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1. Introduction

The problem of detecting topological groups that are locally homeomorphic to (finite or infinite)-dimensional Hilbert
spaces traces its history back to the fifth problem of David Hilbert concerning the recognition of Lie groups in the class of
topological groups. This problem was resolved by combined efforts of A. Gleason [5], D. Montgomery, L. Zippin [13], and
K. Hofmann [7]. According to their results, a topological group G is a Lie group if and only if G is locally compact and locally
contractible. In this case G is an Euclidean manifold, that is, a manifold modeled on an Euclidean space R

n .
The next step was made in 1981 by T. Dobrowolski and H. Toruńczyk [3]. They proved that a topological group G is

a manifold modeled on a separable Hilbert space if and only if G is a locally Polish ANR. A topological space is called locally
Polish if each point x ∈ X has a Polish (i.e. separable completely metrizable) neighborhood.

Most recently, T. Banakh and I. Zarichnyy [1] proved in 2008 that a topological group G is a manifold modeled on
an infinite-dimensional Hilbert space if and only if G is a completely metrizable ANR with LFAP. A topological space X is
said to have Locally Finite Approximation Property (abbreviated LFAP) if for every open cover U there are maps fn : X → X ,
n ∈ ω, such that each fn is U -near to the identity map and the indexed family { fn(X)}n∈ω is locally finite in X . This property
was crucial in Toruńczyk’s characterization [16] of non-separable Hilbert manifolds.
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By the Birkhoff–Kakutani Metrization Theorem [15, 2.5], the topology of any first countable topological group G is gen-
erated by a left-invariant metric. This metric turns G into an isometrically homogeneous metric space. We define a metric
space X to be isometrically homogeneous if for any two points x, y ∈ X there is a bijective isometry f : X → X such that
f (x) = y. This notion is a metric analogue of the well-known notion of a topologically homogeneous spaces. We recall that
a topological space X is called topologically homogeneous if for any two points x, y ∈ X there is a homeomorphism f : X → X
such that f (x) = y.

In light of the mentioned results the following open problem arises naturally:

Problem 1.1. How can one detect Euclidean and Hilbert manifolds among isometrically homogeneous metric spaces?

For the Euclidean case of this problem we have the following answer which will be derived in Section 3 from a result of
J. Szenthe [14].

Theorem 1.2. An isometrically homogeneous metric space X is an Euclidean manifold if and only if X is locally compact and locally
contractible.

The Hilbert case of Problem 1.1 is more difficult. We shall answer this problem under an addition assumption that
the isometrically homogeneous space is I

<ω∼homogeneous. The class of such spaces includes all metric groups (that is,
topological groups endowed with an admissible left-invariant metric) and also quotient spaces G/H of metric groups G by
closed balanced subgroups H ⊂ G (cf. Corollary 2.1).

To introduce I
<ω∼homogeneous metric spaces, let us first observe that a metric space X is isometrically homogeneous

if and only if the action of the isometry group Iso(X) on X is transitive. This is equivalent to saying that for each point
θ ∈ X the map

αθ : Iso(X) → X, αθ : f �→ f (θ),

is surjective.
It is well known (and easy to check) that the isometry group Iso(X) of a metric space X is a topological group with

respect to the topology of pointwise convergence (that is, the topology inherited from the Tychonov power X X ). Moreover,
the natural action

α : Iso(X) × X → X, α : ( f , x) �→ f (x),

of Iso(X) on X is continuous.
Let T be a topological space. We define a map q : X → Y between topological spaces to be

• T -invertible if for each continuous map f : T → Y there is a continuous map g : T → X such that q ◦ g = f ;
• T ∼invertible if for each continuous map f : T → Y and an open cover U of Y there is a continuous map g : T → X such

that q ◦ g is U -near to f (in the sense that for each t ∈ T there is U ∈ U with { f (t),q ◦ g(t)} ⊂ U ).

Observe that a map q : X → Y is I
0-invertible if and only if q(X) = Y and q is I

0∼invertible if and only if q(X) is dense
in Y (here I

0 is a singleton).
We define a metric space X to be T -homogeneous (resp. T ∼homogeneous), where T is a topological space, if for some

point θ ∈ X the map αθ : Iso(X) → X is T -invertible (resp. T ∼invertible).
Let us observe that each metric group G (that is, a topological group endowed with an admissible left-invariant metric)

is a G-homogeneous metric space. This follows from the fact that for the neutral element θ of G the map αθ : Iso(G) → G
admits a continuous section l : G → Iso(G) defined by s : g �→ lg , where lg : x �→ gx, is the left shift.

We shall be interested in the T - and T ∼homogeneity in case T is a (finite- or infinite-dimensional) cube I
n . Observe

that a metric space X is I
0-homogeneous if and only if X is isometrically homogeneous, and X is I

0∼homogeneous if and
only if some point θ ∈ X has dense orbit under the action of the isometry group Iso(X).

On the other hand, a metric space X is I
n-homogeneous for all n ∈ ω if and only if X is I

<ω-homogeneous for the
topological sum I

<ω = ⊕
n∈ω I

n of finite-dimensional cubes. A metric space X is I
<ω∼homogeneous if and only if it is

I
ω∼homogeneous.
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For each metric space X those homogeneity properties relate as follows:

metric group topologically homogeneous

⇑⇓
X-homogeneous

⇓
isometrically homogeneous

�
I
ω-homogeneous ⇒ I

<ω-homogeneous ⇒ I
0-homogeneous

⇓
I
ω∼homogeneous ⇔ I

<ω∼homogeneous ⇒ I
0∼homogeneous

⇓ ⇓

�
�
+ isometrically

homogeneous
Polish ANR �

locally compact and+
locally contractible

Hilbert manifold Euclidean manifold

The last two implications in the diagram hold under additional assumptions on the local structure of X and are estab-
lished in the following theorem that recognizes Hilbert manifolds among I

<ω∼homogeneous metric spaces (and will be
proved in Section 6).

Theorem 1.3. An isometrically homogeneous I
<ω∼homogeneous metric space X is a manifold modeled on

(1) an Euclidean space if and only if X is locally precompact, locally Polish, and locally contractible;
(2) a separable Hilbert space if and only if X is a locally Polish ANR;
(3) an infinite-dimensional Hilbert space if and only if X is completely-metrizable ANR with LFAP.

We explain some of the notions appearing in this theorem. A metric space is said to be (locally) precompact if its
completion is (locally) compact. A topological space X is called locally Polish if each point of X has a Polish (= separable
completely-metrizable) neighborhood; X is said to be completely-metrizable if its topology is generated by a complete metric.
ANR is the standard abbreviation for the absolute neighborhood retracts in the class of metrizable spaces.

2. Detecting Hilbert manifolds among quotient spaces of topological groups

In this section we shall apply Theorem 1.3 to detecting Hilbert manifolds among homogeneous spaces of the form
G/H = {xH: x ∈ G} where H is a closed subgroup of a topological group G and G/H is endowed with the quotient topology.
We define a subgroup H of a topological group G to be balanced if for every neighborhood U ⊂ G of the neutral element
e ∈ G there is a neighborhood V ⊂ G of e such that H V ⊂ U H .

Corollary 2.1. Let H ⊂ G be a balanced closed subgroup of a metrizable topological group G such that the quotient map q : G → G/H
is I

<ω∼invertible. The space G/H is a manifold modeled on

(1) an Euclidean space if and only if G/H is locally compact and locally contractible;
(2) a separable Hilbert space if and only if G/H is a locally Polish ANR;
(3) an infinite-dimensional Hilbert space if and only if G/H is a completely-metrizable ANR with LFAP.

Proof. By the Birkhoff–Kakutani Theorem [15, 2.5], the topology of G is generated by a bounded left-invariant metric d.
This metric induces the Hausdorff metric

dH (A, B) = max
{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)
}

on the hyperspace 2G of all non-empty closed subsets of G .
Endow the quotient space G/H = {xH: x ∈ G} with the Hausdorff metric dH and observe that for each g ∈ G the left shift

lg : G/H → G/H , lg : xH �→ gxH , is an isometry of G/H . Therefore, the Hausdorff metric turns G/H into an isometrically
homogeneous metric space.

We claim that this metric generates the quotient topology on G/H . Because of the homogeneity, it suffices to check that
dH generates the quotient topology at the distinguished element H of G/H .

Fix a basic neighborhood U · H = {uH: u ∈ U } ⊂ G/H of H , where U ⊂ G is a neighborhood of the neutral element
e in G . Since H is balanced, there is a neighborhood V ⊂ G of e such that H V ⊂ U H . Find ε > 0 such that Bε ⊂ V
where Bε = {x ∈ G: d(x, e) < ε} is the ε-ball centered at e. Then for each coset xH ∈ G/H with dH (xH, H) < ε we get
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xH ⊂ H V ⊂ U H . This shows that the topology on G/H generated by the Hausdorff metric dH is stronger than the quotient
topology.

Next, given any ε > 0, use the balanced property of H to find a neighborhood V = V −1 ⊂ G of e such that H V ⊂
Bε H . Then V H = (H V )−1 ⊂ (Bε H)−1 ⊂ H Bε . Consequently, for every v ∈ V we get v H ⊂ H Bε . Since v−1 ∈ V we also get
v−1 H ⊂ H Bε and H ⊂ v H Bε . The inclusions v H ∈ H Bε and H ⊂ v H Bε imply that dH (H, v H) � ε. Consequently, V · H ⊂
{g ∈ G: dH (g H, H) � ε < 2ε}, which shows that the quotient topology on G/H is stronger than the topology generated by
the Hausdorff metric dH on G/H .

The I
<ω∼invertibility of the quotient map q : G → G/H implies the I

<ω∼homogeneity of the isometrically homogeneous
metric space (G/H,dH ). Now the statements (1)–(3) follow immediately from Theorem 1.3. �

A topological space X is defined to be LC<ω if for each point x ∈ X , each neighborhood U ⊂ X of x, and every k < ω
there is a neighborhood V ⊂ U of x such that each map f : Sk → V is null homotopic in U .

Corollary 2.2. Let H ⊂ G be a completely-metrizable balanced LC<ω-subgroup of a metrizable topological group G. The space G/H is
a manifold modeled on

(1) an Euclidean space if and only if G/H is locally compact and locally contractible;
(2) a separable Hilbert space if and only if G/H is a locally Polish ANR;
(3) an infinite-dimensional Hilbert space if and only if G/H is a completely-metrizable ANR with LFAP.

Proof. This corollary will follow from Corollary 2.1 as soon as we check that the quotient map q : G → G/H is I
<ω-invertible.

For this we shall apply the Finite-Dimensional Selection Theorem of E. Michael [12].
Let d be a left-invariant metric generating the topology of the group G . This metric induces an admissible metric

ρ(x, y) = d(x, y) + d(x−1, y−1) on G . It is well known that the completion Ḡ of G by the metric ρ has the structure of
topological group. The subgroup H ⊂ G ⊂ Ḡ , being completely-metrizable, is closed in Ḡ .

The I
<ω-invertibility of the quotient map q : G → G/H will follow from the Michael Selection Theorem [12] as soon as

we check that the family {xH: x ∈ G} is equi-LCn for every n ∈ ω. The latter means that for every x0 ∈ G and a neighborhood
U (x0) ⊂ G of x0 there is another neighborhood V (x0) ⊂ U (x0) of x0 such that each map f : Sn → xH ∩ V (x0) from the n-
dimensional sphere into a coset xH ∈ G/H , x ∈ G , is null homotopic in xH ∩ U (x0).

Find a neighborhood U ⊂ G of the neutral element e of G such that x0U 2 ⊂ U (x0). Since H is LC<ω , there is a neighbor-
hood W ⊂ G of e such that each map f : Sn → H ∩ W is null homotopic in U ∩ H . Find a neighborhood V ⊂ U of e such
that x−1

0 V −1 V x0 ⊂ W .
We claim that the neighborhood V (x0) = V x0 ∩ x0 V has the desired property. Indeed, fix any map f : Sn → xH ∩ V (x0)

where x ∈ V (x0). Consider the left shift lx−1 : g �→ x−1 g , and observe that

lx−1 ◦ f
(

Sn) ⊂ H ∩ x−1 V (x0) ⊂ x−1
0 V −1 V x0 ⊂ W .

Now the choice of W ensures that the map lx−1 ◦ f is null-homotopic in H ∩ U and hence f is null-homotopic in

xH ∩ xU ⊂ xH ∩ x0 V U ⊂ xH ∩ x0U 2 ⊂ xH ∩ U (x0). �
Since the trivial subgroup is balanced, Corollary 2.2 implies the following three results due to K. Hofmann [7], T. Do-

browolski, H. Toruńczyk [3], and T. Banakh, I. Zarichnyy [1], respectively.

Corollary 2.3. A topological group G is a manifold modeled on

(1) an Euclidean space if and only if G is locally compact and locally contractible;
(2) a separable Hilbert space if and only if G is a locally Polish ANR;
(3) an infinite-dimensional Hilbert space if and only if G is a completely-metrizable ANR with LFAP.

It should be mentioned that the requirement on the subgroup H ⊂ G to be balanced is essential in Corollaries 2.1 and 2.2.

Example 2.4. By [4], the homeomorphism group H(Iω) of the Hilbert cube I
ω is a Polish ANR. Moreover, by Corol-

lary 4.12 of [4], for any point θ ∈ I
ω the closed subgroup Hθ (I

ω) = {h ∈ H(Iω): h(θ) = θ} ⊂ H(Iω) is an ANR as well.
This subgroup is not balanced because otherwise the Hilbert cube I

ω = H(Iω)/Hθ (I
ω) would be an Euclidean manifold by

Corollary 2.2(1).
Next, we show that the quotient map q : H(Iω) → H(Iω)/Hθ (I

ω) is I
ω∼invertible but not I

ω-invertible. The
I
ω∼invertibility of q follows from the LC<ω-property of the subgroup Hθ (I

ω) and Finite-Dimensional Michael Selection
Theorem [12]. On the other hand, the fixed point property of I

ω implies that the quotient map q is not I
ω-invertible. In-

deed, assuming that q has a section s : I
ω → H(Iω), s : x �→ sx ∈ H(Iω), and taking any homeomorphism g ∈ H(Iω)\ Hθ (I

ω),
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we would get a continuous map f : I
ω → I

ω , f : x �→ q(sx ◦ g), without fixed point. Indeed, assuming that f (x) = x for some
x ∈ I

ω , we would get

x = f (x) = q(sx ◦ g) = sx ◦ g(θ).

Since x = q(sx) = sx(θ), this would imply that g(θ) = θ and hence g ∈ Hθ (I
ω), which contradicts the choice of the homeo-

morphism g .

Problem 2.5. Let H be a closed subgroup of a Polish ANR-group G such that the quotient map q : G → G/H is a locally
trivial bundle. Is the quotient space G/H a Hilbert manifold?

Another related problem was posed in [6]:

Problem 2.6. Let H be a closed ANR-subgroup of a Polish ANR group G . Is G/H a manifold modeled on a Hilbert space or
the Hilbert cube?

3. Locally precompact isometrically homogeneous metric spaces

In this section we shall study locally precompact isometrically homogeneous metric spaces. We recall that a metric
space is locally precompact if its completion is locally compact. The following theorem implies Theorem 1.2 announced in
the introduction.

Theorem 3.1. An isometrically homogeneous metric space X is an Euclidean manifold if and only if X is locally precompact, locally
Polish, and locally contractible.

Proof. If X is an Euclidean manifold, then X is locally compact and locally contractible. The local precompactness of X
will follow as soon as we show that X is complete. Take any point x0 in the completion X̄ of the metric space X . Fix any
point θ ∈ X and by the local compactness of X , find an ε > 0 such the closed ε-ball B(θ, ε) = {x ∈ X: dist(x, θ) � ε} is
compact. Since X is isometrically homogeneous, there is a homeomorphism f : X → X such that dist(x0, f (θ)) < ε/2. It
follows that the ε-ball B( f (θ), ε) = {x ∈ X: dist(x, f (θ)) � ε} contains the point x0 in its closure in X̄ . Since B( f (θ), ε) =
f (B(θ, ε)) is compact, x0 ∈ B( f (θ), ε) ⊂ X . Thus X = X̄ is a complete metric space. Being locally compact, this space is
locally precompact.

Now assume that X is locally precompact, locally Polish, and locally contractible. We need to show that X is an Euclidean
manifold. It suffices to check that each connected component of X is an Euclidean manifold. Since connected components
of X are isometrically homogeneous, we lose no generality assuming that X is connected.

The completion X̄ of the locally precompact space X is locally compact. By [2] (cf. also [10, Theorem I.4.7]), the isometry
group Iso( X̄) of X̄ is locally compact, metrizable, and separable. Moreover, for every point θ ∈ X the action

αθ : Iso( X̄) → X̄

is proper in the sense that it is closed and the stabilizer Iso( X̄, θ) = { f ∈ Iso( X̄): f (θ) = θ} is compact (cf. [11]).
We are going to prove that the metric space X is complete. For this consider the subgroup

Iso(X) = {
f ∈ Iso( X̄): f (X) = X

} ⊂ Iso( X̄)

in the group Iso( X̄).
Let us show that the subgroup Iso(X) = { f ∈ Iso( X̄): f (X) = X} of Iso( X̄) is coanalytic. The subspace X of X̄ , being

(locally) Polish, is a Gδ-set in X̄ . Consequently, its complement X̄ \ X can be written as the countable union X̄ \ X = ⋃
n∈ω Kn

of non-empty compact sets. Observe that

Iso(X) =
⋂
n∈ω

{
f ∈ Iso( X̄): f (Kn) ∪ f −1(Kn) ⊂ X̄ \ X

}
.

Let exp( X̄) be the space of non-empty compact subset of X̄ endowed with the Hausdorff metric. For every n ∈ ω consider
the continuous maps

ξn : Iso( X̄) → exp( X̄), ξn : f �→ f (Kn) ∪ f −1(Kn).

By [9, 33.B], the subspace exp( X̄ \ X) = {K ∈ exp( X̄): K ⊂ X̄ \ X} is coanalytic and so is its preimage ξ−1
n (exp( X̄ \ X)) for

n ∈ ω. Since

Iso(X) =
⋂

ξ−1
n

(
exp( X̄ \ X)

)
,

n∈ω
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we see that the subgroup Iso(X) is coanalytic in Iso( X̄). Then Iso(X) has the Baire property in G and hence either is meager
or is closed in Iso( X̄) according to [9, 9.9].

If Iso(X) is closed in Iso( X̄), then X = αθ (Iso(X)) = X̄ (because the map αθ : Iso( X̄) → X̄ is closed) and we are done. It
remains to prove that the assumption that Iso(X) is meager leads to a contradiction. Let G be the closure of the subgroup
Iso(X) in Iso( X̄).

Taking into account that the map αθ : Iso( X̄) → X̄ is closed and X = αθ (Iso(X)) is dense in X̄ , we conclude that X̄ =
αθ (G). It follows from the local compactness of G and the properness of the action αθ : G → X̄ that the map αθ is open.
Then the image αθ (Iso(X)) = X of the meager subgroup Iso(X) of G is a meager subset of X̄ , which is not possible as X is
a dense Gδ-set in X̄ . This contradiction completes the proof of the completeness of X .

Now we see that the connected locally compact locally contractible space X = X̄ admits an effective transitive action of
the locally compact group Iso(X). By Theorem 3 of J. Szenthe [14], Iso(X) is a Lie group and X is an Euclidean manifold. �
4. Characterizing the topology of Hilbert manifolds

In order to prove Theorem 1.3(2)–(3) we shall apply the celebrated Toruńczyk’s characterization of the topology of
infinite-dimensional Hilbert manifolds. The key ingredient of this characterization is the κ-discrete m-cells property defined
for cardinals κ and m as follows.

We say that a topological space X satisfies the κ-discrete m-cells property if for every map f : κ × I
m → X and every open

cover U of X there is a map g : κ × I
m → X such that g is U -near to f and the family {g({α} × I

m)}α∈κ is discrete in X
(here we identify the cardinal κ with the discrete space of all ordinals < κ ).

The following characterization theorem is due to H. Toruńczyk [16].

Theorem 4.1 (Toruńczyk). A metrizable space X is a manifold modeled on an infinite-dimensional Hilbert space l2(κ) of density κ � ω
if and only if X has the following properties:

(1) X is a completely metrizable ANR;
(2) each connected component of X has density � κ ;
(3) X has the κ-discrete m-cells property for all m < ω; and
(4) X has LFAP.

For manifolds modeled on the separable Hilbert space l2 this characterization can be simplified as follows:

Theorem 4.2 (Toruńczyk). A metrizable space X is an l2-manifold if and only if X is a locally Polish ANR with the ω-discrete ω-cells
property.

Thus the problem of recognition of Hilbert manifolds reduces to detecting the κ-discrete m-cells property. For spaces
with LFAP the latter problem can be reduced to cardinals κ with uncountable cofinality. The following lemma was proved
in [1].

Lemma 4.3. A paracompact space X with ω-LFAP has κ-discrete m-cells property for a cardinal κ if and only if X has the λ-discrete
m-cells property for all cardinals λ � κ of uncountable cofinality.

In fact, the κ-discrete m-cells property follows from its metric counterpart called the κ-separated m-cells property.
Following [1], we define a metric space (X,ρ) to have the κ-separated m-cells property if for every ε > 0 there is δ > 0

such that for every map f : κ × I
m → X there is a map g : κ × I

m → X that is ε-homotopic to f and such that

dist
(

g
({α} × I

m)
, g

({β} × I
m))

� δ

for all ordinals α < β < κ .
The following lemma was proved in [1] by the method of the proof of Lemma 1 in [3].

Lemma 4.4. Each metric space X with the κ-separated m-cells property has the κ-discrete m-cells property.

According to Lemma 6 of [1], the κ-separated m-cells property can be characterized as follows:

Lemma 4.5. Let m � ω � κ be two cardinals. A metric space X has the κ-separated m-cells property if and only if for every ε > 0
there is δ > 0 such that for every subset A ⊂ X of cardinality |A| < κ , and every map f : I

d → X of a cube of finite dimension d � m
there is a map g : I

d → X that is ε-homotopic to f and has dist(g(Id), A) � δ.
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5. The κ-separated m-cells property in metric spaces

In this section we shall establish the κ-separated m-cells property in I
m∼homogeneous metric spaces. A subset S of a

metric space X is called separated if it is ε-separated for some ε > 0. The latter means that dist(x, y) � ε for any distinct
points x, y ∈ S .

Lemma 5.1. Let m � ω � κ be two cardinals. An I
m∼homogeneous metric LC<ω-space X has the κ-separated m-cells property if each

non-empty open subset of X contains a separated subset of cardinality κ .

Proof. Assume that each non-empty subset of X contains a separated subset of cardinality κ .
According to Lemma 4.5, the κ-separated m-cells property of X will follow as soon as given ε > 0 we find δ > 0 such

that for every subset A ⊂ X of cardinality |A| < κ and every map f : I
d → X of a cube of finite dimension d � m there is a

map f̃ : I
d → X which is 2ε-homotopic to f and such that dist( f̃ (Id), A) � δ.

Being I
m∼homogeneous, the space X contains a point θ ∈ X such that the map

αθ : Iso(X) → X, αθ : f �→ f (θ),

is I
m∼invertible.
Being LC<ω , the space X is locally path-connected at θ . Consequently, there is δ1 > 0 such that each point y ∈

B(θ, δ1) ⊂ X can be linked with θ by a path of diameter < ε. By our hypothesis, the δ1-ball B(θ, δ1) contains a separated
subset S ⊂ B(θ, δ1) of size |S| = κ . Since S is separated, the number

δ = 1

3
inf

{
dist(s, t): s, t ∈ S, s �= t

}

is strictly positive.
We claim that the number δ satisfies our requirements. Indeed, take any subset A ⊂ X of cardinality |A| < κ and fix any

map f : I
d → X from a cube of finite dimension d � m. Since X is LC<ω , there is ε′ > 0 such that any map f ′ : I

d → X that
is ε′-near to f is ε-homotopic to f (cf. [8, V.5.1]).

By our hypothesis, the map αθ is I
m∼invertible. Therefore there is a map g : I

d → Iso(X) such that the composition
f ′ = αθ ◦ g is ε′-near to f . By the choice of ε′ , the map f ′ is ε-homotopic to f .

We recall that

α : Iso(X) × X → X, α : ( f , x) �→ f (x),

denotes the action of the isometry group on X .

Claim 5.2. There is a point s ∈ S such that dist(α(g(Id) × {s}), A) � δ.

The proof depends on the value of the cardinal κ . If κ is uncountable, then we can fix a dense subset Q ⊂ g(Id) × A of
cardinality |Q | � dens(g(Id) × A) � max{ω, |A|} < κ .

Assuming that Claim 5.2 is false, we could find for every s ∈ S a pair (qs,as) ∈ Q such that dist(α(qs, s),as) < δ.
The strict inequality |Q | < κ � |S| implies the existence of two distinct points s, t ∈ S with (qs,as) = (qt ,at). Let

x = qs = qt and observe that

3δ � dist(s, t) = dist
(
α(x, s),α(x, t)

)

� dist
(
α(qs, s),as

) + dist
(
at,α(qt , t)

)
< 2δ,

which is a contradiction, proving Claim 5.2 for an uncountable κ .
In case of a countable κ the argument is a bit different. In this case the set A is finite. We claim that for every a ∈ A the

set

Ka = {
x ∈ X: ∃y ∈ g

(
I

d) with α(y, x) = a
}

is compact. This will follow as soon as we check that each sequence (xn)n∈ω ⊂ Ka has a cluster point x∞ ∈ Ka .
For every n ∈ ω find an isometry yn ∈ g(Id) ⊂ Iso(X) such that α(yn, xn) = a. By the compactness of g(Id), the sequence

(yn) has a cluster point y∞ ∈ g(Id). Observe that the point x∞ = y−1∞ (a) belongs to Ka . We claim that x∞ is a cluster point
of the sequence (xn). Given any η > 0 and n ∈ ω, we need to find p � n such that dist(xp, x∞) < η. Since y∞ is a cluster
point of (yi), there is a number p � n such that dist(y∞(x∞), yp(x∞)) < η. Then

dist(xp, x∞) = dist
(

yp(xp), yp(p∞)
) = dist

(
a, yp(x∞)

) = dist
(

y∞(x∞), yp(x∞)
)
< η,

witnessing that the sets Ba , a ∈ A, are compact.
Since the union K = ⋃

a∈A Ka ⊂ X is compact and the set S is 3δ-separated, there is an s ∈ S such that dist(s, K ) � δ.
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We claim that dist(α(g(Id) × {s}), A) � δ. Assuming the converse, we would find an isometry y ∈ g(Id) such that
dist(y(s),a) < δ for some a ∈ A. Let x = y−1(a) and observe that x ∈ Ka and hence

dist(s, K ) � dist(s, x) = dist
(

y(s), y(x)
) = dist

(
y(s),a

)
< δ,

which contradicts the choice of s. This completes the proof of Claim 5.2.
Define a map f̃ : I

d → X letting f̃ (x) = α(g(x), s) for x ∈ I
d . The choice of s ensures that dist( f̃ (Id), A) � δ.

By the choice of δ1 the point s ∈ S ⊂ B(θ, δ1) can be linked with θ by a path γ : [0,1] → X with γ (0) = θ , γ (1) = s and
diam(γ [0,1]) < ε. This path allows us to define an ε-homotopy

h : I
d × [0,1] → X, h : (x, t) �→ α

(
g(x), γ (t)

)

linking the maps f ′ = h0 and f̃ = h1.
Since the map f ′ is ε-homotopic to f , we conclude that f̃ : I

d → X is a required map that is 2ε-homotopic to f and
has property dist( f̃ (Id), A) � δ. �
6. Proof of Theorem 1.3

Let X be an isometrically homogeneous I
<ω∼homogeneous metric space. Since each connected component of X is

isometrically homogeneous and I
<ω∼homogeneous, we lose no generality by assuming that X is connected.

(1) The first statement of Theorem 1.3 follows from Theorem 3.1.

(2) Assume that X is a locally Polish ANR-space. We need to prove that X is a manifold modeled on a separable Hilbert
space. If the completion X̄ is locally compact, then X = X̄ is an Euclidean manifold according to Theorem 3.1. Therefore we
assume that X̄ is not locally compact.

We claim that the space X has the ω-separated ω-cells property. This will follow from Lemma 5.1 as soon as we check
that each non-empty open subset U ⊂ X contains an infinite separated subset. Fix any point x0 ∈ U and find ε > 0 such
that B(x0,2ε) ⊂ U .

Since the complete metric space X̄ is not locally compact, there is a point x1 ∈ X̄ having no totally bounded neighbor-
hood. Take any point x2 ∈ X with dist(x2, x1) < ε.

Since the space X is isometrically homogeneous, there is an isometry f : X → X such that f (x0) = x2. This isometry
can be extended to an isometry f̄ : X̄ → X̄ . Since the point x1 has no totally bounded neighborhood, the ball B̄(x1, ε) =
{x ∈ X̄: dist(x, x1) � ε} contains an infinite separated subset S ⊂ X ∩ B̄(x1, ε). Since dist(x1, f (x0)) < ε, the set S lies in the
ball B( f (x0),2ε). Then f −1(S) is an infinite separated subset of the ball B(x0,2ε) ⊂ U .

By Lemma 4.4, the space X has the ω-discrete ω-cells property and by Toruńczyk Theorem 4.2, X is an l2-manifold.

(3) Assume that X is a completely-metrizable ANR with LFAP. The isometric homogeneity of X implies that any two
connected components of X are isometric. Let κ be the density of any connected component of X . The homogeneity of X
implies that each non-empty open subset U ⊂ X has density dens(U ) � κ (cf. the proof of Corollary 3 in [1]). Repeating the
proof of Lemma 9 from [1] we can also show that for each cardinal λ � κ of uncountable cofinality, each non-empty open
subset U ⊂ X contains a separated subset S ⊂ U of cardinality |S| � λ. Applying Lemmata 4.4 and 5.1, we conclude that the
space X has the λ-discrete ω-cells property for every cardinal λ � κ of uncountable cofinality. Since X has LFAP, X has the
κ-discrete ω-cells approximation property by Lemma 4.3. Finally, applying the Toruńczyk Characterization Theorem 4.1, we
conclude that X is an l2(κ)-manifold.
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