -set of size b. Suppose that
p = d, fix a γ -set X = {xα: α < d} ⊂ 2ω with xα ’s mutually different, and a scale S = { fα: α < d} ⊂ ωω . Modify S in such
a way that it remains a scale and {n: fα(n) is even} = xα . We denote the modified scale again by S . Then the γ -set X is a
continuous bijective image of S , and hence C p(X) can be embedded into C p(S) as a dense subset. Thus C p(S), which fails
to be M-separable, contains a dense subset which is GN-separable by [4, Theorems 86, 57, 40] and the well-known fact that
all finite powers of a γ -set have the Hurewicz as well as the Rothberger properties (see [4] for all the definitions involved).
Moreover, C p(X) is a dense subspace of Rd , and { f ∈ C p(X): f (X) ⊂ 2} is a dense subspace of 2d which is GN-separable
by [4, Proposition 90]. This implies a positive answer to [4, Questions 64, 93, and 94] under p = d.

By [9, Theorem 5.1], there exists a ZFC example of a space X ⊂ 2ω of size ω1 all of whose finite powers have the
Hurewicz property. (Moreover, the space constructed in Case 2 of the proof of [9, Theorem 5.1] is a γ -set by results of [10].)
Then { f ∈ C p(X): f (X) ⊂ 2} is a dense hereditarily H-separable subspace of 2ω1 (see [4, Theorem 40, Corollary 42]). This
provides the positive answer to [5, Problem 3.1].

Acknowledgements

The authors would like to thank Taras Banakh and Boaz Tsaban for many fruitful discussions regarding properties of
products of Menger spaces. We are particularly grateful to Alan Dow and the anonymous referee for bringing our attention
to [7] and [1], respectively.

References

[1] L. Babinkostova, On some questions about selective separability, Math. Log. Q. 55 (2009) 539–541.
[2] T. Banakh, L. Zdomskyy, Selection Principles and Infinite Games on Multicovered Spaces and Their Applications, in preparation.
[3] T. Banakh, L. Zdomskyy, Coherence of Semifilters, in preparation, http://www.franko.lviv.ua/faculty/mechmat/Departments/Topology/booksite.html.
[4] A. Bella, M. Bonanzinga, M. Matveev, Variations of selective separability, Topology Appl. 156 (2009) 1241–1252.
[5] A. Bella, M. Bonanzinga, M. Matveev, V. Tkachuk, Selective separability: general facts and behaviour in countable spaces, Topology Proc. 32 (2008)

15–30.
[6] J. Chaber, R. Pol, A remark on Fremlin–Miller theorem concerning the Menger property and Michael concentrated sets, preprint, 2002.
[7] R. Frankiewicz, S. Shelah, P. Zbierski, On closed P -sets with ccc in the space ω∗ , J. Symbolic Logic 58 (1993) 1171–1176.
[8] J. Gerlits, Zs. Nagy, Some properties of C(X), I, Topology Appl. 14 (1982) 151–161.
[9] W. Just, A. Miller, M. Scheepers, P. Szeptycki, The combinatorics of open covers (II), Topology Appl. 73 (1996) 241–266.

[10] T. Orenshtein, B. Tsaban, Linear σ -additivity and some applications, Trans. Amer. Math. Soc., submitted for publication.
[11] I. Reclaw, Every Lusin set is undetermined in the point-open game, Fund. Math. 144 (1994) 43–54.
[12] M. Scheepers, Combinatorics of open covers. VI. Selectors for sequences of dense sets, Quaest. Math. 22 (1999) 109–130.
[13] B. Tsaban, Selection principles and special sets of reals, in: Elliott Pearl (Ed.), Open Problems in Topology II, Elsevier Sci. Publ., 2007, pp. 91–108.
[14] B. Tsaban, L. Zdomskyy, Scales, fields, and a problem of Hurewicz, J. Eur. Math. Soc. 10 (2008) 837–866.
[15] J.E. Vaughan, Small uncountable cardinals and topology. With an appendix by S. Shelah, in: Jan van Mill, George M. Reed (Eds.), Open Problems in

Topology, North-Holland, Amsterdam, 1990, pp. 195–218.

http://www.franko.lviv.ua/faculty/mechmat/Departments/Topology/booksite.html

	On M-separability of countable spaces and function spaces
	Introduction
	Proof of Theorem 1.1
	Proof of Theorem 1.2
	Epilogue
	Acknowledgements
	References


