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We investigate when does the Repovš–Semenov splitting problem for selections have
an affirmative solution for continuous set-valued mappings in finite-dimensional Banach
spaces. We prove that this happens when images of set-valued mappings or even their
graphs are P -sets (in the sense of Balashov) or strictly convex sets. We also consider
an example which shows that there is no affirmative solution of this problem even in
the simplest case in R

3. We also obtain affirmative solution of the approximate splitting
problem for Lipschitz continuous selections in the Hilbert space.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The splitting problem for selections was recently stated in [10]. Let Fi : X → 2Yi , i = 1,2, be any (lower semi) continuous
mappings with closed convex images and let L : Y1 ⊕ Y2 → Y be any linear surjection. The splitting problem is the problem
of representation of any continuous selection f (x) ∈ L(F1(x), F2(x)) in the form f (x) = L( f1(x), f2(x)), where f i(x) ∈ Fi(x)
are some continuous selections, i = 1,2.

This problem is related to some classical problems of set-valued analysis. First, it is a special case of the selection
problem which is sufficiently common for various applications [11]. In particular it is quite close to the celebrated problem
of parametrization of set-valued mappings [2,6,8].

Second, every affirmative solution of this problem is in fact, an answer to the following question: When does the op-
eration of intersection of two (continuous) set-valued mappings yield a continuous (or lower semicontinuous) set-valued
mapping with respect to the Hausdorff metric? This question is also quite common for certain branches of set-valued and
nonsmooth analysis.

It is well known that the intersection of two continuous set-valued mappings is not necessarily continuous [2]. We shall
first consider the extreme example which demonstrates the last assertion.
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Consider Question 4.6 from [10]: Do there exist for every closed convex sets A, B and C = A + B , continuous functions
a : C → A and b : C → B with the property that a(c) + b(c) = c, for all c ∈ C? In a space of dimension � 3 the answer is
negative.

Example 1.1. Consider the following sets in the 3-dimensional Euclidean space R
3 (where co(X) denotes the convex hull

of X ):

D0 = {
(cos t, sin t,0)

∣∣ t ∈ [0,π ]}, A0 = co
(

D0 ∪ {
(1,0,1)

} ∪ {
(−1,0,1)

})
,

D1 = {
(cos t, sin t,1)

∣∣ t ∈ [−π,0]}, A1 = co
(

D1 ∪ {
(1,0,0)

} ∪ {
(−1,0,0)

})
,

and A = A0 ∪ A1. It is easy to see that A is a convex compact set. We also define the set B = co((0,0,0), (0,0,1)) and the
set C = A + B .

Let Γ = {(cos t, sin t,1 − 2
π t) | t ∈ [−π

2 , π
2 ]}, Γ ⊂ ∂C . Let

Γ1 =
{(

cos t, sin t,1 − 2

π
t

) ∣∣∣ t ∈ (0,π/2]
}
,

Γ2 =
{(

cos t, sin t,1 − 2

π
t

) ∣∣∣ t ∈ [−π/2,0)

}

and c0 = (1,0,1).
Suppose that c ∈ Γ1. In this case there exists only one pair of points a(c) ∈ A and b(c) ∈ B with the property

a(c) + b(c) = c. Indeed, if tc ∈ (0, π
2 ] satisfies c = (cos tc, sin tc,1 − 2

π tc) then a(c) = (cos tc, sin tc,0), b(c) = (0,0,1 − 2
π tc).

The point a(c) is unique because it is an exposed point of the set A for the vector pc = (cos tc, sin tc,0). Clearly, the point
b(c) is also unique. So we have

lim
c→c0, c∈Γ1

a(c) = (1,0,0). (1.1)

In the case when c ∈ Γ2, similar considerations show that there exists only one pair of points a(c) = (cos tc, sin tc,1) ∈ A
and b(c) = (0,0,− 2

π tc) ∈ B with a(c) + b(c) = c and such that

lim
c→c0, c∈Γ2

a(c) = (1,0,1). (1.2)

Formulae (1.1) and (1.2) show that a(c) is not continuous at the point c = c0.

Simultaneously, we want to emphasize that the set-valued mappings

C � c → (c − B) ∩ A (1.3)

and

C � c → (A, B) ∩ L−1(c) (1.4)

do not allow any continuous (on c ∈ C ) selections. Here L−1(c) = {(y1, y2) ∈ R
3 × R

3 | y1 + y2 = c}.
Indeed, otherwise in the case (1.3) we could choose this selection as a(c) ∈ (c − B)∩ A ⊂ A and set b(c) = c −a(c) ∈ B . In

the case (1.4) we could choose (a(c),b(c)) ∈ (A, B) ∩ L−1(c). In both cases we would have a(c) + b(c) = c, for all c ∈ C . This
would contradict the fact that function a(c), as it follows by Example 1.1, is not continuous at the point c = c0 = (1,0,1).

We shall further obtain an affirmative solution of the splitting problem for selections for some special cases in finite-
dimensional Banach spaces. It suffices to solve this problem in Euclidean space R

n (with the inner product 〈·,·〉) because all
norms in any finite-dimensional Banach space are equivalent.

Our general idea is to prove continuity of the intersection (F1(x), F2(x)) ∩ L−1( f (x)). This is the key idea. When this is
done we can choose some continuous selection (e.g. the Steiner point) of the map x → (F1(x), F2(x)) ∩ L−1( f (x)) and solve
the problem.

Unfortunately, this map is not continuous even in the simplest cases (as we can see from Example 1.1). So we need to
invoke some special geometrical properties of maps Fi or surjection L.

The main results of Section 2 are Theorem 2.4 with Corollary 2.5, Theorems 2.6 and 2.10. The key geometric objects used
in Section 2 are P -sets (see Definition 2.1) and strictly convex sets.

In Section 3 we shall consider situation when in infinite-dimensional Hilbert spaces X , Y1, Y2 there exist for every
ε > 0 and any Lipschitz continuous selection f (x) ∈ L(F1(x), F2(x)), Lipschitz continuous selections f i(x) ∈ Fi(x) + BYi

ε (0),
i = 1,2, with the property f (x) = L( f1(x), f2(x)), for all x. Here, BYi

ε (0) = {y ∈ Yi | ‖y‖ � ε}. The main results of Section 3
are Theorems 3.1 and 3.7.
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We need to give some definitions for further explanation. We shall say that the subspace L ⊂ L1 ⊕ L2 is not parallel to
the subspaces L1 and L2 if for any pair of distinct points w1, w2 ∈ L, the projections of w1 and w2 onto L1 (resp. L2)
parallel to L2 (resp. L1) yield different points.

Let h be the Hausdorff distance. For any bounded subsets A, B of a Banach space X we have

h(A, B) = inf
{

h > 0
∣∣ A ⊂ B + B X

h (0), B ⊂ A + B X
h (0)

}
.

For any subsets A, B of a linear space X the operation

A ∗ B = {x ∈ X | x + B ⊂ A} =
⋂
b∈B

(A − b)

is called the geometric difference (or the Minkowski–Pontryagin difference) of sets A and B . A direct consequence of the
definition of geometric difference is that (A ∗ B) + B ⊂ A.

The Chebyshev center c(A) of a convex closed bounded subset A of a Hilbert space X is the point

c(A) = arg inf
x∈X

(
sup
a∈A

‖x − a‖
)
.

Chebyshev center always exists and it is unique.
Let X , Y be any Banach spaces. We say that a continuous linear surjection L : X → Y has the Lip-property if the set-valued

mapping L−1(y) = {x ∈ X | Lx = y} has a Lipschitz (at y) selection l(y) ∈ L−1(y).
For example, if Y1 = Y2 = Y and L : Y1 ⊕ Y2 → Y , L(y1, y2) = y1 + y2, then l(y) = ( 1

2 y, 1
2 y).

2. P -sets and the splitting problem for selections

We shall obtain an affirmative solution in certain cases when the images of the set-valued mapping are P -sets [3]. Let
q ∈ R

n be an arbitrary unit vector and L(q) = {z ∈ R
n | 〈q, z〉 = 0}, l(q) = {λq | λ ∈ R}. The space R

n is the orthogonal sum of
sets L(q) and l(q): R

n = L(q) ⊕ l(q). Any point z ∈ R
n can be expressed in the form z = x + μq, where μ ∈ R, x ∈ L(q), or

z = (x,μ). Let Pq : R
n → L(q) be the operator of orthogonal projection: for any z ∈ R

n , Pq z = x, where z = (x,μ).
Let A ⊂ R

n be any convex compact set. Let us define the function f A,q : Pq A → R by

f A,q(x) = min
{
μ

∣∣ (x,μ) ∈ A
}
, for all x ∈ Pq A. (2.5)

Definition 2.1. (See [3].) A convex compact subset A ⊂ R
n is called a P -set, if for any unit vector q, the function f A,q (2.5)

is continuous on the set Pq A.

Proposition 2.2. (See [3,9].) Any convex compact subset of R
2 is a P -set. In R

n any convex polyhedron is a P -set, any strictly convex
compact subset is a P -set, and any finite Minkowski sum of P -sets is a P -set. If L : R

n → R
m is a linear operator and A ⊂ R

n is a P -set
then L A ⊂ R

m is also a P -set. Moreover, the map L : A → L A is open in induced topologies.

We emphasize that a P -set is not necessarily a polyhedron or strictly convex.

Example 2.3. The cylinder {(x1, x2, x3) | x2
1 + x2

2 � 1, 0 � x3 � 1} is a P -set as the Minkowski sum of two P -sets

{
(x1, x2,0)

∣∣ x2
1 + x2

2 � 1
} + {

(0,0, x3)
∣∣ 0 � x3 � 1

}
.

On the other hand, the subset A0 ⊂ R
3,

A0 = co
({

(x1 − 1)2 + x2
2 = 1, x3 = 1

} ∪ {
(0,0,0)

})
,

is not a P -set.
Indeed, for q = (0,0,1) it is easy to see that f A0,q is not upper semicontinuous at the point (0,0) ∈ Pq A0. Note that the

sum A0 + A1 (where A1 is an arbitrary convex compact set) is not a P -set [3].

It was proved in [3] that if the subset A ⊂ R
n is convex and compact then the function f A,q (2.5) is lower semicontinuous

on Pq A. This is quite obvious. Therefore the question about continuity of the function f A,q is the question about its upper
semicontinuity.

The domain of the set-valued mapping F : R
n → 2R

m
is the set dom F = {x ∈ R

n | F (x) 
= ∅}.

Theorem 2.4. Let A ⊂ R
n be any convex compact subset and L ⊂ R

n any subspace. Suppose that one of the following properties is
satisfied:
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(1) dim L = n − 1, or
(2) A is a P -set.

Then the set-valued mapping F (z) = (z + L) ∩ A is continuous in the Hausdorff metric.

Remark. It is easy to see that dom F = A + L.

Proof. (1) Part (1) is a well-known fact, but we prove it for completeness. Let A ⊂ R
n be an arbitrary convex compact

subset and dim L = n − 1. Consider F (z) = (z + L) ∩ A, for all z ∈ dom F . Using the closed graph theorem for set-valued
mappings [1, Theorem 8.3.1] we conclude that map F is upper semicontinuous at any point z0 ∈ dom F .

This means that for any sequence {zk} ⊂ dom F , zk → z0, and any ε > 0, there exists a number kε such that for any
k > kε the following holds:

F (zk) ⊂ F (z0) + Bε(0). (2.6)

Suppose that lower semicontinuity fails at some point z0 ∈ dom F . Then there exist a number ε0 > 0 and a sequence
{zk} ⊂ dom F such that lim zk = z0 and

F (z0) 
⊂ F (zk) + Bε0(0). (2.7)

This implies that zk /∈ z0 + L, for all k. From the condition (2.7) we conclude that for any k, there exists a point wk ∈ F (z0)

for which wk /∈ F (zk) + Bε0 (0).
We may assume that wk → w0 ∈ F (z0), due to the compactness of the set F (z0) and since

w0 /∈ F (zk) + Bε0/2(0). (2.8)

Without loss of generality we may assume that z1 ∈ A. Otherwise, we can choose an arbitrary point z̃1 ∈ F (z1) instead of z1.
We can also suppose that ‖z1 − w0‖ >

ε0
2 , otherwise we could reduce ε0.

Let ϕ be the angle between the segment [w0, z1] and the hyperplane L, ϕ ∈ (0, π
2 ] (note that the segment [w0, z1] is

not parallel to L). Without loss of generality we may assume that the halfspace with the bound z0 + L, which contains z1,
contains the entire sequence {zk}.

Let us choose a number k for which the distance from the point zk to the hyperplane z0 + L is sufficiently small:

�(zk, z0 + L) <
ε0

2
sinϕ.

Define the point w = w0 + z1−w0‖z1−w0‖
ε0
2 . We have

�(w, z0 + L) = ε0

2
sinϕ > �(zk, z0 + L).

We can now conclude that the points w0 and w lie on the opposite sides of the hyperplane zk + L. This follows from the
last estimate, the inclusion w0 ∈ z0 + L and the fact that the points zk , z1 (and consequently w) lie on the same side of the
hyperplane z0 + L. This means that the following holds:

[w0, w] ∩ (zk + L) 
= ∅. (2.9)

From the inclusions w0 ∈ F (z0), z1 ∈ A we obtain that [w0, w] ⊂ [w0, z1] ⊂ A. We can conclude from this inclusion and the
equality ‖w0 − w‖ = ε0

2 that [w0, w] ⊂ A ∩ Bε0/2(w0). According to (2.9), we have

A ∩ Bε0/2(w0) ∩ (zk + L) 
= ∅,

i.e. w0 ∈ (A ∩ (zk + L)) + Bε0/2(0). This contradicts the existence of the inclusion (2.8).
The upper and lower semicontinuity imply continuity in the Hausdorff metric.
(2) Suppose now that dim L = m, 1 � m � n, and that A ⊂ R

n is a P -set. Upper semicontinuity can be proved in the
same way as in (1) above.

Assuming to the contrary, as in (1), we conclude that there exist ε0 > 0, w0 ∈ F (z0) and a sequence {zk} ⊂ dom F ,
lim zk = z0 such that

w0 /∈ F (zk) + Bε0/2(0).

The map F is upper semicontinuous and not continuous. Hence

F0 = lim sup
k→∞

F (zk) =
⋂ ⋂ ⋃(

F (zk) + Bε(0)
) ⊂ F (z0).
ε>0 δ>0 k>δ
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Let us fix any point w ∈ F0. Obviously, w 
= w0. Let q = w−w0‖w−w0‖ . Suppose that vkn ∈ F (zkn ) is a sequence such that vkn → w .
We have F (zkn ) = F (vkn ), F (z0) = F (w0) = F (w).

Let w0 = (x0,μ0). Note that x0 = Pq w . Let xkn = Pq vkn . For sufficiently large n (when ‖w − vkn ‖ <
ε0
4 ) we have

(vkn + l(q)) ∩ Bε0/4(w0) 
= ∅, l(q) = {λ(w − w0) | λ ∈ R} ⊂ L and consequently, f A,q(xkn ) � μ0 + ε0
4 . Together with

f A,q(x0) � μ0, this contradicts the definition of a P -set. �
The graph of a set-valued mapping F : R

n → 2R
m

is the set graph F = {(x, y) ∈ R
n × R

m | x ∈ dom F , y ∈ F (x)}.

Corollary 2.5. Let F : R
n → 2R

m
be any set-valued mapping with a convex closed graph.

(1) If n = 1 and graph F is convex and compact then F is continuous.
(2) If graph F is a P -set then F is continuous.

Proof. Proof of Corollary 2.5 follows from Theorem 2.4 and the equality

{x0} × F (x0) = graph F ∩ {
(x, y) ∈ R

n × R
m

∣∣ x = x0
}
. �

Corollary 2.5 is false if graph F is not a P -set. Let q be the vector (0,0,1) ∈ R
3. Let graph F = A0, A0 be as in Exam-

ple 2.3, dom F = {(x1 − 1)2 + x2
2 � 1} and F (x1, x2) = {λ | (x1, x2, λ) ∈ A0}. Then the set-valued mapping F is not lower

semicontinuous at the point (0,0).
The Steiner point of a convex compact subset A ⊂ R

n is the point

s(A) = 1

μn B1(0)

∫
‖p‖=1

s(p, A)p dp,

s(p, A) = supx∈A〈p, x〉, where μn is the Lebesgue measure in R
n . For any convex compact subsets A, B ⊂ R

n , we have:

∥∥s(A) − s(B)
∥∥ � Lnh(A, B), Ln = 2√

π

Γ ( n
2 + 1)

Γ (n+1
2 )

,

and s(A) ∈ A. The Lipschitz constant Ln above is the best possible [2,9].

Theorem 2.6. Let A, B be any closed convex subsets and let C = A + B. If C is a P -set then there exist continuous functions a : C → A
and b : C → B with the property that a(c) + b(c) = c, for all c ∈ C.

Proof. Let L : R
n × R

n → R
n be a linear operator, L(x1, x2) = x1 + x2. Then L is a surjection. The set-valued mapping

R
n � c → L−1(c) = {(x1, x2) | x1 + x2 = c} is Lipschitz continuous in the Hausdorff metric [1, Corollary 3.3.6] and its values

are parallel affine planes of the same dimension. The set C is a P -set and consequently, A and B are P -sets, too [3]. Using
Corollary 2.5, we conclude that the set-valued mapping C � c → (A, B) ∩ L−1(c) is continuous. Taking the Steiner point s(·)
of the latter set-valued mapping, we get the following:

(
a(c),b(c)

) = s
(
(A, B) ∩ L−1(c)

)
. �

Theorem 2.7. Consider any set-valued mappings F1 : R
n → 2R

m1 and F2 : R
n → 2R

m2 . Suppose that graph(F1, F2) is a P -set. Suppose
that L : R

m1 × R
m2 → R

k is a linear surjection. Then for any continuous selection f (x) ∈ L(F1(x), F2(x)), there exist continuous
selections fi(x) ∈ Fi(x), i = 1,2, with f (x) = L( f1(x), f2(x)).

Proof. We can take

(
x, f1(x), f2(x)

) = s
((

graph(F1, F2)
) ∩ (

x, L−1( f (x)
)))

.

The map x → (x, L−1( f (x))) is continuous, due to [1, Corollary 3.3.6] and the intersection is continuous by Corollary 2.5. �
Theorem 2.8. Suppose that a compact subset A ⊂ R

n is strictly convex and that B ⊂ R
n is an arbitrary convex closed subset. In this

case there exist continuous functions a : C → A and b : C → B with the property that a(c) + b(c) = c, for all c ∈ C.

Proof. We shall consider H(c) = (c − A) ∩ B , c ∈ C . Note that H(c) 
= ∅, for all c ∈ C . If ri H(c0) 
= ∅, for some c0 ∈ C , the
condition of nonempty interior yields the continuity of H(c) at the point c = c0 [2,9].

Note that ri H(c0) is the relative interior of the set H(c0), i.e. the interior of the set H(c0) in the affine hull of the set B .
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If ri H(c0) = ∅ then H(c0) is a single point, due to the strict convexity of A. The intersection of c − A and B is upper
semicontinuous, by the closed graph theorem [1, Theorem 3.1.8], i.e.

H(c) ⊂ H(c0) + Bε(0), ∀c ∈ Bδ(c0) ∩ C .

But this implies

H(c0) ∈ H(c) + Bε(0), ∀c ∈ Bδ(c0) ∩ C .

Both formulae yield the continuity (in the Hausdorff metric) at the point c = c0. Thus H(c) is continuous at any point c ∈ C
and b(c) = s(H(c)), a(c) = c − b(c). �
Theorem 2.9. Let X be any metric space. Consider any set-valued mappings F1 : X → 2R

m1 and F2 : X → 2R
m2 which are continuous

in the Hausdorff metric. Suppose that F1 has strictly convex compact images and that F2 has closed convex images. Suppose also that
f (x) ∈ F1(x) + F2(x) is a continuous selection. Then there exist continuous selections fi(x) ∈ Fi(x) with f (x) = f1(x) + f2(x), for all
x ∈ X.

Proof. Proof is similar to that of Theorem 2.8. The set-valued mapping

H(x) = (
f (x) − F1(x)

) ∩ F2(x)

is continuous and f2(x) = s(H(x)), f1(x) = f (x) − f2(x). �
Theorem 2.10. Let X be any metric space. Let Fi : X → 2R

mi , i = 1,2, be set-valued mappings with strictly convex compact or single-
point images, which are continuous in the Hausdorff metric. Let Li = R

mi , i = 1,2, and let L : L1 ⊕ L2 → R
k be a linear surjection

such that L = ker L is not parallel to Li , i = 1,2. Then for any continuous selection f (x) ∈ L(F1(x), F2(x)), there exist continuous
selections fi(x) ∈ Fi(x), i = 1,2, such that f (x) = L( f1(x), f2(x)), for all x ∈ X.

Proof. By the closed graph theorem [1, Theorem 3.1.8] and [1, Corollary 3.3.6], the set-valued mapping

H(x) = (
F1(x), F2(x)

) ∩ L−1( f (x)
)

is upper semicontinuous, for all x ∈ X .
Note that the mapping which associates to each convex compact subset of R

n its nearest (with respect to zero) point, is
a continuous selection of sets in the Euclidean space, in the Hausdorff metric [2,5] and hence

L−1( f (x)
) = w(x) + L,

where w(x) = (w1(x), w2(x)) is a continuous (at x ∈ X ) projection of the zero onto L−1( f (x)) in the Euclidean space
L1 ⊕ L2.

Thus we can write

H(x) = w(x) + (
F1(x) − w1(x), F2(x) − w2(x)

) ∩ L.

Consequently, we can assume that w(x) = 0, H(x) = (F1(x), F2(x)) ∩ L 
= ∅ and prove the continuity of the last map. We
shall assume that H(x0) is not a single point, otherwise H would be continuous at the point x = x0 for the same reason as
in Theorem 2.8.

Suppose that H is not lower semicontinuous at the point x0. This means that

∃w0 ∈ H(x0), ε0 > 0, xk → x0, such that w0 /∈ H(xk) + Bε0 (0), ∀k. (2.10)

Let w ∈ lim supk→∞ H(xk) ⊂ H(x0); w 
= w0, w, w0 ∈ L. Let [u, u0] ⊂ F1(x0) ∩ L1 be a projection of the segment [w, w0]
onto L1 parallel to L2 and [v, v0] ⊂ F2(x0) ∩ L2 a projection of the segment [w, w0] onto L2 parallel to L1.

By hypothesis, we have u 
= u0, v 
= v0. Sets Fi(x0), i = 1,2, are strictly convex and u+u0
2 ∈ int F1(x0), v+v0

2 ∈ int F2(x0).
Thus we can find α > 0 such that:

B1
α

(
u + u0

2

)
⊂ F1(x0), B2

α

(
v + v0

2

)
⊂ F2(x0)

and

Bα

(
w + w0

2

)
⊂ (

F1(x0), F2(x0)
)
.

In the last inclusion we considered the ball of norm max{‖u‖L ,‖v‖L }, (u, v) ∈ L1 ⊕ L2.
1 2
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Without loss of generality we may assume that ‖w − w0‖ > ε0 (otherwise we reduce ε0 > 0). Let t = ε0‖w−w0‖ ∈ (0,1).

By a homothety with center w0 and the coefficient t we get that for w̃ = w0 + t
2 (w − w0) the inclusion Btα(w̃) ⊂

(F1(x0), F2(x0)) holds and ‖w̃ − w0‖ = ε0
2 .

By continuity of Fi , i = 1,2, we get that there exists k0 such that B 1
2 tα(w̃) ⊂ (F1(xk), F2(xk)), for all k > k0 and hence

we have:

w̃ ∈ (
F1(xk), F2(xk)

) ∩ L ∩ Bε0(w0), ∀k > k0,

i.e. H(xk) ∩ Bε0 (w0) 
= ∅ for all k > k0. This contradicts (2.10).
So we have proved that H(x) is continuous in the Hausdorff metric, for all x ∈ X . Taking the Steiner point of H(x) =

(F1(x), F2(x)) ∩ L−1( f (x)) we obtain that ( f1(x), f2(x)) = s(H(x)). �
Corollary 2.11. Let X be any metric space. Let Fi : X → 2R

mi , i = 1,2, be (ε − δ)-lower semicontinuous set-valued mappings with
strictly convex compact images. Let Li = R

mi , i = 1,2, and let L : L1 ⊕ L2 → R
k be a linear surjection such that L = ker L is not

parallel to Li , i = 1,2. Suppose that for any x ∈ X and any point f ∈ L(F1(x), F2(x)) there exists a pair of distinct points w1, w2 ∈
(F1(x), F2(x)) such that f = Lwi , i = 1,2. Then for any continuous selection f (x) ∈ L(F1(x), F2(x)) there exist continuous selections
fi(x) ∈ Fi(x), i = 1,2, such that f (x) = L( f1(x), f2(x)), for all x ∈ X.

Proof. We can repeat word-by-word the proof from Theorem 2.10 of the lower semicontinuity of H at any point x0. The
only difference is when we choose the point w as an arbitrary point of the set H(x0)\{w0}. Using the Michael selection
theorem [7] we can choose a continuous selection ( f1(x), f2(x)) ∈ H(x). �

Finally, we shall prove that the exact solution of the splitting problem for selections takes place on the dense subset of
arguments of the Gδ-type.

Theorem 2.12. Let X be any metric space and Y , Yi , i = 1,2, any Banach spaces. Let Fi : X → 2Yi , i = 1,2, be upper semicontinuous
set-valued mappings with convex compact images and suppose that the set cl(F1(X), F2(X)) is compact. Let L : Y1 ⊕ Y2 → Y be
any continuous linear surjection. Then for any continuous selection f (x) ∈ L(F1(x), F2(x)) there exist a dense Gδ-set X f ⊂ X and
selections fi(x) ∈ Fi(x), i = 1,2, continuous on the set X f , such that f (x) = L( f1(x), f2(x)), for all x ∈ X f .

Proof. The intersection H(x) of the continuous mapping L−1( f (x)) and the upper semicontinuous mapping (F1(x), F2(x))
with compact images is upper semicontinuous [2,9].

Moreover, the set graph H is closed. By [1, Theorem 3.1.10], H(x) is continuous on some dense Gδ-set X f ⊂ X . Note
that X f is also a metric space. Applying the Michael selection theorem [7] to the set-valued mapping H : X f → 2Y1⊕Y2 , we
obtain continuous selections ( f1(x), f2(x)) ∈ H(x), for all x ∈ X f . �

We conclude this section by some final remarks concerning P -sets.

Lemma 2.13. Let A ⊂ R
n be any convex compact subsets and suppose that in terms of Definition 2.1, for any unit vector q the operator

Pq is an open map Pq : A → Pq A, in the induced topologies. Then A is a P -set.

Proof. Suppose that A is not a P -set. Then for some unit vector q there exists a sequence {xk} ⊂ Pq A such that
lim xk = x0 and lim f A,q(xk) = μ0 > f (x0). Let z0 = (x0, f A,q(x0)), z̃0 = (x0,μ0), z = 1

2 (z̃0 + z0) = (x0,
1
2 (μ0 + f A,q(x0))), and

ε = 1
4 ‖z̃0 − z0‖ = 1

4 (μ0 − f A,q(x0)). Then xk /∈ Pq(Bε(z) ∩ A), for all k. This contradicts the openness of Pq . �
Theorem 2.14. Any convex compact subset A ⊂ R

n is a P -set if and only if for any natural number m and any linear map L : R
n → R

m,
the map L : A → L A is open in the induced topology.

Proof. The openness L : A → L A was proved in [3]. By Lemma 2.13, we get the converse statement, it suffices to take
L = Pq . �
Corollary 2.15. Let E be any Banach space, dim E = n, and E = L ⊕ l, dim L = n − 1, dim l = 1. A set A ⊂ E is a P -set if and only if the
projection A onto L, parallel to l, is an open map and this property holds for any pairs of subspaces L, l with E = L ⊕ l, dim L = n − 1,
dim l = 1.

Proof. Proof follows from Theorem 2.14 and the equivalence of the Euclidean and the given norm. �
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3. Solution of the approximate splitting problem for Lipschitz selections in a Hilbert space

Let X, Y , Yi , i = 1,2, be infinite-dimensional Hilbert spaces. Define B X
ε (x) = {y ∈ X | ‖x − y‖ � ε}. Let L : Y1 ⊕ Y2 → Y be

any continuous linear surjection. We shall consider the following problem: When can an arbitrary Lipschitz continuous (resp.
simply Lipschitz) selection f (x) ∈ L(F1(x), F2(x)) be represented in the form f (x) = L( f1(x), f2(x)), where f i(x) ∈ Fi(x) are
some Lipschitz selections, i = 1,2.

Clearly, Example 1.1 shows that there is no affirmative solution of this problem in such a formulation.
We shall prove that there exists an approximate solution of the Lipschitz splitting problem, namely that for any ε > 0,

any pair of uniformly continuous set-valued mappings Fi , i = 1,2, with closed convex bounded images, and any Lipschitz
selection f (x) ∈ L(F1(x), F2(x)), there exist Lipschitz selections f i(x) ∈ Fi(x) + BYi

ε (0) such that f (x) = L( f1(x), f2(x)).

Theorem 3.1. Let (X,�) be any metric space and (Y ,‖ · ‖) any Banach space. Let Fi : X → 2Y , i = 1,2, be any set-valued mappings
with closed convex images. Let ωi : [0,+∞) → [0,+∞), i = 1,2, be the modulus of continuity for Fi , i.e. limt→+0 ωi(t) = 0 and

∀x1, x2 ∈ X : h
(

Fi(x1), Fi(x2)
)
� ωi

(
�(x1, x2)

)
, i = 1,2.

Let d(x) = min1�i�2 diam Fi(x) < +∞ for all x ∈ X. Suppose there exist a function γ : X → [0,+∞) and α > 0 such that:

γ (x)BY
1 (0) ⊂ F1(x) − F2(x), ∀x ∈ X, (3.11)

d(x) � αγ (x), ∀x ∈ X . (3.12)

Then the set-valued mapping G(x) = F1(x) ∩ F2(x) is uniformly continuous with the modulus ω(t) = max{ω1(t),ω2(t)} +
α(ω1(t) + ω2(t)).

Proof. We shall use ideas from Theorem 2.2.1 from [9]. Note that G(x) 
= ∅ follows by inclusion (3.11). Fix t > 1. Choose any
pair of points x1, x2 ∈ X and y1 ∈ G(x1).

We shall prove that there exists a point y2 ∈ G(x2) with

‖y1 − y2‖ � tω
(
�(x1, x2)

)
. (3.13)

Define ω = ω(�(x1, x2)), ωi = ωi(�(x1, x2)). By the uniform continuity of Fi it follows that:

y1 ∈ F1(x2) + tω1 BY
1 (0), (3.14)

y1 ∈ F2(x2) + tω2 BY
1 (0). (3.15)

Set d(x2) = diam F1(x2). By inclusion (3.14) it follows that there exists a point y ∈ F1(x2) such that ‖y − y1‖ � tω1.
From this and by the inclusion (3.15) we conclude that

y ∈ F2(x2) + t(ω1 + ω2)BY
1 (0).

Let

θ = γ (x2)

γ (x2) + t(ω1 + ω2)
∈ [0,1).

From the previous inclusion we get the inclusion

θ y ∈ θ F2(x2) + θt(ω1 + ω2)BY
1 (0).

Keeping in mind that θt(ω1 + ω2) = (1 − θ)γ (x2), we get

(1 − θ)γ (x2)BY
1 (0) ⊂ (1 − θ)F2(x2) − (1 − θ)F1(x2),

and

θ y ∈ θ F2(x2) + (1 − θ)F2(x2) − (1 − θ)F1(x2) = F2(x2) − (1 − θ)F1(x2).

Hence there exists a point z ∈ F1(x2) with

θ y + (1 − θ)z ∈ F2(x2).

Let y2 = θ y + (1 − θ)z. Then y2 ∈ F1(x2) since y, z ∈ F1(x2). Thus y2 ∈ G(x2).
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From the equality y1 − y2 = (y1 − y) + (1 − θ)(y − z) we conclude that:

‖y1 − y2‖ � ‖y1 − y‖ + (1 − θ)‖y − z‖ � tω1 + (1 − θ)d(x2). (3.16)

If γ (x2) = 0 then d(x2) = 0 and ‖y1 − y2‖ � tω1.
If γ (x2) > 0 then from the definition of θ and from (3.12) we get

(1 − θ)d(x2) � t(ω1 + ω2)

γ (x2) + t(ω1 + ω2)
αγ (x2) � tα(ω1 + ω2).

So by inequality (3.16),

‖y1 − y2‖ � t
(
ω1 + α(ω1 + ω2)

)
.

By taking the limit t → 1 + 0 we obtain

h
(
G(x1), G(x2)

)
�

(
ω1 + α(ω1 + ω2)

)
.

Finally, note that in the general case we must take max{ω1,ω2} instead of ω1, because it may happen that d(x2) =
diam F2(x2). �

Propositions 3.2, 3.3, and 3.4 are well known:

Proposition 3.2. (See [6, Lemma 5].) Let X be a Banach space and A1, A2 ⊂ X any convex closed bounded sets, d =
max{diam A1,diam A2}. Let B X

α(xi) ⊂ Ai , i = 1,2. Then for any β ∈ (0,α) the following holds:

h
(

A1
∗ B X

β (0), A2
∗ B X

β (0)
)
� d

α − β
h(A1, A2).

Proposition 3.3. (See [6, Lemma 4].) Let X be a Hilbert space and A1, A2 ⊂ X any convex closed bounded sets, Ai ⊂ B X
r (ai), i = 1,2.

Then c(Ai) ∈ Ai , i = 1,2, and

∥∥c(A1) − c(A2)
∥∥ � 2

√
6rh(A1, A2) + h(A1, A2).

The next proposition follows by the well-known Valentine extension theorem [14]:

Proposition 3.4. (See [6, Lemma 3].) Let X, Y be Hilbert spaces and X1 ⊂ X any convex subset of X . Let w : X1 → Y be a uniformly
continuous function. Then for any ε > 0, there exists a Lipschitz continuous function v : X1 → Y with
‖v(x) − w(x)‖ < ε, for all x ∈ X1 .

Lemma 3.5. Let X be a Hilbert space, Y a Banach space and L : X → Y a continuous linear surjection. Then the operator L has the
Lip-property.

Proof. Let ker L = L and L⊥ be the orthogonal subspace of L. The set-valued mapping L−1(y) is Lipschitz continuous with
respect to the Hausdorff distance [1, Corollary 3.3.6]. Let R(y) = infx∈L−1(y) ‖x‖, l(y) ∈ L−1(y): ‖l(y)‖ = R(y), and

G(y) = B X
2R(y)(0) ∩ L−1(y).

It is well known ([9, Theorem 2.2.2], see also [2,4,8]), that G(y) is a Lipschitz set-valued mapping with respect to the
Hausdorff distance. This also follows by Theorem 3.1.

Now consider H(y) = G(y) ∩ L⊥ . The point l(y) is a metric projection of zero onto L−1(y), hence l(y) ∈ G(y) and
(because of l(y) ∈ L⊥) l(y) ∈ H(y). Moreover, from the fact that some shift of L contains G(y), we can deduce that
H(y) = {l(y)}.

From the properties

B X√
3R(y)

(0) ⊂ G(y) − L⊥, diam G(y) � 2√
3

√
3R(y)

and from Theorem 3.1 we now obtain that H(y) = {l(y)} is Lipschitz continuous in the Hausdorff distance, hence l(y) is a
Lipschitz function. �
Remark 3.6. We gave a purely geometric proof of Lemma 3.5. Note that this lemma can also be proved with the help of the
Implicit function theorem [12].
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Theorem 3.7. Let X, Y , Yi , i = 1,2, be Hilbert spaces and X1 ⊂ X a convex subset of X . Let L : Y1 ⊕ Y2 → Y be a continuous linear
surjection. Let Fi : X1 → 2Yi , i = 1,2, be uniformly continuous (with modulus ωi ) set-valued mappings with convex closed bounded
images and d = supx∈X1

diam(F1(x), F2(x)) < +∞. Suppose that for all x ∈ X1 f (x) ∈ L(F1(x), F2(x)) is a Lipschitz selection. Then

for any ε > 0 there exist Lipschitz selections fi(x) ∈ Fi(x) + BYi
ε (0) with f (x) = L( f1(x), f2(x)), for all x ∈ X1 .

Proof. Fix ε > 0. Let f (x) ∈ L(F1(x), F2(x)) be a Lipschitz selection. The set-valued mapping L−1( f (x)) is Lipschitz continu-
ous in Hausdorff metric [1, Corollary 3.3.6]. Let w(x) = l( f (x)) ∈ L−1( f (x)). The function w(x) is Lipschitz continuous as a
superposition of two Lipschitz functions: l(y) (Lemma 3.5) and f (x).

Hence L−1( f (x)) = w(x) + L, L = ker L. Consider

H(x) = ((
F1(x), F2(x)

) + BY1⊕Y2
ε (0)

) ∩ L−1( f (x)
) = w(x) + ((

F1(x), F2(x)
) − w(x) + BY1⊕Y2

ε (0)
) ∩ L.

Without loss of generality we may assume that w(x) = 0 and H(x) = ((F1(x), F2(x)) + BY1⊕Y2
ε (0)) ∩ L. The mappings x →

(F1(x), F2(x)) + BY1⊕Y2
ε (0) and x → L are uniformly continuous (x ∈ X1),

BY1⊕Y2
ε (0) ⊂ ((

F1(x), F2(x)
) + BY1⊕Y2

ε (0)
) − L

and

diam
((

F1(x), F2(x)
) + BY1⊕Y2

ε (0)
)
� d + 2ε � d + 2ε

ε
ε.

Using Theorem 3.1 we obtain that H(x), x ∈ X1, is a uniformly continuous set-valued mapping.
Consider L with the induced topology: the ball B L

r (w) ⊂ L (w ∈ L) is B L
r (w) = BY1⊕Y2

r (w)∩ L. Obviously, L is a Hilbert
space. The set-valued mapping H(x) ⊂ L has a nonempty interior in L, moreover H(x) ∗ B L

ε (0) 
= ∅, for all x ∈ X1.
Let H1(x) = H(x) ∗ B L

ε/2(0). By Proposition 3.2 we have that H1(x) is a uniformly continuous set-valued mapping with
convex closed images. By Proposition 3.3 we have that the Chebyshev center c(H1(x)) of the set-valued mapping H1(x) is a
uniformly continuous function and c(H1(x)) ∈ H1(x).

By Proposition 3.4 there exists a Lipschitz continuous function v(x) ∈ c(H1(x)) + B L
ε/2(0), for all x ∈ X1. Hence

v(x) ∈ c
(

H1(x)
) + B L

ε/2(0) ⊂ H1(x) + B L
ε/2(0) ⊂ H(x).

We can now choose ( f1(x), f2(x)) = v(x). �
Remark 3.8. In the finite-dimension case (when dim Yi < ∞, i = 1,2) Lip-property of L follows from results [4,8] (see
also [2,6,9]). Let R(y) = inf{‖l‖ | l ∈ L−1(y)}, for all y ∈ Y . The set-valued mapping

G(y) = BY1⊕Y2
2R(y) (0) ∩ L−1(y)

is Lipschitz continuous on y (this also follows by Theorem 3.1). We can choose l(y) = s(G(y)), where s(·) is the Steiner
point.

Remark 3.9. It is easy to see that the proof of Theorem 3.7 can be given in any uniformly convex Banach (not necessarily
Hilbert) spaces Y1, Y2, where every uniformly continuous function can be approximated (with arbitrary precision) by a
Lipschitz function, for any continuous linear surjection with Lip-property.

Example 3.10. An exact solution of the splitting problem does not exist for Lipschitz selections. Besides Example 1.1 we can
demonstrate one more example. Tsar’kov proved [13] that there exists a Lipschitz (with respect to the Hausdorff distance)
set-valued mapping F : [0,1] → 2Y (Y an infinite dimension Hilbert space) with convex closed bounded images, such that
the mapping F has no Lipschitz selection. Thus for L : Y ⊕ Y → Y , L(y1, y2) = y1 − y2, we have f (x) = 0 ∈ F (x) − F (x),
but the Lipschitz function f (x) = 0 cannot be represented in the form 0 = f1(x) − f2(x), where f i(x) ∈ F (x) is a Lipschitz
selection.
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