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The purpose of this paper is: (i) to construct a space which is semilocally simply connected
in the sense of Spanier even though its Spanier group is non-trivial; (ii) to propose a
modification of the notion of a Spanier group so that via the modified Spanier group
semilocal simple connectivity can be characterized; and (iii) to point out that with just
a slightly modified definition of semilocal simple connectivity which is sometimes also
used in literature, the classical Spanier group gives the correct characterization within the
general class of path-connected topological spaces.
While the condition “semilocally simply connected” plays a crucial role in classical covering
theory, in generalized covering theory one needs to consider the condition “homotopically
Hausdorff” instead. The paper also discusses which implications hold between all of the
abovementioned conditions and, via the modified Spanier groups, it also unveils the
weakest so far known algebraic characterization for the existence of generalized covering
spaces as introduced by Fischer and Zastrow. For most of the implications, the paper also
proves the non-reversibility by providing the corresponding examples. Some of them rely
on spaces that are newly constructed in this paper.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

This paper was motivated by an observation during the research of [6], namely that E.H. Spanier, when writing his
celebrated book on algebraic topology [12], apparently made an oversight in the statement which immediately precedes
Corollary 2.5.14. That statement, in which he characterizes semilocal simple connectivity in terms of vanishing of a certain
group π(U , x0) for at least one open covering U of the space, turns out to be correct only if one additionally assumes
local path-connectedness. Of course, one may wonder if this assumption was perhaps not implicitly made. However, in
view of the author’s great attention to details in this book in general, our ultimate conclusion was that Spanier would have
mentioned this additional assumption if he had been aware of the phenomena and examples that we shall expose below.

Roughly speaking, a problem occurs for spaces which are not locally path-connected. This is because the fundamental
group uses base points, whereas the subgroup of the fundamental group which Spanier associated with a covering (and
which we henceforth call the Spanier group) does not use base points in a similar way. Of course, this group is defined as
a subgroup of the fundamental group and therefore it depends on the same base point as the fundamental group, but the
concept of Spanier groups refrains from using base points for each set of the covering separately. Therefore Spanier’s charac-
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terization of semilocal simple connectivity (cf. immediately before Corollary 2.5.14) matches his definition (cf. immediately
before Theorem 2.4.10) only in the locally path-connected case.

The main purpose of our paper is to:

• confirm this assertion by constructing a space Y which is semilocally simply connected in the sense of Spanier, but its
Spanier group is non-trivial (cf. Proposition 3.1);

• confirm the “if” part of the claim preceding Corollary 2.5.14, for all spaces and the “only if” part for locally path-
connected spaces (Theorem 2.8(3)–(4));

• propose a modification of Spanier groups so that the corresponding claim will be correct for all spaces (Theorem 2.8(2));
and

• propose a modification of the definition of semilocal simple connectivity and prove that with this modified definition
and with the original definition of Spanier groups the claim preceding Corollary 2.5.14 is also correct (Theorem 2.8(1)).

Accordingly, there will be two concepts of semilocal simple connectivity and two versions of Spanier groups — one which
depends on base points and one which does not. In order to avoid ambiguity in the terminology of the present paper, we
will from now on speak of these concepts using the attributes “based” and “unbased” (cf. Definitions 2.1–2.3 and 2.5).

While semilocal simple connectivity is a crucial condition in classical covering space theory, the generalized covering
space theory treated in [6] mainly considered the weaker condition called “homotopically Hausdorff”. The paper [3] also
studied two versions of this condition, one which depends on base points and one which does not. However, in our case
we will adopt the notation from [3] and use the attributes “weak” and “strong” (cf. Definition 2.10), respectively. When
base points are treated correctly, the conditions of semilocal simple connectivity can be equivalently described by proper-
ties of Spanier groups (Theorem 2.8(1)–(2)). However, we only know sufficient conditions on Spanier groups which imply
homotopic Hausdorffness (Section 6, (11)–(12)). In this context it should also be pointed out that even the weakest of these
conditions for Spanier groups implies a condition that we will call “homotopically path-Hausdorff”. This condition was not
mentioned in [3] or [6], but is similar to a condition that appeared under a different name in [14], a preprint preceding [6].
Therefore the concept of based Spanier groups, introduced in this paper, also apparently yields the weakest currently known
algebraic sufficient condition for the existence of generalized universal covering spaces (Theorem 2.9).

We also wish to point out that we are not aware of the above described incorrectness in Spanier’s book leading to
a false theorem therein. All places that we found, where the crucial remark preceding Corollary 2.5.14 has been applied,
were statements where local path-connectedness of the underlying topological space has been an assumption, and in this
framework the crucial statement is correct.

Our paper will in Section 6 also briefly discuss known implications among all the mathematical concepts mentioned
so far. All topological spaces in this article are assumed to be path-connected. Since we need to consider the fundamental
group, it does not seem necessary to consider more general spaces.

2. Definitions and terminology

Definition 2.1. We call a topological space X (based) semilocally simply connected if for every point x ∈ X there exists a
neighbourhood U of x such that the inclusion-induced homomorphism π1(U , x) → π1(X, x) is trivial.

The majority of topology books discussing covering spaces seems to prefer this definition (see e.g. p. 63 of [8], p. 393
of [11], p. 174 of [10] and p. 78 of [12]) over the following; we will only use the attribute “based” in connection with
semilocal simple connectivity where it is needed to distinguish this definition from the following.

Definition 2.2. We call a topological space X unbased semilocally simply connected if for every point x ∈ X there exists a
neighbourhood U of x such that every loop in U is null-homotopic in X .

The latter definition is used, for example, in [7, p. 187], and, named slightly differently, in [9, Definition 6.6.8, p. 255].

Definition 2.3. Let X be a space, x0 ∈ X a base point, and U = {Ui | i ∈ I} an arbitrary open covering of X . Then we define
π(U , x0) to be the subgroup of π1(X, x0) which contains all homotopy classes having representatives of the following type:

n∏

j=1

u j v ju
−1
j , (2.3)

where u j are arbitrary paths (starting at the base point x0) and each v j is a loop inside one of the neighbourhoods Ui ∈ U .
We call this group the (unbased) Spanier group with respect to U .

This definition matches the definition from [12, Chapter 2, Section 5 between items 7 and 8]. In [12] this notation was
already used, but names have not yet been given to these groups.
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We choose the name Spanier groups, since all traces in the literature that we are aware of seem to go back to this
appearance in Spanier’s book.

In the introduction we announced a concept that introduces base points to the sets of open coverings. Consequently, we
will instead of open sets U also consider “pointed open sets”, i.e. pairs (U , x), where x ∈ U and U is open.

Definition 2.4. Let X be a space.

(1) An open covering of X by pointed sets is a family of pointed open sets V = {(Ui, xi) | i ∈ I}, where

{xi | i ∈ I} = X . (2.4)

(2) Refinements between coverings by pointed sets are defined as follows: U ′ = {(U ′
i, x′

i) | i ∈ I} refines U = {(U j, x j) | j ∈ J },
if ∀i ∃ j such that U ′

i ⊂ U j and xi = x j .

Let U = {Ui | i ∈ I} be a covering of X by open sets. Observe that due to expression (2.4) demanding that each point of X
occurs at least once as base point of one of the covering sets, it will in general not suffice to choose a base point for each
of the Ui in order to turn it into an open covering V of X by pointed sets. Instead, the following procedure is apparently in
general necessary:

• for each Ui ∈ U take |Ui | copies into V ; and
• define each of those copies as (Ui, P ), i.e. use the same set Ui as first entry, and let the second entry run over all points

P ∈ Ui .

When constructed with this procedure, coverings by neighbourhood pairs offer in principle the same options for refine-
ments as coverings by open sets. Vice versa note, that this procedure will usually generate such coverings by pointed sets,
where a lot of x ∈ X occur as base points for different sets Ui .

Definition 2.5. Let X be a space, x0 ∈ X , and V = {(Ui, xi) | i ∈ I} be a covering of X by open neighbourhood pairs. Then
we let π∗(V , x0) be the subgroup of π1(X, x0) which contains all homotopy classes having representatives of the following
type:

n∏

j=1

u j v ju
−1
j , (2.5)

where the u j are arbitrary paths that run from x0 to some point xi and each v j then must be a closed path inside the
corresponding Ui . We will call this group the based Spanier group with respect to V .

Remark 2.6. Note that for based and unbased Spanier groups the following holds: Let U , V be open coverings, and let U be
a refinement of V . Then π(U ) ⊂ π(V ). Analogously π∗(U ) ⊂ π∗(V ) holds, assuming that U and V are now open coverings
by pointed sets. Due to these inclusion relations, there exist inverse limits of these Spanier groups, defined via the directed
system of all coverings with respect to refinement. We will call them the (unbased) Spanier group and the based Spanier group
of the space X and denote them by

lim←−
(
π(U )

)
and lim←−

(
π∗(V)

)
,

respectively, observing that these inverse limits are realized by intersections:

⋂

coverings U
π(U ) = lim←−

(
π(U )

)
and

⋂

coverings V by pointed sets

π∗(V) = lim←−
(
π∗(V)

)
.

Since for locally path-connected spaces any covering refines to a covering by path-connected sets, the based and unbased
Spanier groups coincide in that case.

Remark 2.7. Recall that all topological spaces in this paper are assumed to be path-connected. Despite discussing the prop-
erties “based” and “unbased”, by definition the fundamental group and (since they are defined as subgroups) also all Spanier
groups formally depend on a base point. However, the standard argument that the isomorphism type and many other es-
sential properties of the fundamental group of a path-connected space do indeed not depend on the base point, naturally
extends to Spanier groups. We will therefore omit the base point in our notation, whenever appropriate.

The following two theorems are our main results, and Sections 4 and 5, respectively, are devoted to prove them.
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Theorem 2.8.

(1) Let X be an arbitrary space, x0 ∈ X. Then X is unbased semilocally simply connected, if and only if it has an open covering U such
that π(U , x0) is trivial.

(2) Let X be an arbitrary space, x0 ∈ X. Then X is semilocally simply connected, if and only if it has an open covering V by pointed
sets such that π∗(V , x0) is trivial.

(3) Let X be an arbitrary space. Then the two equivalent properties from (1) imply those from (2).
(4) Let X be a locally path-connected space. Then the two equivalent properties from (2) imply those from (1).
(5) For topological spaces that are not locally path-connected, the properties from (2) need not imply those from (1). The space Y that

will be constructed in Section 3, satisfies (2) but not (1).

Theorem 2.9. Let X be a topological space whose based Spanier group lim←− π∗(U ) is trivial. Then X admits a generalized universal
covering space in the sense of [6].

With items (1) and (2) of the next definition we follow [3, p. 1091]:

Definition 2.10.

(1) A space X is called (weakly) homotopically Hausdorff if for every x0 ∈ X and for every non-trivial α ∈ π1(X, x0) there
exists a neighbourhood U of x0 such that no loop in U is homotopic (in X ) to α rel. x0. An equivalent condition, using
the terminology of [13, Definition 1], would be the absence of non-trivial small loops.

(2) A space X is called strongly homotopically Hausdorff, if for every x0 ∈ X and for every essential closed curve γ in X there
is a neighbourhood of x0 that contains no closed curve freely homotopic (in X ) to γ .

(3) A space X is called homotopically path-Hausdorff, provided that it satisfies the following property with respect to any
two paths w, v : [0,1] → X with w(0) = v(0) and w(1) = v(1): If w and v are not homotopic relative to the endpoints,
then there exist 0 = t0 < t1 < · · · < tk = 1 and open sets U1, U2, . . . , Uk with w([ti−1, ti]) ⊆ Ui for 1 � i � k such that for
any wi : [ti−1, ti] → Ui with wi(ti−1)=w(ti−1) and wi(ti)=w(ti), the concatenation w1 ∗ w2 ∗ · · · ∗ wk is not homotopic
to v relative to the endpoints.

The terms weakly and strongly homotopically Hausdorff already appeared, but under different names, in [14, 1.1], while
the third property that was considered there, although similar to our Definition 2.10(3), is not equivalent to it. While
‘strongly homotopically Hausdorff’ appeared for the first time in peer-reviewed literature in [3], ‘homotopically Hausdorff’
had been used before in [2, Definition 5.2].

Remark 2.11. Note that all strongly homotopically Hausdorff spaces and all homotopically path-Hausdorff spaces are homotopically
Hausdorff. If we apply the condition of homotopical path-Hausdorffness to a constant path at x we obtain the condition for
weak homotopical Hausdorffness at x; thus the second statement. The first statement directly follows from the definitions.

3. Examples

The space Y ′: One of our examples Y ′ ⊂ R
3 will be precisely the space called A in [3], and was defined at the beginning of

Section 3 therein. It consists of a rotated topologists’ sine curve (as suggested by Fig. 1), the “central axis”, where
this surface tends to, and a system of horizontal arcs is attached to them so that they become dense (only) near
the central axis. Fig. 2 shows schematically the top-view and the side-view of defining such arcs, which we shall
call “tunnels”. Their presence is indicated by the prime of Y ′ .

The space Y : Another important example will be our space Y ⊂ R
3 (see Fig. 1). It consists of the same surface portion

as Y ′ , the central axis to which this surface portion tends, but instead of defining a system of arcs for connecting
central axis and surface portion, we just connect them by a single arc C . This arc C can be easily embedded
into R

3, so as not to intersect the surface portion or the central axis at any other points than its endpoints.
The space Z ′: Our third example will be called Z ′ ⊂ R

3. It is precisely the space called B in [3] and defined immediately
before Theorem 3.4 therein. It consists of a rotated topologists’ sine curve (as shown in Fig. 3), the “outer cylinder”
at radius 1, where this surfaces tends to, and a system of horizontal arcs attached to them so that they become
dense (only) near the outer cylinder. Fig. 4 shows schematically the top-view and the side-view of how to define
such arcs. We will call these arcs “tunnels” as well.

The space Z : Analogously, we will also need a space which has the same outer cylinder and surface portion as Z ′ , but
where outer cylinder and surface portion are just connected by a single arc C (similar as for Y ), but which has no
tunnel-system. We will call this space Z .

Apart from these spaces, we will also need the Hawaiian Earring, that we will denote by HE . This is a more well-known
space, it is a countable union of circles in the plane, as pictured in Fig. 5.
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Fig. 1. The space Y .

Fig. 2. The radial projections and the top view of the tunnels of Y ′ .

Fig. 3. The “surface” portion of the spaces Z and Z ′ .

Proposition 3.1. The space Y has the following properties:

(1) Its Spanier group is non-trivial;
(2) its based Spanier group is trivial;
(3) it is semilocally simply connected;
(4) it is not unbased semilocally simply connected;
(5) it is homotopically Hausdorff;
(6) it is not strongly homotopically Hausdorff;
(7) it is homotopically path-Hausdorff.
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Fig. 4. The radial projections and the top view of the tunnels of Z ′ .

Fig. 5. The Hawaiian Earring.

Proposition 3.2. The space Y ′ has the following properties:

(1) Its Spanier group is non-trivial;
(2) its based Spanier group is non-trivial;
(3) it is not semilocally simply connected;
(4) it is not unbased semilocally simply connected;
(5) it is homotopically Hausdorff;
(6) it is not strongly homotopically Hausdorff;
(7) it is homotopically path-Hausdorff.

Proposition 3.3. The space Z has the following properties:

(1) Its Spanier group is trivial;
(2) its based Spanier group is trivial;
(3) it is semilocally simply connected;
(4) it is unbased semilocally simply connected;
(5) it is homotopically Hausdorff;
(6) it is strongly homotopically Hausdorff;
(7) it is homotopically path-Hausdorff.

Proposition 3.4. The space Z ′ has the following properties:

(1) Its Spanier group is non-trivial;
(2) its based Spanier group is non-trivial;
(3) it is not semilocally simply connected;
(4) it is not unbased semilocally simply connected;
(5) it is homotopically Hausdorff;
(6) it is strongly homotopically Hausdorff;
(7) it is not homotopically path-Hausdorff.

Convention. Given any path α defined on [0,1], we define a path α−1 by α−1(t) := α(1 − t).

Proof of Proposition 3.1. (1) Fix a point x0 on the surface portion of Y . Let ρr denote a simple path on the surface starting
at x0, contained in the plane determined by x0 and the central axis, with endpoint at distance r from the central axis. Note
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Fig. 6. Quadrilateral loop Q i . The pointed lines mark path through the tunnel.

that a simple loop αr of constant radius r > 0 on the surface is not freely homotopically trivial by [3, Lemma 3.1]. Any
neighbourhood of a point of the central axis contains such a loop. For every 1 > r > 0 loops ρrαrρ

−1
r (with αr appropriately

based) are homotopic to each other and non-trivial. Given a cover of Y , all such loops are contained in the Spanier group
of such a cover for sufficiently small r. Hence the Spanier group is non-trivial.

(2) Note that every point x ∈ Y has an arbitrarily small neighbourhood whose path component containing x is con-
tractible. Given a point on the surface at the radius r, an open ball of radius at most r/2 suffices. The interior of the
connecting arc C induces such neighbourhoods for points of itself. Any open set not containing the entire arc C suffices for
the central axis, e.g. an open ball of radius at most c/2 where c is the length of arc C . The claim follows by definition as
the loops v j of Definition 2.5 are contractible. This also proves (3).

(4) The loops αr from the proof of (1) are non-trivial and arbitrarily close to the central axis.
(5) Implied by (7) and Remark 2.11.
(6) Follows from the proof of (1) using the loops ρr .
(7) We use the notation of Definition 2.10 and the fact that every point x ∈ Y has an arbitrarily small neighbourhood

whose path component containing x is contractible. Given any open cover U1, . . . , Uk of w([0,1]) by such neighbourhoods,
the only possible homotopy class for a path w1 ∗ · · · ∗ wk is that of w , constructing the homotopy using the contractibility
of the sets Ui . Thus the product of the wi will not be homotopic to v . �
Proof of Proposition 3.2. (1) The proof of Proposition 3.1(1) suffices. Statements (1) and (2) are equivalent as Y ′ is locally
path-connected. Statements (3) and (4) are equivalent for the same reason and follow from (1).

(5) Follows from (7).
(6) Similarly as in the proof of Proposition 3.1 loops ρr provide an obstruction to strong homotopic Hausdorffness.
(7) We will sketch a proof in Theorem 3.7. Since the argument is quite lengthy, a complete proof will appear else-

where. �
Proof of Proposition 3.3. Note that every point x ∈ Z has an arbitrarily small neighbourhood whose every path component
is contractible. For any point on the surface at radius r an open ball of radius at most (1 − r)/2 suffices. The interior of the
connecting arc C induces such neighbourhoods for points of itself. Any open set not containing the entire arc C suffices for
the outer cylinder, e.g. an open ball of radius at most c/2 where c is the length of the arc C . Such cover proves (1)–(7). �
Proof of Proposition 3.4. (1) and (2) are equivalent by Theorem 2.8 and imply (3) and (4).

(1) For every positive r < 1 let αr denote a positively oriented simple loop of constant radius on the surface. All such
loops are homotopically trivial. Let α1 be a clockwise oriented simple closed curve, defined as an intersection of the outer
cylinder with the plane at height zero. Note that α1 is not homotopically trivial by [3, Proof of Lemma 3.1]. We will prove
that the loop α1 based at x0 on the outer cylinder is contained in the Spanier group of Z ′ .

Given any open cover U of α1([0,1]) choose a finite refinement by balls U0, . . . , Uk so that Ui ∩ U j �= ∅ for i, j ∈ Zk+1
iff |i − j| � 1. Choose R < 1 big enough so that αR([0,1]) is covered by U0, . . . , Uk as well. Fix points bi ∈ Ui ∩ Ui−1 ∩ α1
and ai ∈ Ui ∩ Ui−1 ∩ αR , so that the pairs (ai,bi) are endpoints of the same tunnel. Note that for every i ∈ Zk+1 an oriented
quadrilateral loop Q i with vertices [bi,bi+1,ai+1,ai] (where each edge is an appropriate simple path contained in α1,αR or
in some tunnel) is contained in Ui as suggested by Fig. 6. Define a path ci between x0 and bi to be the restriction of α1 to
the appropriate interval. The loop

(
ck Q kc−1)(ck−1 Q k−1c−1 ) · · · (c0 Q 0c−1)
k k−1 0
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of the Spanier group with respect to U is homotopic to the non-trivial α1. Since α1 does not depend on a cover U , the
based Spanier group of Z ′ is non-trivial.

(5) Implied by (6) and Remark 2.11.
(6) This is proved in [3, Theorem 3.5].
(7) We adopt the notation of part (1). Let α1 be a simple loop in the outer cylinder based at x0. Assume that x0 is

the endpoint of some tunnel, and that τR is the segment of this tunnel of length 1−R starting at x0. We will only use
such R-values where the endpoint of τR is an intersection point with the surface portion. We prove that the conditions of
Definition 2.10(3) cannot be satisfied for w = α1 and v = τR ∗ αR ∗ τ−1

R . Assume the opposite. Then, since w �� 1 but v � 1
independently of R , there is a finite covering U1, . . . , Uk of α1([0,1]) as in Definition 2.10(3). Without loss of generality we
can decrease the sets Ui to path-connected sets, so that also the intersections U1 ∩ Uk and Ui ∩ Ui+1 for i = 1, . . . ,k − 1
are path-connected. Let R < 1 be big enough so that U1, . . . , Uk covers τR ∗ αR ∗ τ−1

R = v . We can reparametrize v so that
v([t j−1, t j]) ⊂ U j,∀ j = 1, . . . ,k. For every j < k define c j to be a path in U j ∩ U j+1 between w(t j) and v(t j), and for
simplicity let c0 = ck be the constant path at x0. Now for i = 1, . . . ,k let wi := ci−1 ∗ v|[ti−1,ti ] ∗ c−1

i . Obviously w1 ∗ · · · ∗
wk � v , contradicting the conclusion of Definition 2.10(3). �
Definition 3.5. We call a space X shape injective, if the natural homomorphism π1(X) → π̌1(X) is injective. For further
information see Section 3 of [6].

Proposition 3.6. The (based and unbased) Spanier groups of the Hawaiian Earring are trivial.

Proof. We argue for the unbased Spanier-group, since the based Spanier group is just a subgroup of it, anyhow.
This proposition can be deduced from the literature, namely from the shape-injectivity that the Hawaiian Earring en-

joys as a one-dimensional set ([4, Theorem 1.1] or [2, Theorem 5.11]) or as planar set [5, Theorem 2], together with the
proposition [6, 4.8] which in this case implies that the Spanier group is contained in a kernel of an injective map. �
Theorem 3.7. The space Y ′ is homotopically path-Hausdorff.

Sketch of the proof. A space can only fail to fulfill the homotopic path-Hausdorffness, if arbitrarily close to some path w
there exist homotopic representatives of the same path v with v �� w . In such a case the space must be wild in the
neighbourhood of the trace of w . Now Y ′ is wild only at the central axis, which is a contractible part of the space. Thus w
will be in the trivial homotopy class, and v must be non-trivial. Therefore v must leave the central axis through some tunnel
and return in such a way that it cannot be deformed onto the central axis (e.g., by using other tunnels, or since it has circled
around the central axis before return). In any case v must have left the tunnel and also spent a segment on the surface.
However, the place where v leaves the tunnel and continues via running over the waved surface, will be a characteristic
of the non-trivial homotopy class of v . Now, when in order to violate the condition of Definition 2.10(3), we have to
construct another homotopic representative of v subordinated to a covering that does not contain the places mentioned in
the previous sentence, it will belong to a different homotopy class. Thus our attempts to violate Definition 2.10(3) are bound
to fail.

In a projected forthcoming publication we plan to extend the techniques of combinatorially describing homotopy classes
of paths in HE from [15, 2.3–2.10], [16, Section 1] to the space Y ′ . Based on the appropriate combinatorial tool we plan to
publish a precise proof of this theorem, also.

The situation (cf. Proposition 3.4(7)) was different for the space Z ′: Here the wild part contained non-nullhomotopic
curves; thus it was possible that w �� 1 and v � 1. Indeed all paths τR ∗ αR ∗ τ−1

R that we constructed in the proof of
Proposition 3.4(7) were nullhomotopic. �
4. Proof of Theorem 2.8: algebraic characterization of semilocal simple connectivity

(1, “⇐�”): If the Spanier group π(U , x0) vanishes for some covering U , then the products u1 v1u−1
1 of expression (2.3)

are nullhomotopic loops. Such a product is contractible if and only if v1 is contractible as both loops are freely homotopic.
Furthermore, the contractibility of a loop never depends on whether the endpoint is kept fixed. Thus the elements of the
covering U suffice to prove that X is unbased semilocally simply connected as every loop v1 that is contained in some
element of U is contractible.

(1, “�⇒”): For every point of X choose a neighbourhood which satisfies the condition of Definition 2.2 and form the
covering U of these neighbourhoods. Every product in the form of expression (2.3) can be contracted by first contracting
the vi -loops, and then contracting uiu

−1
i . Hence the Spanier group is trivial.

(2, “⇐�”): If for some open covering V = {(U j, x j) | j ∈ J } by pointed sets (U j, x j) the Spanier group π∗(V , x0) vanishes,
then also the products u1 v1u−1

1 of expression (2.5) are nullhomotopic paths. Based on these substitutions, the same line of
arguments as in (1, “⇐�”) can be used. However, while in expression (2.3) vi could have been any loop in a neighbour-
hood U j , the definition of π∗ requires to consider only such vi that are based at x j . If U j should contain loops whose trace
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has no path-connection to x j inside U j , our assumptions do not suffice to conclude that such loops will also be contractible.
Thus in this case we can only conclude that Definition 2.1, but not that Definition 2.2 will be fulfilled.

(2, “�⇒”): For every point x ∈ X choose a neighbourhood Ux so that π1(Ux, x) → π1(X, x) is zero. Form an open cover-
ing U of pointed sets {(Ux, x) | x ∈ X} and consider its based Spanier group. Every product in the form of expression (2.5)
can be contracted by first contracting the loops vi , and then contracting uiu

−1
i . Hence the based Spanier group is trivial.

(3): It suffices to observe that the triviality of all loops implies triviality of all based loops within any arbitrary neigh-
bourhood.

(4): Given a point x ∈ X choose a neighbourhood U of x that satisfies the condition of Definition 2.1. Then any path-
connected neighbourhood V ⊂ U of x satisfies the condition of Definition 2.2.

(5): See Proposition 3.1.

5. Proof of Theorem 2.9: algebraic criteria for homotopic Hausdorffness

Convention. Within this section the overline (“( )”) denotes the reversion of the orientation of a path.

Proof. We split the statement of Theorem 2.9 into two implications:

lim←− π∗(U ) is trivial.
(1)�⇒ homotopic path-Hausdorffness

(2)�⇒ existence of a generalized universal covering space.
(1): Suppose X is not homotopically path-Hausdorff. Using the notation of Definition 2.10(3) there exist paths

w, v : [0,1] → X with w(0)=v(0)=P , w(1)=v(1)=Q and a non-trivial homotopy class α ∈ π1(X, P ), α := [w ∗ v] for which
the conditions of Definition 2.10(3) do not hold. We claim that α is contained in lim←− π∗(U ). The proof will resemble that of
Proposition 3.4(1).

Let U be an open cover of X by pointed sets (cf. Definition 2.4). Choose a cover U1, U2, U3, . . . , Uk of w([0,1]) by
open sets from U so that there exists a partition 0 = t0 < t1 < t2 < · · · < tk = 1 for which U j covers w([t j−1, t j]) and the
according base point for each of the U j lies on the segment w([t j−1, t j]). Since Definition 2.10(3) is not satisfied there
exist paths w j such that w j connects w(t j−1) with w(t j) inside U j , and so that the concatenation v ′ := w1 ∗ · · · ∗ wk is
homotopic to v . Assume that v ′ is parametrized so that v(t j) = w(t j) for j = 0, . . . ,k. Note that the concatenation

(v|[t0,t0] ∗ w|[t0,t1] ∗ v|[t0,t1]) ∗ (v|[t0,t1] ∗ w|[t1,t2] ∗ v|[t0,t2]) ∗ · · · ∗ (v|[t0,tk−1] ∗ w|[tk−1,tk] ∗ v|[t0,tk])

is homotopic to α and contained in π∗(U , P ) as each of the factors v|[t0,ti−1] ∗ w|[ti−1,ti ] ∗ v|[t0,ti ] = v|[t0,ti−1] ∗ w|[ti−1,ti ] ∗
v|[ti−1,ti ] ∗ v|[t0,ti−1] is a conjugate of the loop w|[ti−1,ti ] ∗ v|[ti−1,ti ] , that is contained in U j ∈ U and has its base point w(ti−1)

inside U j path-connected to the base point of U j .
(2): We give a proof by contradiction. Recall that the standard existence proof of covering spaces (e.g. [11, p. 393]) is

based on interpreting the Universal Path Space (as it was called by [1]) as a covering space. Also, the generalized universal
covering spaces in the sense of [6] are constructed on the basis of considering the Universal Path Space, with an adaptation
of the definition of the topology to the situation of the absence of semilocal simple connectivity. Therefore the points in the
covering space of (X, x0) are represented by (homotopy classes of) paths in the base space and the topology is induced by
the sets

U(γ , U ) = {
γ ∗ δ; δ : [0,1] → U , δ(0) = γ (1)

}

where γ : [0,1] → X is a path originating at x0 and U ⊂ X is an open neighbourhood of γ (1).
The assumption for the desired proof by contradiction is the following: There does not exist a generalized universal

covering space. By [6, 2.14] this means, that there exists a path w : [0,1] → X which allows two different lifts to the
covering space with the same start-point. We can assume that t �→ wt := w|[0,t] and t �→ vt are two different lifts of path w
with v0 = w0 being a constant path at w(0) and v := v1 �� w1 = w . We claim that such a situation does not comply with
the conditions of Definition 2.10(3).

Choose any covering U1, . . . , Uk of w([0,1]) such that for a suitable partition 0 = t0 < t1 < t2 < t3 < · · · < tk = 1, U j cov-
ers w([t j−1, t j]), as suggested by Fig. 7. Let us focus on the interval [ti−1, ti] for some fixed i. By the continuity of the lift
v there exists for every t ∈ [ti−1, ti] a neighbourhood Vt of t so that vs ∈ U(vt , Ui),∀s ∈ Vt . Hence we can find a partition
ti−1 = s0 < s1 < · · · < sl = ti so that vs ∈ U(vs j , Ui),∀s ∈ [s j, s j+1], i.e. vs j ∗ δ j � vs j+1 for some path δ j in Ui . This condition
implies the existence of a path ṽ i : [ti−1, ti] → Ui between vti−1 (1) and vti (1), so that vti−1 ∗ ṽ i � vti . The paths ṽ i , defined
on [ti−1, ti], induce a path ṽ : [0,1] → X .

Note that

ṽ := ṽ1 ∗ ṽ2 ∗ · · · ∗ ṽk � (v0 ∗ v0) ∗ ṽ1 ∗ (vt1 ∗ vt1) ∗ ṽ2 ∗ · · · ∗ (vtk−1 ∗ vtk−1) ∗ ṽk

� (v0 ∗ ṽ1) ∗ vt1 ∗ (vt1 ∗ ṽ2) ∗ vt2 ∗ (vt2 ∗ ṽ3) ∗ · · · ∗ vtk−1 ∗ (vtk−1 ∗ ṽk)

� vt1 ∗ vt1 ∗ vt2 ∗ vt2 ∗ vt3 ∗ · · · ∗ vtk−1 ∗ vtk � vtk = v1 = v

hence with letting wi := ṽ i we obtain that Definition 2.10(3) is not fulfilled. �
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Fig. 7. Two different lifts of the path w . The drawing illustrates the proof-construction of step (2) in the special situation where we have k=5. In addition,
this figure is drawn in a way that for each j we just get l = 1, i.e. just the case of a trivial s-partition is pictured. The line in bold corresponds to the
path ṽ .

Fig. 8. Diagram.

6. Overview of the implications

The diagram of this section (see Fig. 8) gathers together a number of implications of properties of a space that occurred
in, or are closely related to, the ones from our Theorems 2.8 and 2.9. No assumption other than path-connectedness (cf.
Remark 2.7) is made here. According to the enumeration of the implications in the diagram, for each arrow a reference or a
sketch of the proof is given. The label (1, “�⇒”) means, that an argument is to be given, why this implication is true, while
(1, “⇐�/ ”) means, that an argument is to be given, why the converse of this implication is in general not true.

(1, “�⇒”): Follows from the definition of π1.
(1, “⇐�/ ”): The counterexample is Y (see Proposition 3.1).
(2, “�⇒”): This is a passage to an obviously weaker property.
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(2, “⇐�/ ”): The Hawaiian Earring is an appropriate example. It contains arbitrarily small essential loops in the neigh-
bourhood of the accumulation point. Therefore it is not semilocally simply connected. On the other hand, one-dimensional
spaces are weakly homotopically Hausdorff by [2, Corollary 5.4(2)].

(3, “�⇒”): The assumption means that every point has a neighbourhood such that all loops in this neighbourhood are
contractible. Such neighbourhoods suffice to prove that the space is strongly homotopically Hausdorff.

(3, “⇐�/ ”): Similarly as for (2, “⇐�/ ”) the Hawaiian Earring is an appropriate example. It is easy to see that it is not
unbased semilocally simply connected at the accumulation point due to arbitrarily small essential loops. It is slightly harder
to see that it is strongly homotopically Hausdorff.

Let us denote the accumulation point of the Hawaiian Earring HE by x0 and let us enumerate the loops of HE by li ,
i = 1,2, . . . , i.e.

⋂
i li = {x0} (cf. Fig. 5). It is enough to consider the condition for strong homotopic Hausdorffness at x0

as all other points have contractible neighbourhoods. Let {V i}i=1,2,... denote a basis of open neighbourhoods of x0 so that
li ⊂ V j iff i � j. Suppose there exists a loop α = α1 which is freely homotopic to some loop αi in V i for every i > 1. Note
that there is a strong deformation retraction

V i → W i :=
⋃

j�i

l j .

Therefore we can assume that every αi is a loop in W i . For every i the loops αi and αi+1 are homotopic. By Lemma 4.3(1)
of [3] the homotopy hi between them can be chosen within W i . We define a map f : B2(o,1) → HE on a closed unit disc
with midpoint o by assigning f |S1(o,1/i) = αi and by using the homotopies hi for defining

f |
B2(o,1/i)−B2(o,1/(i+1))

:= hi

on the closed annuli between the concentric circles S1(o,1/i). The map f is obviously continuous on B2(o,1) − {o} as it is
obtained by a locally finite gluing of maps that agree on the intersections of annular domains (i.e. on concentric circles). It
is also continuous at o because for every i the preimage of V i contains B2(o,1/i). The map f provides a nullhomotopy for
α = αi .

(4, “�⇒”): This is a passage to a weaker requirement.
(4, “⇐�/ ”): The space Y serves as an example by Proposition 3.1.
(5, “�⇒”): This is a weakening of the conditions, since π∗-groups contain fewer elements than π -groups.
(5, “⇐�/ ”): The space Y serves as an example. To prove it we use Proposition 3.1. The non-triviality of the Spanier group

of Y and (7) assure that there is no cover with non-trivial Spanier group. Yet Y is semilocally simply connected.
(6, “�⇒”): By Remark 2.6 the condition “π∗(U ) = 1” for some cover U guarantees the triviality of the inverse limit.
(6, “⇐�/ ”): Again the Hawaiian Earring gives the corresponding example. Every covering of the accumulation point con-

tains small essential loops entirely and thus no π∗(U )-group can be trivial. In Proposition 3.6 it was shown that it has
trivial Spanier group.

(7, “�⇒”): The argument here is analogous to that of (6, “�⇒”).
(7, “⇐�/ ”): The same example as for (6, “⇐�/ ”) suffices. For locally path-connected spaces there is no difference between

the based and unbased statements.
(8, “�⇒”): Follows from the same argument as (5, “�⇒”).
(8, “⇐�/ ”): The space Y can be used for this purpose by Proposition 3.1.
(9, “⇐⇒”): This is the statement of Theorem 2.8(1).
(10, “⇐⇒”): This is the statement of Theorem 2.8(2).
(11, “⇐�”): If a space is not strongly homotopically Hausdorff, then there exists a point P and a non-trivial free homo-

topy class α which can represented in any neighbourhood of P . This class will appear in every π(U ) (and thus in their
inverse limit), since each U has to contain a neighbourhood of P .

(11, “�⇒/ ”): The corresponding example is Z ′ . By Proposition 3.4 it is strongly homotopically Hausdorff but has a non-
trivial Spanier group.

(12, “⇐�”): The same argument as for (11) applies in terms of based homotopies.
(12, “�⇒/ ”): The same counterexample as for (11) applies as the space Z ′ is locally path-connected, thus the base points

do not matter.
(13, “�⇒”): The implication follows from statements (10), (6) and (16).
(13, “⇐�/ ”): The Hawaiian Earring can be used as an example. It is obviously not semilocally simply connected. On the

other hand, the proof of (6, “⇐�/ ”) establishes the triviality of the based Spanier group of HE , hence it is homotopically
path-Hausdorff by (16).

(14, “�⇒”): This has been observed in Remark 2.11 already.
(14, “⇐�/ ”): The space Z ′ can be used for this purpose by Proposition 3.4.
(15, “�⇒”): This is implication (2) from the proof of Theorem 2.9 in Section 5.
(16, “�⇒”): This is implication (1) from the proof of Theorem 2.9 in Section 5.
(16, “⇐�/ ”): The corresponding example is Y ′ by Proposition 3.2.
(17, “�⇒”) and (18, “�⇒”): These implications have been proved in [6, 4.7] and [6, 4.8] respectively. Implication (17)

also follows from implications (8), (16) and (15).
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(17, “⇐�/ ”): The corresponding example is Y ′: By Proposition 3.2(1) it has non-trivial Spanier group, but according to
(15) and Proposition 3.2(7) it has a generalized covering space.

(18, “⇐�/ ”): The corresponding example is Z . The fundamental group of Z is Z generated by the outer cylinder. This
follows, since by [3, Lemma 4.3(1)] any nullhomotopy of a loop that is not passing through the arc C need not to pass
through C , either, but Z − C consists of two different path-components: the outer cylinder, and the contractible surface
portion. The fundamental group of Z vanishes when we pass to the shape group (i.e. the outer cylinder is homotopically
trivial in every neighbourhood of Z in R

3), hence the space is not shape injective. On the other hand the Spanier group
of Z is trivial by Proposition 3.3(1).

(19, “⇐�”): By contradiction: The presence of small loops in the sense of [13] is equivalent to the absence of weak
homotopic Hausdorffness. Every small loop induces a non-trivial lift by (cf. [13, Lemma 16] or [6, Lemmas 2.10–2.11]),
hence there is no generalized universal covering space in terms of [6].

(20, “⇐⇒/ ”): The corresponding examples are Y and Z ′ by Propositions 3.1 and 3.4.
(21, “⇐⇒/ ”): The corresponding examples are Y and Z ′ by Propositions 3.1 and 3.4.
(22, “�⇒/ ”): The corresponding example is Y by Proposition 3.1(1) and the proof of Proposition 3.1(2).
(22, “⇐�/ ”): The corresponding example is the Hawaiian Earring. The argument is the same as that of “(6, ⇐�/ )”, since

there is no difference between based and unbased statements for locally path-connected spaces.
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