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Abstract

We construct n-dimensional counterparts of manifolds modeled on the space �2 equipped by the bounded weak topology
(μ∞

n -manifolds). For μ∞
n -manifolds we prove the characterization, triangulation and classification theorems. In addition, a univer-

sal map of μ∞
n onto Q∞ (the countable direct limit of Hilbert cubes and Z-embeddings) is constructed and characterized.
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1. Introduction

Theory of manifolds modeled on universal n-dimensional Menger compacta μn (Menger manifolds; μn-mani-
folds), whose background was created by Bestvina [4], has been widely developed in the papers of Dranishnikov [9],
Chigogidze [6,7], Sakai [16], Ageev and Repovš [1] and others. As the results demonstrate, the Menger manifolds are
closer to the Q-manifolds (i.e. the manifolds modeled on the Hilbert cube Q; see [5]) than to the finite-dimensional
Euclidean manifolds.

In this paper we consider manifolds modeled on the countable direct limits μ∞
n of Menger compacta. These man-

ifolds can be considered as n-dimensional counterparts of the manifolds modeled on the countable direct limits Q∞
of sequences of Hilbert cubes (a series of papers [14,15,19] is devoted to the latter). Note that the model space Q∞
naturally appears in functional analysis as a separable Hilbert space �2 endowed with the bounded weak (bw) topol-
ogy: a set in (�2,bw) is closed if and only if its intersection with every closed ball is closed in the weak topology [11].
Therefore, the space μ∞

n can serve as an n-dimensional counterpart of the space (�2,bw).
The theory of μ∞

n -manifolds can be pursued slightly further than that of μn-manifolds. To the universal Dranish-
nikov map, which plays an important role in formulations (as well as proofs) of the stability theorem and triangulation
theorem, there corresponds, in the case of μ∞

n -manifolds, a map ϕn :μ∞
n → Q∞, which can be uniquely, up to home-
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omorphisms, characterized by means of its fundamental properties. Note that there is no characterization theorem for
the universal Dranishnikov map Fn :μn → Q (see [2] for the properties of Fn).

The paper is organized as follows. Section 3 is devoted to the characterization theorem. In Section 4 we con-
struct the universal map from μ∞

n onto Q∞ and in Section 5 we use the universal map to formulate and prove the
triangulation and stability theorem.

2. Preliminaries

2.1. n-invertible and n-soft maps

The notions of n-invertible and n-soft maps were introduced by Shchepin [17]. A map f :X → Y is said to be
n-invertible provided that for every map g :Z → Y , where Z is a paracompact space with dimZ � n there exists a
map h :Z → X such that f h = g.

A map f :X → Y is said to be (m,n)-soft provided that for every commutative diagram

A
ϕ

X

f

Z
ψ

Y

such that Z is a paracompact space with dimZ � n and A is a closed subset of Z with dimA � m there exists a map
Φ :Z → X such that f Φ = ψ and Φ|A = ϕ. The (n,n)-soft maps are called n-soft.

Note that the (−1, n)-soft maps are precisely n-invertible maps.
If in the definition of n-soft map we require that Z is a polyhedron and A its subpolyhedron, then f is said to be a

polyhedrally n-soft map.
We say that two maps f1, f2 :X → Y are n-homotopic (written f1 �n f2) if for any paracompact space Z with

dimZ � n and any map g :Z → X the maps f1g and f2g are homotopic (see e.g. [9]).

Lemma 2.1. Let f,g :A → X be n-homotopic maps of a metrizable compactum A into a topological space X. Then
there exists a metrizable compactum C ⊂ X such that C ⊃ f (A)∪ g(A) and the maps f,g :A → C are n-homotopic.

Proof. There exists an n-dimensional compactum B and an n-invertible map h :B → A (see [8, Theorem 1.2]).
Then the maps f h and gh are homotopic; denote by H :B × I → X the homotopy which connects them and let
C = H(B × I ).

If B ′ is a paracompact space with dimB ′ � n and a map h′ :B ′ → A is given, then there exists a map α :B ′ → B

such that hα = h′. Then H(α × idI ) is a homotopy of the maps f h′ and gh′. Thus, the maps f,g :A → C are
n-homotopic.

Lemma 2.2. Suppose that a map f :X → Y of metrizable compacta induces isomorphisms of the homotopy groups
of dimension � n − 1, Y ∈ LCn−1, (P,L) is a polyhedral pair, dimP � n − 1 and α :P → Y , β :L → X are maps
such that fβ = α|L. Then there exists a map β̂ :P → X such that β̂|L = β and f β̂ �n−1 α.

Proof. This is essentially Lemma 2.8.7 from [4]. Here we only use the notion of (n − 1)-homotopy instead of
μ-homotopy in [4].

2.2. μn-manifolds

Recall the construction of the standard universal n-dimensional Menger compactum μn (see e.g. [10]). Let Fi ,
i = 0,1,2, . . . , be the family of 3mi congruent cubes obtained by means of partition of the unit m-dimensional cube
Im, m � n, by (m − 1)-dimensional affine subspaces in R

m given by the equations xj = k/3i , j = 1,2, . . . ,m and
0 � k � 3i . For a collection K of cubes, denote by Sn(K) the union of all faces of dimension � n of the cubes in K.
Taking F0 = {Im} and F0 = ⋃

F0 and assuming that Fi and Fi are already defined for all i < k, set

Fk =
{
K ∈Fk−1 | K ∩

(⋃
Sn(Fk−1)

)
�= ∅

}
, Fk =

⋃
Fk.
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Finally, let μm
n = ⋂∞

i=0 Fi ⊂ Im.
For m � 2n + 1 and n fixed, all spaces μm

n are homeomorphic [4]. Let μn = μ2n+1
n .

A paracompact space X is said to be a μn-manifold if there exists a base of the topology of X consisting of sets
homeomorphic to open subsets of μn. We assume that the μn-manifolds under consideration are separable.

Recall that a closed embedding f :X → Y is said to be a Z-embedding if the image f (X) is a Z-set in Y ; the latter
means that the identity map 1Y can be approximated by the maps whose image misses f (X) (see e.g. [3]).

Theorem 2.3 (Z-embedding extension theorem [4]). Let (A,B) be a compact metrizable pair, dimA � n. For every
Z-embedding f :B → μn there exists an extension to a Z-embedding f̄ :A → μn.

2.3. By MC (respectively MC(n)) we will denote the class of metrizable compacta (respectively the class of
metrizable compacta of dimension � n). Given a class C of topological spaces, we denote by C∞ the class of spaces
which can be represented as countable direct limits of sequences of spaces X1 ↪→ X2 ↪→ ·· ·, where Xi ∈ C and Xi is
a closed subset of Xi+1, for every i.

By Q we will denote the Hilbert cube, Q = ∏∞
i=1[−1,1]i . Let Q∞ denote the direct limit of the sequence

Q → Q × {0} ↪→ Q × Q → Q × Q × {0} ↪→ Q × Q × Q → ·· · .
By R

∞ we denote the direct limit of the sequence

R → R × {0} ↪→ R × R → R × R × {0} ↪→ R × R × R → ·· · .
3. A characterization theorem

3.1. μ∞
n -manifolds

Denote by μ∞
n the direct limit of the sequence

μ(1)
n ↪→ μ(2)

n ↪→ μ(3)
n ↪→ ·· · , (3.1)

in which all spaces μ
(i)
n are topological copies of μn and all embeddings are Z-embeddings.

A paracompact space X is said to be a μ∞
n -manifold if there exists an open cover of the space X with each element

homeomorphic to an open subset in μ∞
n . We assume that all μ∞

n -manifolds under consideration are separable.
A space Y is said to be strongly (neighborhood) n-universal if for every compact metrizable pair (A,B), where

dimA � n, and every embedding f :B → Y there exists an embedding f̄ :A → Y (respectively an embedding
f̄ :U → Y of some neighborhood U of the set B in A) which extends f .

Theorem 3.1. A space X is homeomorphic to μ∞
n (respectively is a μ∞

n -manifold) if and only if X ∈ MC(n)∞ and
X is strongly n-universal (respectively strongly neighborhood n-universal).

Proof. To prove the “if” part, let X = lim−→ Xi , where Xi are compact metrizable spaces with dimXi � n, and assume
that X is strongly neighborhood n-universal. Write μ∞

n = lim−→ Yj , where Yj are homeomorphic to μn and every
embedding Yj ↪→ Yj+1 is a Z-embedding.

As in [14], we apply the “back and forth” argument. Set i1 = j1 = 1. There exists an embedding f1 :Xi1 → Yj1 .
By the strong n-universality property of X, there exists an embedding g1 :U1 → X of a closed neighborhood U1 of
f1(Xi1) in Yj1 such that g1|f1(Xi1) = f −1

1 .
Since U1 is compact, there exists i2 > i1 such that g1(U1) ⊂ Xi2 . Proceeding similarly, one obtains the commutative

diagram

Xi1

f1

Xi2

f2

Xi3

f3

. . .

U1

g1

U2

g2

U3 . . .

Yj Yj Yj . . .

1 2 3
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in which the maps fk :Xik → Uk , gk :Uk → Xik+1 are embeddings and Uk+1 is a closed neighborhood of fk(Xik )

in Yik . Then

X = lim−→ Xi
∼= lim−→ Xik

∼= lim−→
{
Xi1

f1
U1

g1 Xi2
f2

U2
g2 . . .

} ∼= lim−→ Uk

(hereafter ∼= means ‘is homeomorphic to’) and the latter set U = lim−→ Uk is an open subset of lim−→ Yjk
∼= μ∞

n . Therefore,
X is a μ∞

n -manifold. In case X is strongly n-universal, we can take Uk = Yjk
, hence X ∼= lim−→ Yjk

∼= μ∞
n .

As for the “only if” part, the μ∞
n -manifold case needs a proof. Let us prove that every μ∞

n -manifold is strongly
neighborhood n-universal.

Obviously, if a space is strongly neighborhood n-universal then such is also every one of its open subspaces. Also,
if a space is the discrete union of its open strongly neighborhood n-universal subspaces, then this space is strongly
neighborhood n-universal.

Now, we are going to prove that if a space M is the union of two of its open subspaces M1,M2 satisfying the strong
neighborhood n-universality property, then M satisfies this property as well.

Given a compact metrizable pair (A,B) with dimA � n and an embedding g :B → M , choose open sets U1, U2,
V1 and V2 in A so that clU1 ∩ clU2 = ∅, g−1(M \ M2) ⊂ V1 ⊂ clV1 ⊂ U1 and g−1(M \ M1) ⊂ V2 ⊂ clV2 ⊂ U2.
Using the strong neighborhood n-universality of M1 ∩M2 (see the remark above), we have a closed neighborhood W ′

0
of B \ (V1 ∪ V2) in A \ (V1 ∪ V2) and an embedding f :W ′

0 → M1 ∩ M2 which is an extension of g|(B \ (V1 ∪ V2)).
Since (g(B \ (U1 ∪ U2))) ∩ (g(B ∩ clV1) ∪ g(B ∩ clV2)) = ∅, there is a closed neighborhood W0 of B \ (U1 ∪ U2)

in A \ (U1 ∪ U2) such that W0 ⊂ W ′
0 and f (W0) misses g(B ∩ clV1) ∪ g(B ∩ clV2). Then, we obtain an embedding

g0 :B ∪ W0 → M defined by g0|B = g and g0|W0 = f |W0. Now, using the strong neighborhood n-universality of
Mi , i = 1,2, we have a closed neighborhood W ′

i of (B \ U3−i ) ∪ W0 in A and an embedding fi :W ′
i → Mi which is

an extension of g0|(B \ U3−i ) ∪ W0. Choose W1 and W2 so that Wi is a closed neighborhood of B ∩ clUi , Wi ⊂ W ′
i ,

i = 1,2, and f1(W1) ∩ f2(W2) = ∅. Then, W = W0 ∪ W1 ∪ W2 is a closed neighborhood of B in A and the map
f :W → M defined by f |(W0 ∪ Wi) = fi |(W0 ∪ Wi), i = 1,2, is an embedding.

Together with the strong n-universality property of μ∞
n and [13] this gives us the strong neighborhood

n-universality of every μ∞
n -manifold.

Finally, note that every μ∞
n -manifold X belongs to the class MC(n)∞. Indeed, let {Ui | i ∈ N} be a locally finite

open cover of X by sets homeomorphic to open subsets of μ∞
n . Then Ui = lim−→j

Kij , where Ki1 ⊂ Ki2 ⊂ · · · is

a sequence of compact subsets of X. Obviously, X = lim−→j
(
⋃j

i=1 Kij ) with dimKij � n, hence X ∈ MC(n)∞. �
Note that, in the proof of the “if” part, each Xik is a Z-set in Xik+1 . Indeed, Uk is a Z-set in Uk+1 because Yjk

is
a Z-set in Yjk+1 .

In the above proof, we have actually demonstrated the following:

Theorem 3.2 (Open embedding theorem). Every μ∞
n -manifold admits an open embedding into μ∞

n .

The following is a consequence of the characterization theorem.

Theorem 3.3. Every μ∞
n -manifold is homeomorphic to the countable direct limit of μn-manifolds and Z-embeddings.

Proof. Let X be a μ∞
n -manifold and X = lim−→ Xi , where Xi are compacta. It can be assumed that each Xi is a Z-set

in Xi+1 (see the remark after the proof of Theorem 3.1). There exists an embedding i1 :X1 → μn. By the strong
neighborhood n-universality property, there exists a closed neighborhood U1 of the set i1(X1) in μn such that the
embedding i−1

1 : i1(X1) → X1 ⊂ X can be extended to an embedding j1 :U1 → X. Without loss of generality, one
can assume that U1 is a μn-manifold. Indeed, in the standard construction of μn, one can cover the set i1(X1) in
μn by a finite subfamily A ⊂ Fk , for sufficiently large k, so that

⋃
A is a (2n + 1)-manifold with boundary and

U1 = (
⋃

A) ∩ μn. The technique of [4, Section 1.1.2] allows us to show that U1 is a μn-manifold. Thus, we have a
compact μn-manifold V1 = j1(U1) such that X1 ⊂ V1.

Suppose that compact μn-manifolds V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ X are chosen so that Xi ⊂ Vi and Vi is a Z-set in Vi+1,
for every i = 1,2, . . . , k − 1. There exists l � k + 1 such that Vk ⊂ Xl . There exists a Z-embedding il :Xl → μn.
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Similarly as above, it follows from the strong neighborhood n-universality property that there exists a closed neigh-
borhood Uk+1 of the set il(Xl) in μn such that Uk+1 is a μn-manifold and the embedding i−1

l : il(Xl) → Xl ⊂ X can
be extended to an embedding jl :Uk+1 → X. Put Vk+1 = jl(Uk+1). It follows from the properties of Z-sets in μn that
Vk is a Z-set in Vk+1. Obviously, X = lim−→ Vi . �
Theorem 3.4. Every X ∈ MC(n)∞ admits a Z-embedding into μ∞

n .

Proof. Let X = lim−→ Xi , where Xi are compacta with dimXi � n. Let i1 :X1 → μ
(1)
n be a Z-embedding (recall that,

as in (3.1), μ∞
n = lim−→ μ

(i)
n ). Suppose that, for every j < k, Z-embeddings ij :Xj → μ

(j)
n are defined so that the

following conditions hold:

(i) ij+1|Xj = ij for every j < k − 1;

(ii) ij+1(Xj ) ∩ μ
(j)
n = ij (Xj ) for every j < k − 1.

In order to construct a Z-embedding ik , note that, since μ
(k)
n is an AE(n)-space, there is an extension, ĩk , of the map

Xk−1
ik−1−→μ

(k−1)
n ↪→ μ

(k)
n over Xk . Applying the Z-set approximation theorem for μn-manifolds [4, Theorem 2.3.8],

one can approximate ĩk by a Z-embedding ik so that ik(Xk) ∩ μ
(k−1)
n = ik(Xk−1).

It is easy to see that the map lim−→ ik is a Z-embedding of X into μ∞
n . �

4. Universal maps

Recall that an embedding of a map f :X → Y into a map f ′ :X′ → Y ′ consists of a pair of embeddings g :X → X′,
h :Y → Y ′ such that f ′g = hf . If both g,h are homeomorphisms, we say that a homeomorphism of a map f onto a
map f ′ is given.

Dranishnikov constructed in [9] (n − 1, n)-soft polyhedrally n-soft maps Fn :μn → Q and Gn :μn → μn which,
in addition to other properties, satisfy also the following universality property: every map of metrizable compacta
h :X → Y , where dimX � n (respectively dimX � n, dimY � n) can be embedded into the map Fn (respectively
into Gn).

Lemma 4.1. For any map f :X → Q, where X is a metrizable compactum with dimX � n, there exists a map
f̃ : X̃ → Q, where X̃ is a metrizable compactum with dim X̃ � n, and an embedding i :X → X̃ such that f̃ ◦ i = f

and the following condition holds:

(∗) for every compact metrizable pair (Z,A), where dimZ � n, every metrizable compactum Y , an embedding
α :A → X and maps β :Z → Y , γ :Y → Q such that f ◦ α = γ ◦ β|A, there exists an embedding ᾱ :Z → X̃ for
which the diagram

A

α

Z
β

ᾱ

Y

γ

X

f

i X̃
f̃

Q

is commutative.

Proof. Denote by A the set of all possible sextuples S = (Z,A,Y,α,β, γ ), in which Z,Y are metrizable compacta
lying in the Hilbert cube Q, dimZ � n, A is a closed subset in Z, α :A → X is an embedding, and β :Z → Y ,
γ :Y → Q are maps such that f ◦ α = γ ◦ β|A.

For every S ∈ A, choose an n-invertible map hS :KS → Q, where KS is an n-dimensional metrizable com-
pactum [9]. Fix a map gS :Z → KS such that hS ◦ gS = γ ◦ β .
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In the space T = X � (
⊔{KS | S ∈ A}) consider the equivalence relation ∼ defined by the condition α(a) ∼ gS(a)

for every S = (Z,A,Y,α,β, γ ) ∈ A and every a ∈ A. Denote by H the quotient space of the space T , and by q :T →
H the quotient map.

It is easy to see that the map q is closed and thus H is a normal space. It follows from the Dowker theorem [10]
that dimH = n, therefore dimβH = n (see [10]; as usual, by βH we denote the Stone–Čech compact extension of a
space H ).

Denote by j :X → H and jS :KS → H , S ∈ A, the natural embeddings. There exists a map h :H → Q such that
h ◦ j = f and h ◦ jS = hS for every S ∈ A. Denote by ĥ :βH → Q the unique extension of the map h.

By the Mardešić factorization theorem [12], there exists an n-dimensional metrizable compactum X1 and maps
h1 :βH → X1, F :X1 → Q such that ĥ = F ◦ h1. Let s :X1 × Q → Q be an embedding and

f ′
n = fn|f −1

n

(
s(X1 × Q)

)
:f −1

n

(
s(X1 × Q)

) → s(X1 × Q)

(here Fn :μn → Q is the universal Dranishnikov map [9]). Denote by R the partition of the space F−1
n (s(X1 × Q)),

whose only nontrivial elements are the sets of the form F−1
n (s(x,0)), x ∈ X. Let X̃ = F−1

n (s(X1 ×Q))/R and denote
by q1 :F−1

n (s(X1 × Q)) → X̃ the quotient map. Let g : X̃ → X1 × Q be a map such that s ◦ g ◦ q1 = f ′
n.

Let f̃ = F ◦ pr1 ◦g and define an embedding i1 :X1 → X̃ by the formula i1(x) = q1(F
−1
n (s(x,0))), x ∈ X1. Let

i = i1 ◦ h1 ◦ j . Then

f̃ ◦ i(x) = F ◦ pr1 ◦ g ◦ i1 ◦ h1 ◦ j (x)

= F ◦ pr1 ◦ s−1 ◦ s ◦ g ◦ q1 ◦ F−1
n

(
s
(
h1 ◦ j (x),0

))
= F ◦ pr1 ◦ s−1 ◦ f ′

n ◦ F−1
n ◦ s

(
h1 ◦ j (x),0

) = F ◦ pr1

(
h1 ◦ j (x),0

)
= F ◦ h1 ◦ j (x) = ĥ ◦ j (x) = f (x).

To show condition (∗), let S = (Z,A,Y,α,β, γ ) ∈ A. Define a map α1 :Z → X1 as α1 = h1 ◦ jS ◦ gS . Let p :Z →
Z/A be the quotient map and let η :Z/A → Q be an embedding such that η({A}) = 0.

Define an embedding θ :Z → X1 × Q by the formula θ(z) = (α1(z), η ◦ p(z)), z ∈ Z. From the n-invertibility of
the map f ′

n it follows that there exists a map θ̄ :Z → F−1
n (s(X1 × Q)) such that f ′

n ◦ θ̄ = s ◦ θ . Set ᾱ = q1 ◦ θ̄ .
First of all, it is obvious that the map ᾱ is an embedding. If a ∈ A, then

ᾱ(a) = q1 ◦ θ̄ (a) = q1
(
F−1

n

(
s
(
α1(a),0

))) = i1 ◦ α1(a)

= i1 ◦ h1 ◦ jS ◦ gS(a) = i1 ◦ h1 ◦ j ◦ α(a) = i ◦ α(a).

We have also

f̃ ◦ ᾱ = F ◦ pr1 ◦ g ◦ q1 ◦ θ̄ = F ◦ pr1 ◦ s−1 ◦ f ′
n ◦ θ̄ = F ◦ pr1 ◦ θ

= F ◦ α1 = F ◦ h1 ◦ jS ◦ gS = ĥ ◦ jS ◦ gS = hS ◦ gS = γ ◦ β. �
Definition 4.2. A map f :X → Y is said to be strongly (n,∞)-universal (respectively, strongly (n,n)-universal,
strongly (n,ω)-universal), if for every compact metrizable pair (Z,A), where dimZ � n, and a metrizable com-
pactum C (respectively metrizable compactum C of dimension � n, finite-dimensional metrizable compactum C),
every embedding α :A → X and maps β :Z → C, γ :C → Y such that f ◦ α = γ ◦ β|A, there exists an embedding
ᾱ :Z → X such that ᾱ|A = α and f ◦ ᾱ = γ ◦ β .

Theorem 4.3. There exists a unique (up to homeomorphisms) strongly (n,∞)-universal map ϕn :μ∞
n → Q∞.

Proof. Let Fn :μn → Q denote the universal Dranishnikov map (see [9]). Using Lemma 4.1, define a sequence of
maps fi :Ki → Q and embeddings Ki ↪→ Ki+1 for which the following conditions hold:

(1) K1 = μn and f1 = Fn;
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(2) the diagram

K1

f1

K2
f2

K3

f3

. . .

...
Q

is commutative;
(3) for every compact metrizable pair (Z,A), where dimZ � n, every metrizable compactum Y , and maps α :Z → Y ,

ψ :Y → Q and embedding ϕ :A → Ki such that ψ ◦ α|A = fi ◦ ϕ, there exists an embedding ϕ̄ :Z → Ki+1 such
that ϕ̄|A = ϕ and fi+1 ◦ ϕ̄ = ψ ◦ α.

In order to construct such a sequence, we proceed inductively. Suppose that fi is already constructed. Apply
Lemma 4.1 to the map fi :Ki → Q and obtain a map fi+1 :Ki+1 → Q of a metrizable compactum Ki+1 with
dimKi+1 � n and an embedding j :Ki ↪→ Ki+1 so that condition (3) is nothing but condition (∗) from Lemma 4.1.

Let

Q =
∞∏

j=1

[−1,1]j , Q(i) =
∞∏

j=1

[
−1 + 1

i + 1
,1 − 1

i + 1

]
j

, i � 1.

The set Y = rint Q = ⋃{Q(i) | i � 1} is called the radial interior of the Hilbert cube Q.
Let Xi = f −1

i (Q(i)), X = ⋃{Xi | i � 1}, and let ϕn :X → Y be a map such that ϕn|Xi = fi |Xi , i � 1. Topologize
the sets X and Y as the countable direct limits lim−→{Xi} and lim−→{Q(i)}; the resulting spaces are denoted by X̂ and Ŷ ,

respectively. Then the map ϕn : X̂ → Ŷ is continuous. It follows from the characterization theorem 3.1 and the Sakai
characterization theorem [14] that X̂ ∼= μ∞

n and Ŷ ∼= Q∞.
The strong (n,∞)-universality of the map ϕn :μ∞

n
∼= X̂ → Ŷ ∼= Q∞ is a consequence of condition (3).

We are going to show that the map ϕn is unique up to homeomorphisms. Let f :μ∞
n → Q∞ be a strongly (n,∞)-

universal map. Write μ∞
n = lim−→ Ai , Q∞ = lim−→ Bi , where Ai , Bi are compacta and f (Ai) ⊂ Bi (we will denote by

fi :Ai → Bi the restriction of f ). Assume that A1 = {x0}, B1 = {y0}.

Claim. Let g :μ∞
n → Q∞ be a strongly (n,∞)-universal map, h :A → B be a map of metrizable compacta, where

dimA � n. For any commutative diagram

A′ i′

h|A′

μ∞
n

g

B ′
j ′ Q∞

where A′, B ′ are closed subsets in A, B respectively, i′, j ′ are embeddings, there exist embeddings i :A → μ∞
n ,

j :B → Q∞ such that i|A′ = i′, j |B ′ = j ′ and gi = jh.

Indeed, there exists an embedding j :B → Q∞ that extends j ′. By the strong (n,∞)-universality property, there
exists an embedding i :A → μ∞

n such that i|A′ = i′ and gi = jh.
Suppose now that g :C → D is a strongly (n,∞)-universal map, where C ∈ MC(n)∞, D ∈ MC∞. Write C =

lim−→ Ci , D = lim−→ Di , where Ci , Di are compacta and g(Ci) ⊂ Di (we denote by gi :Ci → Di the restriction of g).
Applying the claim, one can easily construct a commutative diagram in the category of maps,

fk1

i1

fk2

i2

fk3

i3

. . .

gl1

j1

gl2

j2

gl3
. . .

in which k1 < k2 < · · · , l1 < l2 < · · · , and the morphisms ip , jq are embeddings (in the category of maps). Then

f ∼= lim−→ fkp
∼= lim−→

{
fk1

i1 gl1
j1 fk2

i2 gl2
j2 . . .

} ∼= lim−→ gq = g. �
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The following result is a counterpart of the product theorem of the theory of Q-manifolds (see [5]) in the category
MC(n)∞.

Theorem 4.4. Let ϕn :μ∞
n → Q∞ be a strongly (n,∞)-universal map. Let X ⊂ Q∞, X ∈ MC(n)∞ and X be

an absolute neighborhood extensor (respectively an absolute extensor) for the class MC(n). Then ϕ−1
n (X) is a

μ∞
n -manifold (respectively ϕ−1

n (X) ∼= μ∞
n ).

Proof. We verify the conditions of the characterization theorem 3.1 for μ∞
n -manifolds. Obviously, ϕ−1

n (X) ∈
MC(n)∞. Given a compact metrizable pair (A,B) with dimA � n and an embedding f :B → ϕ−1

n (X), one can
extend the map ϕnf :B → X to a map g :C → X of a compact neighborhood C of B in A. It follows from the
strong (n,∞)-universality of ϕn that there exists an embedding f̄ :C → μ∞

n such that ϕnf̄ = g and f̄ |B = f . Then
f̄ (C) ⊂ ϕ−1

n (X) and we are done. When X is an absolute extensor for the class MC(n), we can take C = A. �
Theorem 4.5. There exists a strongly (n,n)-universal map ψn :μ∞

n → μ∞
n , which is unique up to homeomorphisms.

Proof. We suppose that μ∞
n ⊂ Q∞. Let X = ϕ−1

n (μ∞
n ). We are going to show that X is homeomorphic to μ∞

n .
Obviously, X ∈ MC(n)∞. Let (A,B) be a compact metrizable pair with dimA � n and f :B → X an embedding.
Since μ∞

n is an absolute extensor for metrizable compacta of dimension � n, there exists an extension g :A → μ∞
n of

the map ϕnf . It follows from the strong (n,∞)-universality property of ϕn that there exists an embedding f̄ :A → μ∞
n

such that f̄ |B = f and ϕnf̄ = g. The latter condition means that f̄ (A) ⊂ X and, by the characterization theorem,
X ∼= μ∞

n .
The strong (n,n)-universality of the map ψn is an easy consequence of the strong (n,∞)-universality property of

the map ϕn.
In turn, the uniqueness of the map ψn can be derived from its strong (n,n)-universality similarly as in the proof of

Theorem 4.3. �
Theorem 4.6. There exists a strongly (n,ω)-universal map ψn,∞ :μ∞

n → R
∞, which is unique up to homeomor-

phisms.

Proof. We suppose that R
∞ ⊂ Q∞. Let X = ϕ−1

n (R∞). The rest of the proof is completely analogous to that of
Theorem 4.5. �
5. Triangulation and classification theorems for μ∞

n -manifolds

Lemma 5.1. For every μ∞
n -manifold X there exists a locally finite polyhedron P of dimension � n and a map f :P →

X that induces isomorphisms of the homotopy groups of dimensions � n − 1.

Proof. By Theorem 3.3, we can write X = lim−→{Mi, si}, where

M1
s1

M2
s2

M3
s3 . . .

is a sequence of compact μn-manifolds and Z-embeddings. For every i there exist compact μn-manifolds M ′
i and

M ′′
i ⊂ M ′

i such that Mi,M
′′
i are disjoint Z-sets in M ′

i and there exists a polyhedrally n-soft retraction ri :M ′
i → Mi

such that ri |M ′′
i :M ′′

i → Mi is a homeomorphism. This can be easily deduced from the properties of the universal map
Fn :μn → Q (see [9]). Indeed, one can assume that Mi × [0,1] ⊂ Q and let M ′

i = F−1
n (Mi × [0,1]). It follows from

the n-invertibility of Fn that there exist maps ξk :Mi → M ′
i , k = 0,1, such that Fnξk(x) = (x, k) for every x ∈ Mi and

k ∈ {0,1}. We identify Mi with its image ξ0(Mi) and let M ′′
i = ξ1(Mi). The retraction ri :M ′

i → Mi is given by the
formula ri(y) = pr1 Fn(y), where y ∈ M ′

i and pr1 :Mi × [0,1] → Mi denotes the projection onto the first factor. The
required properties of M ′

i and M ′′
i easily follow from the properties of the universal map Fn.

Define the space X′ as the quotient space of the disjoint union
⊔{M ′

i | i ∈ N} with respect to the equivalence
relation that identifies every point x ∈ M ′′

i with the point si ◦ ri(x) ∈ Mi+1 ⊂ M ′
i+1. By q :

⊔{M ′
i | i ∈ N} → X′ we

denote the quotient map.
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Define a map h :X′ → X by the condition: if x ∈ M ′
i then h ◦ q(x) = ri(x) ∈ Mi ⊂ X.

It is not difficult to show that the map h induces isomorphisms of the homotopy groups in dimensions � n − 1.
Since the space X′ is locally compact, metrizable, LCn−1, and dimX′ = n, there exists a locally finite polyhedron P

of dimension � n and a map g :P → X′ that induces isomorphisms of the homotopy groups in dimensions � n − 1
(see [4, Chapter 6]). The composition f = h ◦ g is the required map. �
Lemma 5.2. Let f,g :A → X be (n − 1)-homotopic maps of a metrizable compactum A. Then there exists a com-
pactum C ⊂ X such that C ⊃ f (A) ∪ g(A) and the maps f,g :A → C are (n − 1)-homotopic.

Proof. There exists an n-invertible map h :B → A, where B is an n-dimensional compactum [9]. Then the maps f h

and gh are homotopic; denote by H :B × I → X a homotopy connecting them. Let C = H(B × I ).
If dimB ′ � n and a map h′ :B ′ → A is given, then there exists a map α :B ′ → B such that hα = h′. Then H(α ×

idI ) is a homotopy between the maps f h′ and gh′. Thus, f,g :A → C are (n − 1)-homotopic. �
The proof of the following lemma is a direct modification of the proof of Lemma 2.8.7 from [4]. Note that in [4]

the notion of μ-homotopy was used where we use the one of (n − 1)-homotopy.

Lemma 5.3. Suppose that a map f :X → Y induces isomorphisms of the homotopy groups of dimension � n − 1,
Y is an LCn−1-space, (P,L) is a polyhedral pair with dimP � n and α :P → Y , β :L → X are maps such that
fβ = α|L. Then there exists a map β̂ :P → X such that β̂|L = β and f β̂ ∼n−1 α.

Lemma 5.4. Let f :X → Y be a map of μ∞
n -manifolds which induces isomorphisms of the homotopy groups of

dimension � n − 1. For every compact metrizable pair (A,B), where dimA � n, and every pair of maps α :B → X,
β :A → Y such that α is an embedding and f α �n−1 β|B there exists an embedding α′ :A → X such that α′|B = α

and f α′ �n−1 β .

Proof. There exists an n-dimensional finite polyhedral pair (P,L) and maps g :A → P , g′ :P → Y such that
g′g �n−1 β , g(B) ⊂ L and there exists a map h :L → X such that hg|B �n−1 α (see [4]).

By Lemma 5.1, there exists a map g′′ :P → X such that g′′|L = h and fg′′ �n−1 g′. Then, by Lemma 5.2 and
Theorem 3.3, there exists a compact μn-manifold M ⊂ X such that α(B)∪g′′(P ) ⊂ M and the maps hg|B , α :B → M

are (n− 1)-homotopic. By [6, Proposition 2.2], there exists a map α̃ :A → M such that α̃|B = α and α̃ �n−1 g′′g. By
Theorem 3.3, there exists a compact μn-manifold M ′ such that M ⊂ M ′ ⊂ X and M is a Z-set in M ′. Then, by the
Z-set approximation theorem for μn-manifolds [4, Theorem 2.3.8], there exists an embedding α′ :A → M ′ such that
α′ �n−1 α̃ and α′|B = α. Then also

f α′ �n−1 f α̃ �n−1 fg′′g �n−1 g′g �n−1 β. �
The following result is a classification theorem for μ∞

n -manifolds.

Theorem 5.5. Let f :X → Y be a map of μ∞
n -manifolds which induces isomorphisms of homotopy groups of dimen-

sion � n − 1. Then the map f is (n − 1)-homotopic to a homeomorphism.

Proof. By Theorem 3.3, the spaces X and Y have representations X = lim−→ Mi , Y = lim−→ Nj , where each Mi and
Nj are compact μn-manifolds which are Z-sets in Mi+1 and Nj+1, respectively. Set Mi0 = Ni0 = ∅ and define by
induction sequences i0 < i1 < i2 < · · · and j0 < j1 < j2 < · · ·, maps fk :X → Y , αk :Mik → Y , βk :Njk

→ X such
that the following holds:

(1) fk+1 �n−1 fk ;
(2) all αk,βk are embeddings, αk(Mik ) ⊂ Njk

, βk(Njk
) ⊂ Mik+1 , and βkαk = id, αk+1βk = id, αk+1|Mik = αk ,

βk+1|Njk
= βk ; and

(3) fk|Mik = αk .
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Set f0 = f and suppose that fl , il , jl , αl , and βl are already constructed for l < k. Choose ik > ik−1 so that
βk−1(Njk−1) ⊂ Mik . It follows from the Z-set approximation theorem that there exists an embedding αk :Mik → Y

such that αk|βk−1(Njk−1) = β−1
k−1 and αk �n−1 fk−1|Mik−1 . By the (n − 1)-homotopy extension property (see [6]),

there exists a map fk :X → Y such that fk|Mik = αk and fk �n−1 fk−1. By the construction, fk �n−1 f0 = f and,
therefore, the map fk induces isomorphisms of homotopy groups in dimension � n − 1 (see [4]).

Choose jk > jk−1 so that αk(Mik ) ⊂ Njk
. By Lemma 5.4, for the map fk and embedding Njk

↪→ Y there exists an
embedding βk :Njk

→ X such that βkαk = id. By the construction, αkβk−1 = id.
Then the map α = lim−→ αk is a homeomorphism from X = lim−→ Mik into Y = lim−→ Njk

with β = lim−→ βk as the inverse.
It follows from properties (1) and (2) that α �n−1 f . �
Theorem 5.6. For every embedding f of a μ∞

n -manifold X into Q∞ we have X ∼= ϕ−1
n (f (X)).

Proof. It follows from Theorem 4.4 that ϕ−1
n (f (X)) is a μ∞

n -manifold. Note that the map
ϕn|ϕ−1

n (f (X)) :ϕ−1
n (f (X)) → f (X) induces isomorphisms of the homotopy groups in dimensions � n − 1. The

result then follows from Theorem 5.5. �
Theorem 5.7. For every μ∞

n -manifold X there exists a locally finite polyhedron P of dimension � n such that for
every embedding P ⊂ Q∞ we have X ∼= ϕ−1

n (P ).

Proof. By Lemma 5.1, there exists a locally finite polyhedron P of dimension � n a map f :P → X that induces
isomorphisms of the homotopy groups in dimensions � n − 1. We may assume that P ⊂ Q∞, then the map g =
f ◦ (ϕ|ϕ−1

n (P )) :ϕ−1
n (P ) → X is a map of μ∞

n -manifolds that induces isomorphisms of the homotopy groups in
dimensions � n − 1. By Theorem 5.5, g is (n − 1)-homotopic to a homeomorphism. �
6. Open questions

There exist counterparts of the spaces μ∞
n which in the class of compact Hausdorff spaces of given weight play the

role analogous to that of μ∞
n for the class of metrizable compacta. Namely, Dranishnikov constructed n-dimensional

spaces Dτ
n that are universal for the class of compact Hausdorff spaces of weight τ and of dimension n. However, these

spaces are not absolute extensors in dimension n, because by Dranishnikov’s theorem every n-dimensional compact
absolute extensor in dimension n is metrizable. This does not allow straightforward extension of our results to the
case of spaces of weight τ . As a good starting point we propose the open problem of topological characterization of
the countable direct limit of a sequence of spaces Dτ

n and Z-embeddings (see related paper [18]).
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