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1. Introduction

The functor P of probability measures which acts on the category Comp of compact metrizable spaces has been inves-
tigated by many authors (see e.g. the survey [4]). Geometric properties of spaces of the form P (X) were established, e.g.
in [3]. In particular, it was proved in [3] that the map P ( f ) : P (X) → P (Y ) is a trivial Q -bundle (i.e. a trivial bundle whose
fiber is the Hilbert cube Q ) for an open map f : X → Y of finite-dimensional compact metric spaces with infinite fibers.
Dranishnikov [2] constructed an example which shows that the condition of finite-dimensionality cannot be removed.

The space of idempotent measures was systematically studied in [16] (see also [15]), where it was proved in particular,
that the space I(X) of idempotent measures on a topological space X is compact Hausdorff if such is also X . The aim of
this paper, which can be considered as a continuation of [16], is to establish certain geometric properties of the functor I .

In particular, we shall prove that I(X) is homeomorphic to the Hilbert cube for every infinite compact metric space X .
The construction of idempotent measures is functorial in the category of compact Hausdorff spaces and we also consider the
geometry of the maps I( f ), for some maps f . In particular, we show that, much like in the case of probability measures,
there exists an open map f : X → Y of compact metric spaces such that f has infinite fibers and the map I( f ) is not
a trivial Q -bundle.

The paper is organized as follows. In Section 3 we provide the necessary information concerning the spaces of idempo-
tent measures. Section 4 is devoted to the (pseudo)metrization of the spaces I(X), for a metric space X . The main results
on the topology of the spaces I(X) for compact metric spaces X are given in Section 5. We also consider the geometry of
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the maps I( f ), for some maps f of compact metric spaces and this allows us to describe the topology of the spaces I(X)

for some nonmetrizable compact Hausdorff spaces X (cf. Section 6).

2. Preliminaries

The space Q = ∏∞
i=1[0,1]i is called the Hilbert cube. Recall that an absolute retract (AR) is a metrizable space which is

a retract of every space in which it lies as a closed subset. The following characterization theorem was proved in [12].

Theorem 2.1 (Toruńczyk’s characterization theorem). A compact metric space X is homeomorphic to the Hilbert cube if the following
two conditions are satisfied:

(1) X is an absolute retract;
(2) X satisfies the disjoint approximation property (DAP), i.e. every two maps of a metric space into X can be approximated by maps

with disjoint images.

The following notion was introduced in [5]. A c-structure on a topological space X is an assignment to every nonempty
finite subset A of X a contractible subspace F (A) of X such that F (A) ⊂ F (A′) whenever A ⊂ A′ . A pair (X, F ), where F is
a c-structure on X is called a c-space. A subset E of X is called an F -set if F (A) ⊂ E for any finite A ⊂ E . A metric space
(X,d) is said to be a metric l.c.-space if all the open balls are F -sets and all open r-neighborhoods of F -sets are also F -sets.
In fact, it was proved in [6] that every compact metric l.c.-space is an AR.

A map f : X → Y is a trivial Q -bundle if f is homeomorphic to the projection map p1 : Y × Q → Y . The following
definition is due to Shchepin [10].

Definition 2.2. A map f : X → Y is said to be soft provided that for every commutative diagram

A
ϕ

X

f

Z
ψ

Y

(1)

such that Z is a paracompact space and A is a closed subset of Z there exists a map Φ : Z → X such that f Φ = ψ and
Φ|A = ϕ .

A map f : X → Y of compact metric spaces is said to satisfy the fiberwise disjoint approximation property if, for every
ε > 0, there exist maps g1, g2 : X → X such that

(1) f g1 = f g2 = f ;
(2) d(1X , gi) < ε, i = 1,2; and
(3) g1(X) ∩ g2(X) = ∅.

The following result was proved in [13].

Theorem 2.3 (Toruńczyk–West characterization theorem for Q -manifold bundles). A map f : X → Y of compact metric ANR-spaces
is a trivial Q -bundle if f is soft and f satisfies the fiberwise disjoint approximation property.

The following is a generalization of the Michael selection theorem – see [6] for the proof. Recall that a multivalued map
F : X → Y of topological spaces is called lower semicontinuous if for any open subset U of Y , the set {x ∈ X | F (x) ∩ U 
= ∅} is
open in X . A selection of a multivalued map F : X → Y is a (single-valued) map f : X → Y such that f (x) ∈ F (x), for every
x ∈ X (see e.g. [8]).

Theorem 2.4. Let (X,d, F ) be a complete metric l.c.-space. Then any lower semicontinuous multivalued map T : Y → X of a para-
compact space Y whose values are nonempty closed F -sets has a continuous selection.

3. Spaces of idempotent measures

In the sequel, all maps will be assumed to be continuous. Let X be a compact Hausdorff space. We shall denote the
Banach space of continuous functions on X endowed with the sup-norm by C(X). For any c ∈ R we shall denote the
constant function on X taking the value c by c X . We shall denote the weight of a topological space X by w(X).

Let Rmax = R ∪ {−∞} be the metric space endowed with the metric � defined by �(x, y) = |ex − e y|. Let also R
n
max =

(Rmax)
n . Following the notation of idempotent mathematics (see e.g., [7]) we shall denote by � : R × C(X) → C(X) the
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map acting by (λ,ϕ) → λX + ϕ , and by ⊕ : C(X) × C(X) → C(X) the map acting by (ϕ,ψ) → max{ϕ,ψ}. We also use the
notations ⊕ and � in R as alternatives for max and + respectively. The convention −∞ � x = −∞ allows us to extend �
over Rmax.

Definition 3.1. A functional μ : C(X) → R is called an idempotent measure (a Maslov measure) if

(1) μ(c X ) = c;
(2) μ(c � ϕ) = c � μ(ϕ); and
(3) μ(ϕ ⊕ ψ) = μ(ϕ) ⊕ μ(ψ),

for every ϕ,ψ ∈ C(X).

The number μ(ϕ) is the Maslov integral of ϕ ∈ C(X) with respect to μ. It is pointed out in [16] (and is easy to see)
that every idempotent measure μ is a nonexpanding functional in the sense that |μ(ϕ) − μ(ψ)| � ‖ϕ − ψ‖, for every
ϕ,ψ ∈ C(X).

Let I(X) denote the set of all idempotent probability measures on X . We endow I(X) with the weak∗ topology. A basis
of this topology is formed by the sets

〈μ;ϕ1, . . . ,ϕn;ε〉 = {
ν ∈ I(X)

∣∣ ∣∣μ(ϕi) − ν(ϕi)
∣∣ < ε, i = 1, . . . ,n

}
,

where μ ∈ I(X), ϕi ∈ C(X), i = 1, . . . ,n, and ε > 0.
The following is an example of an idempotent probability measure. Let x1, . . . , xn ∈ X and λ1, . . . , λn ∈ Rmax be numbers

such that max{λ1, . . . , λn} = 0. Define μ : C(X) → R as follows: μ(ϕ) = max{ϕ(xi) + λi | i = 1, . . . ,n}. As usual, for every
x ∈ X , we denote by δx (or δ(x)) the functional on C(X) defined as follows: δx(ϕ) = ϕ(x), ϕ ∈ C(X) (the Dirac probability
measure concentrated at x). Then one can write μ = ⊕n

i=1(λi � δxi ). It was proved in [16] that I(X) is a compact Hausdorff
space if such is also X .

Given a map f : X → Y of compact Hausdorff spaces, the map I( f ) : I(X) → I(Y ) is defined by the formula I( f )(μ)(ϕ) =
μ(ϕ f ), for every μ ∈ I(X) and ϕ ∈ C(Y ). That I( f ) is continuous and that I is a covariant functor acting in the category
Comp was proved in [16]. Note that, if μ = ⊕n

i=1(λi � δxi ) ∈ I(X), then I( f )(μ) = ⊕n
i=1(λi � δ f (xi)) ∈ I(Y ).

It follows from the general theory of covariant functors in the category Comp developed by Shchepin [10] that the
notion of support can be defined for the idempotent measures. It was shown in [16] that for every μ ∈ I(X), where X is
a compact Hausdorff space, the support of μ is the minimal closed set supp(μ) ⊂ X satisfying the property: if ϕ ∈ C(X) and
ϕ|supp(μ) ≡ 0, then μ(ϕ) = 0. A general fact concerning supports is that they are preserved by maps (see [10]). In the case
of idempotent measures this means the following: supp(I( f )(μ)) ⊂ f (supp(μ)), for any map f : X → Y and μ ∈ I(X).

Note also that I preserves the class of embeddings (i.e. I( f ) is an embedding, for every embedding f ); see [16].

3.1. Milyutin maps

The following result was proved in [16].

Theorem 3.2. Let X be a compact metrizable space. Then there exists a zero-dimensional compact metrizable space X and a map
f : X → Y for which there exists a map s : Y → I(X) such that supp(s(y)) ⊂ f −1(y), for every y ∈ Y .

A map f satisfying the conditions stated above is called a Milyutin map of idempotent measures. Note that it follows
from the definition of the support that, in the notations of Theorem 3.2, we have I( f )(s(y)) = δy , for every y ∈ Y .

3.2. Map ζX

Given ϕ ∈ C(X), define ϕ̄ : I(X) → R as follows: ϕ̄(μ) = μ(ϕ), μ ∈ I(X). It can be easily shown (see [16]) that
ϕ̄ ∈ C(I(X)). Given M ∈ I2(X), define the map ζX (M) : C(X) → R as follows: ζX (M)(ϕ) = M(ϕ̄). It was proved in [16]
that ζX (M) ∈ I(X) and the obtained map ζX : I2(X) → I(X) are continuous. Note also (see [16]) that ζ = (ζX ) is a natural
transformation of the functor I2 to the functor I , i.e. the diagram

I2(X)
I2( f )

ζX

I2(Y )

ζY

I(X)
I( f )

I(Y )

is commutative, for every f : X → Y .
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4. Metrization

Let (X,d) be a compact metric space. By LIPn = LIPn(X,d) we denote the set of Lipschitz functions with the Lipschitz
constant � n from C(X). Fix n ∈ N. For every μ,ν ∈ I(X), let

d̂n(μ,ν) = sup
{∣∣μ(ϕ) − ν(ϕ)

∣∣ ∣∣ ϕ ∈ LIPn
}
.

Theorem 4.1. The function d̂n is a continuous pseudometric on I(X).

Proof. We first remark that d̂n is well defined. Indeed, supϕ − infϕ � n diam X , for every ϕ ∈ LIPn , and, because of condi-
tion (1) from Definition 3.1, we obtain

infϕ � μ(ϕ) � supϕ, infϕ � ν(ϕ) � supϕ,

whence |μ(ϕ) − ν(ϕ)| � n diam X .
Obviously, d̂n(μ,μ) = 0 and d̂n(μ,ν) = d̂n(ν,μ), for every μ,ν ∈ I(X).
We are going to prove that d̂n satisfies the triangle inequality. For every ϕ ∈ LIPn and μ,ν, τ ∈ I(X), we have

d̂n(μ,ν) + d̂n(ν, τ ) �
∣∣μ(ϕ) − ν(ϕ)

∣∣ + ∣∣ν(ϕ) − τ (ϕ)
∣∣ �

∣∣μ(ϕ) − τ (ϕ)
∣∣,

whence, passing to sup in the right-hand side, we obtain d̂n(μ,ν) + d̂n(ν, τ ) � d̂n(μ, τ ).
Now, we prove that d̂n is continuous. Suppose to the contrary. Then one can find a sequence (μi)

∞
i=1 in I(X) such that

limi→∞ μi = μ ∈ I(X) and d̂n(μi,μ) � c′ , for some c′ > 0. Then there exist ϕi ∈ LIPn , i ∈ N, such that |μi(ϕi) − μ(ϕi)| � c,
for some c > 0. Since the functionals in I(X) are weakly additive, without loss of generality, one may assume that ϕi(x0) = 0,
for some base point x0 ∈ X , i ∈ N.

By the Arzelà–Ascoli theorem, there exists a limit point ϕ ∈ LIPn of the sequence (ϕi)
∞
i=1. Without loss of generality, we

may assume that the sequence (ϕi)
∞
i=1 converges to ϕ and ‖ϕ − ϕi‖ � (c/3), for all i ∈ N. Then, for all i ∈ N,

c �
∣∣μi(ϕi) − μi(ϕ)

∣∣ + ∣∣μi(ϕ) − μ(ϕ)
∣∣ + ∣∣μ(ϕ) − μ(ϕi)

∣∣
� c

3
+ ∣∣μi(ϕ) − μ(ϕ)

∣∣ + c

3
,

whence |μi(ϕ) − μ(ϕ)| � (c/3), which contradicts the fact that (μi)
∞
i=1 converges to μ. �

Remark 4.2. Simple examples demonstrate that d̂n cannot be a metric whenever X consists of more than one point.

Proposition 4.3. The family of pseudometrics d̂n, n ∈ N, separates the points in I(X).

Proof. Let μ,ν ∈ I(X), μ 
= ν . There exists ϕ ∈ C(X) such that |μ(ϕ) − ν(ϕ)| > c, for some c > 0. There exists ψ ∈ LIPn , for
some n ∈ N, such that ‖ϕ − ψ‖ � (c/3). Then, similarly to the proof of Theorem 4.1, we can see that |μ(ψ) − ν(ψ)| � (c/3)

and therefore d̂n(μ,ν) � (c/3). �
We let d̃n = (1/n)d̂n � diam X and define a function d̃ : I(X) × I(X) → R as follows:

d̃(μ,ν) =
∞∑

i=1

d̃i(μ,ν)

2i
.

It follows from what was proved above that d̃ is an admissible metric on the space I(X).

Proposition 4.4. The map δ = δX , x → δx : (X,d) → (I(X), d̃n), is an isometric embedding for every n ∈ N.

Proof. Let x, y ∈ X and ϕ ∈ LIPn . Then |δx(ϕ) − δy(ϕ)| � nd(x, y), therefore d̂n(δx, δy) � nd(x, y). Thus d̃n(δx, δy) � d(x, y).
On the other hand, define ϕx ∈ LIPn by the formula ϕx(z) = nd(x, z), z ∈ X . Then |δx(ϕx) − δy(ϕx)| = nd(x, y) and we are

done. �
Corollary 4.5. The map δ = δX , x → δx : (X,d) → (I(X), d̃), is an isometric embedding.

Proposition 4.6. Let f : (X,d) → (Y ,�) be a nonexpanding map of compact metric spaces. Then the map I( f ) : (I(X), d̂n) →
(I(Y ), �̂n) is also nonexpanding, for every n ∈ N.
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Proof. Given ϕ ∈ LIPn(Y ), note that ϕ f ∈ LIPn(X) and, for any μ,ν ∈ I(X), we have∣∣I( f )(μ)(ϕ) − I( f )(ν)(ϕ)
∣∣ = ∣∣μ(ϕ f ) − ν(ϕ f )

∣∣ � d̂n(μ,ν).

Passing to the limit in the left-hand side of the above formula, we are done. �
Corollary 4.7. Let f : (X,d) → (Y ,�) be a nonexpanding map of compact metric spaces. The map I( f ) : (I(X), d̃) → (I(Y ), �̃) is
nonexpanding.

Note that the above constructions d → d̃ and d → d̃n can be applied not only to metrics but also to continuous pseudo-

metrics. Proceeding in this way we obtain the iterations (I(X), d̃n), (I2(X),
˜̃dnm = (d̃n )̃m), . . . .

Proposition 4.8. For a metric space (X,d), the map ζX : (I2(X),
˜̃dnn) → (I(X), d̃n) is nonexpanding.

Proof. We first prove that, for any ϕ ∈ LIPn(X,d), we have ϕ̄ ∈ LIPn(I(X), d̃n). Indeed, given μ,ν ∈ I(X), we see that

nd̃n(μ,ν) = d̂n(μ,ν) �
∣∣μ(ϕ) − ν(ϕ)

∣∣ = ∣∣ϕ̄(μ) − ϕ̄(ν)
∣∣

and we are done.
Suppose now that M, N ∈ I2(X), μ = ζX (M), ν = ζX (N). Given ϕ ∈ LIPn(X,d), we obtain

(1/n)
∣∣μ(ϕ) − ν(ϕ)

∣∣ = (1/n)
∣∣M(ϕ̄) − N(ϕ̄)

∣∣ � (1/n)
ˆ̃dnn(M, N) = ˜̃dnn(M, N).

Passing to the limit in the left-hand side, we are done. �
Remark 4.9. Using the results on existence of the pseudometrics d̃n , one can define the spaces of idempotent probability
measures with compact support for metric and, more generally, uniform spaces. Indeed, let (X,d) be a metric space. By
exp X we denote the family of nonempty compact subsets of X . We define the set I(X) to be the direct limit of the direct
system {I(A), I(ιAB);exp X} (here, for A, B ∈ exp X with A ⊂ B , we denote by ιAB : A → B the inclusion map).

For every A ∈ exp X , we identify I(A) with the corresponding subset of I(X) along the map I(ιA), where ιA : A → X is
the limit inclusion map. For any μ ∈ I(X), there exists a unique minimal A ∈ exp X such that μ ∈ I(A). Then we say that A
is the support of μ and write supp(μ) = A.

Now, define a family of pseudometrics d̂n , n ∈ N, on I(X) as follows. Given μ,ν ∈ I(X), we let

d̂n(μ,ν) = (
d
∣∣(supp(μ) ∪ supp(ν)

) × (
supp(μ) ∪ supp(ν)

))̂
n(μ,ν).

One can prove that, for any uniform space (X, U ), if the uniformity U is generated by a family {dα | α ∈ A} of pseudometrics,
then the family {d̃α

n | α ∈ A, n ∈ N} of pseudometrics on I(X) generates a uniformity on I(X).

5. Space of idempotent measures for metric compacta

Let X be a compact Hausdorff space. It was proved in [16] that the set I(X) is homeomorphic to the (n − 1)-dimensional
simplex for any finite X with |X | = n.

For every μ,ν ∈ I(X) and every α,β ∈ Rmax with α ⊕ β = 0, we define (α � μ) ⊕ (β � ν) : C(X) → R as follows:(
(α � μ) ⊕ (β � ν)

)
(ϕ) = (

α � μ(ϕ)
) ⊕ (

β � ν(ϕ)
)
, for every ϕ ∈ C(X).

Clearly, (α � μ) ⊕ (β � ν) ∈ I(X). Note also that, given a map f : X → Y , one has

I( f )
(
(α � μ) ⊕ (β � ν)

) = (
α � I( f )(μ)

) ⊕ (
β � I( f )(ν)

)
.

A set A ⊂ I(X) is called max-plus convex if, for every μ,ν ∈ A and every α,β ∈ Rmax with α ⊕ β = 0, we have (α �μ) ⊕
(β � ν) ∈ A.

Lemma 5.1. Let μ0 ∈ I(X). The map h : I(X) × [−∞,0] → I(X), h(μ,λ) = μ ⊕ (λ � μ0), is continuous.

Proof. Let

(μ,λ) ∈ I(X) × [−∞,0], ν = h(μ,λ), and 〈ν;ϕ;ε〉
be a subbase neighborhood of ν .

Case (1). h(μ,λ) = μ(ϕ). Then μ(ϕ) � λ + μ0(ϕ) and it is evident that, for any μ′ ∈ 〈μ;ϕ;ε〉 and λ′ ∈ [−∞, λ + ε) ∩
[−∞,0], we have h(μ′, λ′) ∈ 〈ν;ϕ;ε〉.

Case (2). h(μ,λ) = λ + μ0(ϕ). Then necessarily λ > −∞. For every μ′ ∈ 〈μ;ϕ;ε〉 and λ′ ∈ (λ + ε,λ + ε) ∩ [−∞,0], we
have h(μ′, λ′) ∈ 〈ν;ϕ;ε〉. �
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Lemma 5.2. Let X be any compact metrizable space. Then every max-plus convex subset in I(X) is contractible.

Proof. First note that, since I(X) is a compact semilattice with respect to the operation ⊕, there exists max A for every
nonempty subset A of I(X) (see [16]). In other words, (max A)(ϕ) = max{μ(ϕ) | μ ∈ A}, for every ϕ ∈ C(X). Note that
max A is well defined, because {μ(ϕ) | ϕ ∈ A} is compact, for every ϕ ∈ C(X).

Now let A ⊂ I(X) be a nonempty max-plus convex subset in I(X). In order to show that max A ∈ A, assume to the
contrary and find ϕ1, . . . , ϕn ∈ C(X) and ε > 0 such that

〈max A;ϕ1, . . . ,ϕn;ε〉 ∩ A = ∅.

One can take μ1, . . . ,μn ∈ A so that (max A)(ϕi) = μi(ϕi).
Because of max-plus convexity of A, we have

μ1 ⊕ · · · ⊕ μn = (0 � μ1) ⊕ · · · ⊕ (0 � μn) ∈ A.

For every i = 1, . . . ,n,

(μ1 ⊕ · · · ⊕ μn)(ϕi) = μi(ϕi) = (max A)(ϕi).

It now follows that

μ1 ⊕ · · · ⊕ μn ∈ 〈max A;ϕ1, . . . ,ϕn;ε〉 ∩ A,

which is a contradiction.
Define the map H : A × Rmax → A as follows: H(μ,λ) = μ ⊕ (λ � max A). Then H(μ,−∞) = μ and H(μ,0) = max A.

This shows that the set A is indeed contractible. �
Theorem 5.3. The space I(X) is homeomorphic to the Hilbert cube for any infinite compact metrizable space X.

Proof. We first show that I(X) is an AR-space. Fix a metric d on X that generates its topology. Define a c-structure on the
space I(X) as follows. To every nonempty finite subset A = {μ1, . . . ,μn} of I(X) assign a subspace

F (A) =
{

n⊕
i=1

(αi � μi)

∣∣∣ α1, . . . ,αn ∈ Rmax,

n⊕
i=1

αi = 0

}
. (2)

It is easy to verify that the set F (A) is max-plus convex and therefore contractible.
We are going to show that the c-structure F gives an l.c.-structure. We shall prove that every ball with respect to the

metric d̃ in I(X) is an F -set.
Let μ,ν, τ ∈ I(X), λ ∈ [−∞,0], and ϕ ∈ LIPn . We are going to prove that∣∣μ(ϕ) − (

(λ � ν) ⊕ τ
)
(ϕ)

∣∣ � max
{∣∣μ(ϕ) − ν(ϕ)

∣∣, ∣∣μ(ϕ) − τ (ϕ)
∣∣}.

Indeed, if ((λ � ν) ⊕ τ )(ϕ) = τ (ϕ), there is nothing to prove. Otherwise, (λ � ν)(ϕ) > τ(ϕ) and, assuming that∣∣μ(ϕ) − (
(λ � ν) ⊕ τ

)
(ϕ)

∣∣ >
∣∣μ(ϕ) − τ (ϕ)

∣∣,
we see that μ(ϕ) < (λ � ν)(ϕ) and therefore∣∣μ(ϕ) − (

(λ � ν) ⊕ τ
)
(ϕ)

∣∣ �
∣∣μ(ϕ) − ν(ϕ)

∣∣.
Thus,

d̂n
(
μ, (λ � ν) ⊕ τ

)
� max

{
d̂n(μ,ν), d̂n(μ,τ )

}
and therefore, for any ε > 0, if d̃(μ,ν) < ε and d̃(μ, τ ) < ε, then d̃(μ, (λ � ν) ⊕ τ ) < ε.

By using this fact inductively, we can see that every finite set A in the ε-ball at μ, the set F (A) is also contained in the
ε-ball at μ, which means that the ε-ball at μ is an F -set.

We now show that the space I(X) satisfies DAP. Let f : Y → X be a Milyutin map of a zero-dimensional compact metriz-
able space Y . There exists a map s : X → I(Y ) such that I( f )s(x) = δx , for every x ∈ X . Let r : Y → Y ′ be a retraction of Y
onto its finite subset Y ′ . Since Y is zero-dimensional, we may choose r as close to idY as we wish. Define g1 : I(X) → I(X)

as follows:

g1(μ) = I( f r)ζY I(s)(μ) = ζX I2( f r)I(s)(μ).

Then supp(g1(μ)) ⊂ f (Y ′), for every μ ∈ I(X). Note that, because of general results on preserving continuity by covariant
functors in the category Comp (see [10]), the map g1 can be made as close to idI(X) as we wish.

In [16], for every nonempty closed subset A of X , it was proved that the map j X (A) : C(X) → R defined by
j X (A)(ϕ) = sup{ϕ(x) | x ∈ A} belongs to I(X). In particular, j X (X) ∈ I(X) acts as follows: j X (X)(ϕ) = maxϕ , ϕ ∈ C(X).
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Define g2 : I(X) → I(X) by the formula g2(μ) = μ ⊕ (λ � j X (X)), where λ ∈ (−∞,0] is fixed. If λ is small enough, the
map g2 is close to idI(X) .

Note that supp(g2(μ)) = X , for every μ ∈ I(X), and therefore g1(I(X)) ∩ g2(I(X)) = ∅. By Toruńczyk’s theorem, I(X) is
homeomorphic to Q . �
Remark 5.4. Note that a version of the Michael selection theorem for finite-dimensional max-plus convex sets was proved
in [14].

6. Maps of spaces of idempotent measures

Theorem 6.1. Let p1 : X × Y → X denote the projection onto the first factor, where X, Y are compact metric spaces. Then the map
I(p1) : I(X × Y ) → I(X) is soft.

Proof. It was proved in [16] that the map I(p1) is open. Given a commutative diagram

A
ϕ

I(X × Y )

I(p1)

Z
ψ

I(X)

consider the multivalued map Ψ : Z → I(X × Y ) defined as follows:

Ψ (z) =
{ {ϕ(z)}, if z ∈ A,

(I(p1))
−1(ψ(z)), if z /∈ A.

Since A is a closed subset of Z and the map I(p1) is open, the map Ψ is lower semicontinuous. Also, it is easy to verify
that the images of Ψ are F -sets in the metric l.c.-space (I(X × Y ), d̃, F ), for any fixed admissible metric d on X × Y , where
F is the c-structure defined by formula (2) in the proof of Theorem 5.3, for any finite subset A = {μ1, . . . ,μn} ∈ I(X × Y ).
By Theorem 2.4, the map Ψ admits a selection Φ : Z → I(X × Y ). Clearly, Φ|A = ϕ and I(p1)Φ = ψ . This completes the
proof. �
Example 6.2. The following example demonstrates that, like in the case of probability measures, there exists an open map
f : X → Y of metrizable compacta with infinite fibers such that the map I( f ) : I(X) → I(Y ) is not a trivial Q -bundle.

We exploit the construction from [2]. Let Sn denote the n-dimensional sphere and RPn the n-dimensional real projective
space. Let ηn : Sn → RPn denote the canonical map. The required map is

f =
∞∏

i=1

η2i−1 : X =
∞∏

i=1

S2i−1 → Y =
∞∏

i=1

RP 2i−1.

It was proved in [2] that the map

fk =
k∏

i=1

η2i−1 :
k∏

i=1

S2i−1 →
k∏

i=1

RP 2i−1

has the following property: the map

P0( fk) : P0

(
k∏

i=1

S2i−1

)
→

k∏
i=1

RP 2i−1,

where

P0

(
k∏

i=1

S2i−1

)
= (

P ( fk)
)−1

({
δx

∣∣∣ x ∈
k∏

i=1

RP 2i−1

})
⊂ P

(
k∏

i=1

S2i−1

)

and P0( fk) sends every μ ∈ P0(
∏k

i=1 S2i−1) to the unique x ∈ ∏k
i=1 RP 2i−1 for which supp(μ) ∈ f −1

k (x), has no two disjoint
selections.

Proceeding similarly as in [2] we reduce the problem of existence of two disjoint sections of the map I( f ) to that of
existence of two disjoint selections of the map I0( fk), for some k, where the map I0( fk) is defined similarly as P0( fk)

with P replaced by I .
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We only have to show that the maps I0( fk) and P0( fk) are homeomorphic in the sense that there exists a homeomor-
phism h : I0( fk) → P0( fk) making the diagram

I0(
∏k

i=1 S2i−1)
h

I0( fk)

P0(
∏k

i=1 S2i−1)

P0( fk)∏k
i=1 RP 2i−1

commutative. Let μ ∈ I0(
∏k

i=1 S2i−1). Since the fibers of the map fk are finite, one has μ = ⊕n
i=1(λi � δxi ), where

max{λ1, . . . , λn} = 0 and all x1, . . . , xn lie in the same fiber of the map fk . Observe that(
eλ1 , . . . , eλn

) ∈ Γ n−1 = {
(z1, . . . , zn) ∈ [0,1]n

∣∣ z1 ⊕ · · · ⊕ zn = 1
}
.

Then we can define

h(μ) =
n∑

i=1

eλi∑n
j=1 eλ j

δxi ∈ P0

(
k∏

i=1

S2i−1

)

and, clearly, P0( fk)(h(μ)) = I0( fk)(μ).
The following reasoning demonstrates that h is bijective (we thank the referee for this argument): Let

�n−1 =
{

(t1, . . . , tn) ∈ [0,1]n
∣∣∣ n∑

i=1

ti = 1

}

be the standard (n − 1)-simplex. For each (t1, . . . , tn) ∈ �n−1, there exists a unique (λ1, . . . , λn) ∈ R
n
max such that

(
eλ1 , . . . , eλn

) =
(

t1

t1 ⊕ · · · ⊕ tn
, . . . ,

tn

t1 ⊕ · · · ⊕ tn

)
∈ Γ n−1,

whence λ1 ⊕ · · · ⊕ λn = 0. For each i = 1, . . . ,n, we have

eλi∑n
j=1 eλ j

= ti∑n
i=1 t j

= ti .

A routine verification of continuity shows that h is indeed the desired homeomorphism.

7. Nonmetrizable case

The notion of normal functor in the category Comp of compact Hausdorff spaces was introduced in [10].

Theorem 7.1. Let τ > ω1 . Then the set I([0,1]τ ) is not an AR.

Proof. Shchepin [10] proved that, for any normal functor F which is not a power functor, any cardinal number τ > ω1, and
any compact metric space K with |K | � 2, the functor-power F (K τ ) is not an AR. It was proved in [16], that I is a normal
functor, whence the result follows. �
Theorem 7.2. Let X be an openly generated character-homogeneous compact Hausdorff space of weight ω1 . Then the space I(X) is
homeomorphic to Iω1 .

Proof. We can represent X as lim←− S , where S = {Xα, pαβ ;ω1} is an inverse system such that pαβ : Xα → Xβ are open maps
for all α,β < ω1, α � β , and Xα , α < ω1, are infinite compact metric spaces. Since X is character-homogeneous, we may
additionally assume that the maps pαβ do not contain singleton fibers.

Then we have I(X) = lim←− I(S) = {I(Xα), I(pαβ);ω1} (see [16]). By Theorem 6.1, the maps I(pαβ) are soft. Applying
arguments from [9] one can find a cofinal subset A of ω1 such that, for every α,β ∈ A, α > β , the map I(pαβ) satisfies the
FDAP. Therefore, by the Toruńczyk–West theorem, the map I(pαβ) is homeomorphic to the projection π1 : Q × Q → Q onto
the first factor. In turn, I(X) is homeomorphic to Q A � Q ω1 � Iω1 . �
8. Epilogue

One can also consider the spaces I(K τ ), for arbitrary τ and nondegenerate compact metrizable spaces K . The interesting
results on autohomeomorphisms of the spaces P (K τ ), for τ > ω1, were obtained by Smurov [11]. One can conjecture that
these results have their analogues also in the case of spaces of idempotent measures.

In connection with the mentioned in the introduction result by Fedorchuk, the following question arises:
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Question 8.1. Is the map I( f ) : I(X) → I(Y ) a trivial Q -bundle, for any open map of finite-dimensional compact metric
spaces with infinite fibers?

As it was remarked above, one can also consider the spaces I(X) for noncompact metric spaces X . It looks plausible that
the results on topology of spaces of probability measures proved in [1] should have their analogues also for the idempotent
measures.
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[13] H. Toruńczyk, J. West, Fibrations and bundles with Hilbert cube manifold fibers, Mem. Amer. Math. Soc. 80 (1989), no. 406.
[14] M. Zarichnyi, Michael selection theorem for max-plus convex sets, Topology Proc. 31 (2007) 1–5.
[15] M. Zarichnyi, Spaces of measures related to dequantization, J. Phys. Stud. 11 (1) (2007) 34–40.
[16] M. Zarichnyi, Idempotent probability measures, preprint.


	Spaces of idempotent measures of compact metric spaces
	Introduction
	Preliminaries
	Spaces of idempotent measures
	Milyutin maps
	Map zetaX

	Metrization
	Space of idempotent measures for metric compacta
	Maps of spaces of idempotent measures
	Nonmetrizable case
	Epilogue
	Acknowledgements
	References


