CONTINUITY-LIKE PROPERTIES AND CONTINUOUS SELECTIONS

J. MALEŠIČ and D. REPOVŠ (Ljubljana)

1. Introduction

Recall the definition of continuity of a map f between metric spaces (X, d) and (Y, ρ) :

$$(\forall x \in X)(\forall \varepsilon > 0)(\exists \delta > 0) (\forall x' \in X) \Big(d(x, x') < \varepsilon \Rightarrow \rho \big(f(x), f(x') \big) < \varepsilon \Big).$$

The question arises whether it is possible to choose $\delta > 0$, which continuously depends on the triple $(x, \varepsilon, f) \in X \times \mathbb{R}^+ \times \mathcal{C}(X, Y)$, where $\mathcal{C}(X, Y)$ denotes the set of all continuous maps from X into Y, endowed with the metric of *uniform convergence*:

dist
$$(f,g) = \sup \left\{ \min \left\{ 1, \rho(f(x), g(x)) \right\} \mid x \in X \right\}.$$

In [6] the following result was proved:

THEOREM 1.1. Let (X, d) and (Y, ρ) be metric spaces and suppose that X is locally compact. Then there exists a continuous function $\hat{\delta} : X \times \mathbb{R}^+$ $\times C(X,Y) \to \mathbb{R}^+$ such that for every $(x, \varepsilon, f) \in X \times \mathbb{R}^+ \times C(X,Y)$ and for every $x' \in X$ the following implication holds:

$$d(x,x') < \hat{\delta}(x,\varepsilon,f) \Rightarrow
ho(f(x),f(x')) < \varepsilon.$$

The purpose of the present paper is: (a) to prove an analogue of Theorem 1.1 where the continuous choice depends on *five* variables: three of them are as in Theorem 1.1 and the remaining two are the metrics on the spaces Xand Y, compatible with the given metrizable topologies on X and Y; (b) to avoid the local compactness restriction in Theorem 1.1; and (c) to examine some similar problems for noncontinuous maps, e.g. for the lower or upper semicontinuous real-valued functions.

We shall answer (a), (b) and (c) from a rather formal point of view. Namely, we shall substitute the inequality $\rho(f(x), f(x')) < \varepsilon$ in the standard definition of continuity by some suitable predicate P in the variables $x, x', \varepsilon, f, \rho$. We shall call such a predicate a *continuity-like predicate*. A positive answer to (b) was suggested by [1] and [2] and in the present paper we actually exploit an idea of G. de Marco (as explained in [1]).

For metrizable spaces X and Y we denote by F = F(X, Y) the set of all single-valued maps: $X \to Y$. We endow the set F with the topology of the uniform convergence. If ρ is a metric on a space Y, compatible with the topology on Y, then the following metric on a space F is compatible with the topology of the uniform convergence:

(1)
$$\tilde{\rho}(f,g) = \sup_{x \in X} \min \left\{ 1, \rho(f(x),g(x)) \right\}, \quad f,g \in F.$$

For a metrizable space X we denote by M_X the set of all metrics which are compatible with the topology on X.

Since each metric $d: X \times X \to \mathbf{R}$ is a single-valued function we endow the set M_X with the relative topology, induced by the inclusion $M_X \subset F(X \times X, \mathbf{R})$. Hence the metric on the space M_X is defined as follows:

(2)
$$\operatorname{dist}(d,d') = \sup_{x,x' \in X} \min \left\{ 1, \left| d(x,x') - d'(x,x') \right| \right\}.$$

We shall represent different types of continuity of maps from X into Y as predicates, defined on the domain $X \times X \times \mathbf{R}^+ \times F \times M_X \times M_Y$. Let $P(x, x', \varepsilon, f, d, \rho)$ be a predicate (i.e. a logical function) of the variables

$$(x, x', \varepsilon, f, d, \rho) \in X \times X \times \mathbf{R}^+ \times F \times M_X \times M_Y.$$

Denote by P^+ the subset of $X \times X \times \mathbf{R}^+ \times F \times M_X \times M_Y$ consisting of all 6-tuples $(x, x', \varepsilon, f, d, \rho)$ such that the proposition $P(x, x', \varepsilon, f, d, \rho)$ is valid.

DEFINITION 1.2. A map $f: X \to Y$ is said to be *P*-continuous if for each $x \in X, \varepsilon \in \mathbb{R}^+, d \in M_X, \rho \in M_Y$, there exists a neighborhood $\mathcal{U} = \mathcal{U}_{x,\varepsilon,f,d,\rho} \subset X$ of the point x such that $\{x\} \times \mathcal{U} \times \{\varepsilon\} \times \{f\} \times \{d\} \times \{\rho\} \subset P^+$. Denote by F_P the set of all *P*-continuous maps from X into Y. A predicate P is said to be continuity-like if the set F_P is nonempty.

As special cases of continuity-like predicates one can consider the usual properties of continuity, lower (upper) semicontinuity of real-valued functions, α -continuity, locally uniform continuity, etc. (See also Section 3.)

DEFINITION 1.3. Let X and Y be metrizable spaces and let P be a continuity-like predicate on $X \times X \times \mathbb{R}^+ \times F \times M_X \times M_Y$. The multivalued map $\Delta_P: X \times \mathbb{R}^+ \times F_P \times M_X \times M_Y \to \mathbb{R}^+$, defined by the relation

$$\Delta_P(x,\varepsilon,f,d,\rho) = \left\{ \delta > 0 \mid \forall x' \in X \, d(x,x') < \delta \Rightarrow (x,x',\varepsilon,f,d,\rho) \in P^+ \right\}$$

is said to be the modulus of a predicate P.

REMARK. From the definition of *P*-continuous functions it follows immediately that the set $\Delta_P(x,\varepsilon, f, d, \rho)$ is nonempty for a continuity-like predicate *P*. We also recall that a single-valued map $\phi : A \to B$ is called a *selection* of a given multivalued map $\Phi : A \to B$ if $\phi(x) \in \Phi(x)$, for all $x \in A$.

The main result in this note is a criterion for the existence of a continuous selection $\hat{\delta}$ of the modulus Δ_P of a continuity-like predicate P, formulated in Theorem 1.4 below. Of course, one can consider Δ_P as a multivalued map from $X \times \mathbf{R}^+ \times F_P \times M_X \times M_Y$ into \mathbf{R}^+ with nonempty convex values. An attempt of a direct application of E. Michael's theory of continuous selections [5] leads to some restrictions for the domain X, because of the restriction of lower semicontinuity for Δ_P , see [6]. Here we avoid E. Michael's selection theorems altogether.

Denote by diag X the diagonal subset $\{(x \times x) \mid x \in X\}$ in $X \times X$, and let

$$P_0^+ = P^+ \cap (X \times X \times \mathbf{R}^+ \times F_P \times M_X \times M_Y).$$

The definition of a P-continuous map implies that

$$(\operatorname{diag} X) \times \mathbf{R}^+ \times F_P \times M_X \times M_Y \subset P_0^+.$$

THEOREM 1.4 (criterion for the existence of a continuous selection). Let P be a continuous-like predicate and let Δ_P be its modulus. Then the following two assertions are equivalent:

(i) There exists a continuous single-valued selection $\hat{\delta}$ of modulus Δ_P ; and

(ii) The set $(\operatorname{diag} X) \times \mathbf{R}^+ \times F_P \times M_X \times M_Y$ lies in the interior of the set P_0^+ .

2. Proof of Theorem 1.4

Proof of (i) \Rightarrow (ii). Let $(x_0, x_0, \varepsilon_0, f_0, d_0, \rho_0) \in (\text{diag } X) \times \mathbf{R}^+ \times F_P \times M_X$ $\times M_Y$ be an arbitrary point and let $\hat{\delta}$ be a continuous selection of Δ_P . Denote $\hat{\delta}_0 = \hat{\delta}(x_0, \varepsilon_0, f_0, d_0, \rho_0)$. Since $\hat{\delta}$ is continuous, the preimage $G = \hat{\delta}^{-1}(\hat{\delta}_0/2, +\infty)$ of the interval $\left(\frac{\hat{\delta}_0}{2}, +\infty\right)$ is an open set in the space $X \times \mathbf{R}^+ \times F_P \times M_X \times M_Y$. The set G contains the point $(x_0, \varepsilon_0, f_0, d_0, \rho_0)$, so this point is an interior point of G. By the definition of the product topology there exists an open neighborhood \mathcal{U} of the point $(\varepsilon_0, f_0, d_0, \rho_0)$ in the space $\mathbf{R}^+ \times F_P \times M_X \times M_Y$ and there exists an open ball $B(x_0; r)$ with radius r such that $B(x_0; r) \times \mathcal{U} \subset G$. We can assume that $r < \frac{\hat{\delta}_0}{4}$. The set $\mathcal{V} = B\left(x_0; \frac{\hat{\delta}_0}{4}\right)$ $\times B(x_0; r) \times \mathcal{U}$ is open and contains the point $(x_0, x_0, \varepsilon_0, f_0, d_0, \rho_0)$. Moreover, \mathcal{V} is a subset of P_0^+ . To see this, let $x \in B\left(x_0; \frac{\hat{\delta}_0}{4}\right)$ and $(x', \varepsilon, f, d, \rho) \in B(x_0; r) \times \mathcal{U}$ be arbitrary points.

Since $d(x,x_0) < \frac{\hat{\delta}_0}{4}$ and $d(x_0,x') < \frac{\hat{\delta}_0}{4}$ it follows $d(x,x') < \frac{\hat{\delta}_0}{2}$. But $\hat{\delta}(x',\varepsilon, f, d, \rho) > \hat{\delta}_0$, therefore $d(x,x') < \hat{\delta}(x',\varepsilon, f, d, \rho)$. This implies that $(x,x',\varepsilon, f, d, \rho) \in P_0^+$. We have proved that the point $(x_0,x_0,\varepsilon_0,f_0,d_0,\rho_0)$ is an interior point of P_0^+ .

To prove the inverse implication (ii) \Rightarrow (i) we need some lemmas on the spaces of metrics and on maps between them. Let d and ρ be metrics on the spaces X and Y, respectively. It is known that the metric $\tau_{d\rho}$ which is defined by the equality

$$\tau_{d\rho}\big((x,y),(x',y')\big) = d(x,x') + \rho(y,y')$$

where (x, y) and (x', y') are points in $X \times Y$, induces the product topology on the space $X \times Y$.

LEMMA 2.1 (on transfer of metrics onto the product space). The map τ : $M_X \times M_Y \to M_{X \times Y}$ which assigns to the pair $(d, \rho) \in M_X \times M_Y$ of metrics the metric $\tau_{d\rho} \in M_{X \times Y}$, is continuous.

PROOF. Let $d, d' \in M_X$ and $\rho, \rho' \in M_Y$. It suffices to prove the inequality

(3)
$$\operatorname{dist}(\tau_{d\rho}, \tau_{d'\rho'}) \leq \operatorname{dist}(d, d') + \operatorname{dist}(\rho, \rho').$$

Let $(x, y) \in X \times Y$ and $(x', y') \in X \times Y$. Then

$$\begin{aligned} & \left| \tau_{d\rho} \big((x, y), (x', y') \big) - \tau_{d'\rho'} \big((x, y), (x', y') \big) \right| \\ & = \left| d(x, x') + \rho(y, y') - d'(x, x') - \rho'(y, y') \right| \\ & \leq \left| d(x, x') - d'(x, x') \right| + \left| \rho(y, y') - \rho'(y, y') \right|. \end{aligned}$$

Taking a minimum between 1 and the value of the expression on the left, and between 1 and the value of the expression on the right, respectively, and then taking the supremum over all four variables x, x', y and y', we obtain the inequality (3). \Box

In formula (1) we assigned to the metric ρ , acting on the space Y, the metric $\tilde{\rho}$, acting on the space F = F(X, Y).

LEMMA 2.2 (on the transfer of a metric onto the space of functions). The map $\tau: M_Y \to M_F$ which assigns to each metric $\rho \in M_Y$ the metric $\tilde{\rho} \in M_F$, is continuous.

PROOF. Let $\rho, \rho' \in M_Y$. It suffices to prove the inequality

$$\operatorname{dist}(\tilde{
ho}, \tilde{
ho}') \leqq \operatorname{dist}(
ho,
ho').$$

Let $f,g \in F(X,Y)$ be arbitrary functions. By the definition of the metric in the space M_F it suffices to prove that

$$\min\left\{1, \left|\tilde{\rho}(f,g) - \tilde{\rho}'(f,g)\right|\right\} \leq \operatorname{dist}(\rho, \rho').$$

Moreover, by the definition of metrics $\tilde{\rho}$ and $\tilde{\rho}'$ in F it suffices to prove that for each $x \in X$, the following inequality holds:

(4)

$$\min\left\{1, \left|\min\left\{1, \rho(f(x), g(x))\right\} - \min\left\{1, \rho'(f(x), g(x))\right\}\right|\right\} \leq \operatorname{dist}(\rho, \rho').$$

It is easy to show that for arbitrary $a, b \in \mathbf{R}$ we have

$$|\min\{1,a\} - \min\{1,b\}| \leq \min\{1,|a-b|\}.$$

Therefore, instead of (4) it suffices to prove the following inequality:

$$\min\left\{1,\left|\rho\big(f(x),g(x)\big)-\rho'\big(f(x),g(x)\big)\right|\right\} \leq \operatorname{dist}(\rho,\rho').$$

But since f(x) and g(x) are points in Y, the last inequality holds because of Definition 1.3 of the metric dist $\in M_Y$. \Box

Let G = G(X, Y) be some subspace of the space of functions F = F(X, Y). Also formula (1), used with G instead of F, defines a map $\tau_G : M_Y \to M_G$.

LEMMA 2.3. The map $\tau_G: M_Y \to M_G$ is continuous.

PROOF. Let $r: M_F \to M_G$ be the restriction map. If $\tilde{\rho} \in M_F$ is a metric, then $\tilde{\rho}$ is a function $F \times F \to \mathbf{R}$ and $r(\tilde{\rho})$ is simply its restriction $\tilde{\rho}|_{G \times G}$. Since r is continuous and τ_G factorizes as

$$\tau_G: M_Y \xrightarrow{\tau} M_F \xrightarrow{r} M_G$$

 τ_G is also continuous. \Box

As usual, let $\mathcal{C} = \mathcal{C}(X, Y)$ denote the subspace of all continuous functions in the space F(X, Y), i.e. $\mathcal{C}(X, Y)$ is endowed with the topology of uniform convergence. It is well-known (see [4]) that the *evaluation* map $e: X \times \mathcal{C}(X, Y) \to Y$ which maps every pair (x, f) to the point $f(x) \in Y$, is jointly continuous, when $\mathcal{C}(X, Y)$ is endowed with the topology of uniform convergence.

Let Z be a metrizable space. Since the space M_Z is a subspace of the space $\mathcal{C}(Z \times Z, \mathbf{R})$, the following lemma holds.

LEMMA 2.4. The map $e: Z \times Z \times M_Z \to \mathbf{R}$ defined by e(z, z', d) = d(z, z') is continuous. \Box

Let S be a fixed subset of a metrizable space Z. If $d \in M_Z$ is a metric, then for each $z \in Z$ denote as usual

$$d(z,S) = \inf_{s \in S} d(z,s)$$

and call the number d(z, S) the distance of the point z from the set S. The following lemma is a modification of Lemma 2.4.

LEMMA 2.5. The map $e_S: Z \times M_Z \to \mathbf{R}$ for a fixed subset S, defined by $e_S(z) = d(z, S)$ is continuous. \Box

It is well-known that the function $f_{S,d}: Z \to \mathbb{R}$ defined by $f_{S,d}(z) = d(z,S)$ is continuous [3].

Introduce the map $f_S: M_Z \to \mathcal{C}(Z, \mathbf{R})$ by setting $f_S(d) = f_{S,d}$. The function $e_S: Z \times M_Z \to \mathbf{R}$ can be factorized as follows:

$$e_S: Z \times M_Z \xrightarrow{\operatorname{id}_Z \times f_S} Z \times C(Z, \mathbf{R}) \xrightarrow{e} \mathbf{R}.$$

Here e is a jointly continuous map. Therefore only the continuity of f_S is to be proved. It suffices to prove that the following inequality holds for each $z \in Z$:

(5)
$$\min\left\{1, \left|d(z,S) - d'(z,S)\right|\right\} \leq \operatorname{dist}(d,d').$$

Inequality (5) can easily be obtained from the fact that for each $\varepsilon > 0$, there exists a point $s \in S$ such that

(6)
$$\left| d(z,S) - d'(z,S) \right| < \left| d(z,s) - d'(z,s) \right| + \varepsilon.$$

To prove the inequality (6) it is necessary to consider two different possibilities:

$$d(z,S) > d'(z,S)$$
 or $d(z,S) < d'(z,S)$.

In the case when d(z, S) > d'(z, S) we choose an $s \in S$ such that

(7)
$$d'(z,s) \ge d'(z,S) - \varepsilon.$$

Combining (7) with $d(z, S) \leq d(z, s)$ we obtain

$$d(z,S) - d'(z,S) \leq d(z,s) - d'(z,s) + \varepsilon$$

hence also (6). In the case when d(z,S) < d'(z,S), the proof is analogous.

Proof of (ii) \Rightarrow (i). Assume that each point in the set diag $X \times \mathbf{R}^+ \times F_P \times M_X \times M_Y$ is an interior point in P_0^+ and construct a continuous selection

$$\hat{\delta}: X \times \mathbf{R}^+ \times F_P \times M_X \times M_Y \to \mathbf{R}^+$$

for the modulus Δ_P .

Let "dist" be the product metric in the space $X \times X \times \mathbf{R}^+ \times F_P \times M_X \times M_Y$ and let P^- be the complement of the set P^+ in this space. If $P^- = \emptyset$ then $\Delta_P \equiv \mathbf{R}^+$ and we can put $\hat{\delta} \equiv 1$, for example. In the case $P^- \neq \emptyset$ for arbitrary point $(x, \varepsilon, f, d, \rho) \in X \times \mathbf{R}^+ \times F_P \times M_X \times M_Y$ let

$$\hat{\delta}(x,\varepsilon,f,d,
ho) = \operatorname{dist}\left((x,x,\varepsilon,f,d,
ho),P^{-}\right).$$

Since the point $(x, x, \varepsilon, f, d, \rho)$ is an interior point of P_0^+ , $\hat{\delta}$ is strictly positive.

Let $x' \in X$ be a point such that $d(x, x') < \hat{\delta}(x, \varepsilon, f, d, \rho)$. By definition of the product metric we have that

$$\operatorname{dist}\left((x,x,arepsilon,f,d,
ho),(x,x',arepsilon,f,d,g)
ight) \leqq d(x,x')$$

hence

$$\begin{split} \operatorname{dist}\left((x,x,\varepsilon,f,d,\rho),(x,x',\varepsilon,f,d,\rho)\right) &\leq d(x,x') < \hat{\delta}(x,\varepsilon,f,d,\rho) \\ &= \operatorname{dist}\left((x,x,\varepsilon,f,d,\rho),P^{-}\right). \end{split}$$

It follows that $(x, x', \varepsilon, f, d, \rho) \in P^+$. We have proved that $\hat{\delta}$ is a selection for the modulus Δ_P . It remains to prove that the function $\hat{\delta}(x, \varepsilon, f, d, \rho)$ is a continuous function of all of its variables.

Denote by $Z = X \times X \times \mathbf{R}^+ \times F_P \times M_X \times M_Y$. The construction of the function $\hat{\delta} : X \times \mathbf{R}^+ \times F_P \times M_X \times M_Y \to \mathbf{R}^+$ implies that $\hat{\delta}$ can be composed from the following sequence of maps:

- (1) $X \times \mathbb{R}^+ \times F_P \times M_X \times M_Y \to X^2 \times \mathbb{R}^+ \times F_P \times M_X^4 \times M_Y^2$, given by the diagonal embeddings $X \to X^2$, $M_X \to M_X^4$, $M_Y \to M_Y^2$ and identities on the remaining factors;
- (2) $X^2 \times \mathbf{R}^+ \times F_P \times M_X^4 \times M_Y^2 \to Z \times M_{X^2} \times M_{F_P} \times M_{M_X} \times M_{M_Y}$, given by the transfers of metrics $M_X^2 \to M_{X^2}$, $M_Y \to M_{F_P}$, $M_X \to M_{M_X}$, $M_Y \to M_{M_Y}$ and identities on the remaining factors;
- (3) $Z \times M_{X^2} \times M_{F_P} \times M_{M_X} \times M_{M_Y} \to Z \times M_Z$, given by the transfer of metrics into the product space; and
- (4) $Z \times M_Z \to \mathbf{R}^+$, given by the evaluation map e_S as in Lemma 2.5, for $S = P^-$.

All these maps are continuous because of Lemmas 2.1-2.5. Theorem 1.4 is thus finally proved. $\hfill\square$

3. Applications

(a) Continuity. The predicate C is defined on the domain of variables $X \times X \times \mathbf{R}^+ \times F \times M_X \times M_Y$ as follows:

$$C(x,x',\varepsilon,f,d,\rho) = \left(\rho(f(x),f(x')) < \varepsilon\right).$$

We assert that C is a continuity-like predicate. Indeed, F_C coincides with $\mathcal{C}(X,Y) \neq \emptyset$. Hence the predicate C is the predicate of the ordinary continuity.

PROPOSITION 3.1. The predicate C of the ordinary continuity satisfies the criterion for existence of continuous selections of the modulus Δ_C .

PROOF. By Theorem 1.4 it suffices to prove that the set C_0^+ is an open subset in the space

$$Z = X \times X \times \mathbf{R}^+ \times F_C \times M_X \times M_Y.$$

Take the function $c: Z \to \mathbf{R}$ defined as follows:

$$c(x, x', \varepsilon, f, d, \rho) = \varepsilon - \rho(f(x), f(x')).$$

Obviously, $c^{-1}(\mathbf{R}^+) = C_0^+$. Hence it remains to prove that c is continuous. It suffices to prove that the function $b: X \times X \times F_C \times M_Y \to \mathbf{R}$, given by $b: (x, x', f, \rho) \mapsto \rho(f(x), f(x'))$, is continuous.

The map b can be expressed as the composition of the following maps:

- (1) $X \times X \times F_C \times M_Y \to X \times X \times F_C \times F_C \times M_Y$, given by the diagonal embedding $F_C \to F_C \times F_C$ and the identity maps on the remaining factors;
- (2) $X \times X \times F_C \times F_C \times M_Y \to Y \times Y \times M_Y$, given by the jointly continuous maps $X \times F_C \to Y$ and the identity map on M_Y ; and
- (3) $Y \times Y \times M_Y \to \mathbf{R}$, given by the jointly continuous map for the metric. All these maps are continuous because of Lemmas 2.1-2.5. \Box

COROLLARY 3.2. Let X and Y be metrizable spaces. Then there exists a continuous function

$$\hat{\delta}: X \times \mathbf{R}^+ \times \mathcal{C}(X, Y) \times M_X \times M_Y \to \mathbf{R}^+$$

such that for any $(x, \varepsilon, f, d, \rho) \in X \times \mathbb{R}^+ \times \mathcal{C}(X, Y) \times M_X \times M_Y$ and for any $x' \in X$ the following implication holds:

$$d(x,x') < \hat{\delta}(x,\varepsilon,f,d,\rho) \Rightarrow \rho(f(x),f(x')) < \varepsilon.$$

Corollary 3.2 is a generalization of Theorem 1.1: our continuous choice depends on five variables $x, \varepsilon, f, d, \rho$ and the local compactness restriction of the space X has been deleted.

(b) Semicontinuity. Let $Y = \mathbf{R}$. The function $f: X \to \mathbf{R}$ is said to be upper semicontinuous or lower semicontinuous at the point $x \in X$ respectively, if for each $\varepsilon > 0$ there exists a neighborhood \mathcal{U} of the point $x \in X$ such that for any $x' \in \mathcal{U}$ $f(x') < f(x) + \varepsilon$ or $f(x') > f(x) - \varepsilon$, respectively.

Therefore, the predicates USC and LSC such that USC-continuous functions are upper semicontinuous functions and LSC-continuous functions are lower semicontinuous functions, are defined as follows:

$$USC(x, x', \varepsilon, f, d, \rho) = (f(x') < f(x) + \varepsilon)$$

and

$$LSC(x, x', \varepsilon, f, d, \rho) = (f(x') > f(x) - \varepsilon)$$

Obviously, USC and LSC are continuty-like predicates.

Now we use the predicate USC to explain an important detail in Definition 1.2 and Theorem 1.4. It might seem that *P*-continuity of maps from X into Y in Definition 1.2 implies the assertion (ii) in Theorem 1.4, hence that each continuity-like predicate P satisfies the criterion for existence of a continuous selection of the modulus Δ_P .

However, this conjecture is not valid. As a counterexample consider the following: $X = Y = \mathbf{R}$, P = USC, $\varepsilon = \frac{1}{2}$, $d = \rho =$ the usual metric on \mathbf{R} and $f : \mathbf{R} \to \mathbf{R}$ defined by

$$f(x) = \begin{cases} 1, & x \leq 0\\ 0, & x > 0. \end{cases}$$

Obviously, f is upper semicontinuous, i.e. $f \in F_{\text{USC}}$. Projection of the set P^+ onto the (x, x') plane is the set of points which satisfies the inequality

$$f(x') < f(x) + \frac{1}{2}$$

i.e. the union of the first three quadrants.

Obviously, the point $(0, 0, \frac{1}{2}, f, d, \rho)$ is not an interior point in the set P_0^+ . Hence the predicate USC does not satisfy the criterion for the existence of a continuous selection of the modulus Δ_{USC} , in the special case when $X = \mathbf{R}$. This fact is valid in general:

PROPOSITION 3.3. Let X be a nondiscrete metric space. Then there are no continuous selections for the moduli Δ_{USC} an Δ_{LSC} of the predicates USC and LSC.

PROOF. Let $x \in X$ be an accumulation point, let $\varepsilon = \frac{1}{2}$ and let $f: X \to \mathbf{R}$ be defined as follows:

$$f(x) = 1$$
, $f(y) = 0$ for $y \neq x$.

The function f is upper semicontinuous. It is obvious that

$$\Delta_{\mathrm{USC}}\left(x,rac{1}{2},f,d
ight)=(0,\infty)$$

and

$$\Delta_{\mathrm{USC}}\left(y,\frac{1}{2},f,d
ight)\subset\left(0,d(x,y)
ight) \ \ ext{for} \ \ y
eq x.$$

Hence, for any selection δ of the modulus Δ_{USC} the following has to hold:

$$\delta\left(y, \frac{1}{2}, f, d
ight) < d(x, y) ext{ for } y
eq x$$

or

$$\lim_{y\to x}\delta\left(y,\frac{1}{2},f,d\right)=0.$$

Since $\delta(x, \frac{1}{2}, f, d) > 0$, the selection δ is discontinuous at the point $(x, \frac{1}{2}, f, d)$.

Although there is no continuous selection

$$\delta: X \times \mathbf{R}^+ \times F_{\text{USC}} \times M_X \times M_{\mathbf{R}} \to \mathbf{R}^+$$

of the modulus Δ_{USC} with respect to all variables $(x, \varepsilon, f, d, \rho) \in X \times \mathbb{R}^+ \times F_{\text{USC}} \times M_X \times M_Y$, there exists a selection $\hat{\delta}$ which is continuous with respect to the variable ε , only.

PROPOSITION 3.4. For each quadruple of the variables (x, f, d, ρ) there exists a continuous function

$$\hat{\delta}_{x,f,d,
ho}:\mathbf{R}^+ o \mathbf{R}^+$$

such that the function

$$\hat{\delta}(x,\varepsilon,f,d,
ho) = \hat{\delta}_{x,f,d,
ho}(\varepsilon)$$

is a selection of the modulus Δ_{USC} .

PROOF. It is obvious that for each quintuple $(x, \varepsilon, f, d, \rho)$ of variables the set $\Delta_{\text{USC}}(x, \varepsilon, f, d, \rho)$ is an interval with the number 0 as the left endpoint. Also, Δ_{USC} is a nondecreasing multivalued map of ε , i.e. if $\varepsilon' > \varepsilon$, then

$$\Delta_{\mathrm{USC}}(x,\varepsilon,f,d,
ho)\subseteq\Delta_{\mathrm{USC}}(x,\varepsilon',f,d,
ho).$$

Now the problem is elementary. Namely,

$$\Delta(\varepsilon) = \Delta_{\text{USC}}(x, \varepsilon, f, d, \rho)$$

is a multivalued map $\Delta : \mathbb{R}^+ \to \mathbb{R}^+$ such that for each $\varepsilon \in \mathbb{R}^+$ the set $\Delta(\varepsilon) \subset \mathbb{R}^+$ is an interval with zero as the left endpoint. Moreover, $\Delta(\varepsilon)$ is a nondecreasing map of the variable ε , i.e.

$$\forall \varepsilon' \quad (\varepsilon' > \varepsilon) \Rightarrow \left(\Delta(\varepsilon) \subseteq \Delta(\varepsilon') \right).$$

The problem is to construct a continuous single-valued selection $\hat{\delta} : \mathbf{R}^+ \to \mathbf{R}^+$ for the multivalued map Δ .

First we construct a step function $\delta : \mathbf{R}^+ \to \mathbf{R}^+$ which is a selection for Δ . For each natural number n, construct the set

$$\Delta^{-1}\left(\frac{1}{n}\right) = \left\{\varepsilon \left|\frac{1}{n} \in \Delta(\varepsilon)\right\}\right.$$

Since $\Delta(\varepsilon)$ is a nondecreasing function, each set $\Delta^{-1}\left(\frac{1}{n}\right)$ is either empty set or an interval of the form (ε_n, ∞) or $[\varepsilon_n, \infty)$. Since Δ is a strictly positive function, there are sets $\Delta^{-1}\left(\frac{1}{n}\right)$ which are not empty.

Moreover, for each $n \in \mathbb{N}$ the following holds:

$$\Delta^{-1}\left(\frac{1}{n}\right) \subset \Delta^{-1}\left(\frac{1}{n+1}\right)$$

hence $\varepsilon_n > \varepsilon_{n+1}$. Set

$$\delta|_{(\varepsilon_{n+1},\varepsilon_n]} = \frac{1}{n+1}.$$

By construction, δ is a nondecreasing step-function and for each $\varepsilon > 0$, $\delta(\varepsilon) \in \Delta(\varepsilon)$, i.e. δ is a selection for Δ .

Now, since the nondecreasing step function δ is constructed, it is easy to construct a continuous "lower" selection $\hat{\delta}$. Fig. 1 illustrates the idea of the construction.

It is clear that $\hat{\delta}$ is a piecewise linear function which attains the value $\frac{1}{n+1}$ at the point ε_n .

(c) α -continuity. Let X, Y be metric spaces with metrics d and ρ , respectively, and let $\alpha : X \to [0, +\infty]$ be a function. A map $f : X \to Y$ is said to be α -continuous if

$$egin{aligned} &orall arepsilon > 0 & orall x \in X \; \exists \delta > 0 \; ext{ such that } (orall x' \in X) \Big(d(x,x') < \delta \ &\Rightarrow
ho ig(f(x'), f(x) ig) < lpha(x) + arepsilon ig). \end{aligned}$$

Fig. 1

The function α is called the *degree of discontinuity*. Denote by 0 and ∞ functions on X, identically equal to 0 and ∞ , respectively. Then 0-continuous maps are exactly ordinary continuous maps and ∞ -continuous maps are all maps. If α, β are degrees of discontinuity and if $\alpha(x) \leq \beta(x)$ for all $x \in X$ then each α -continuous map is also a β -continuous map.

In particular, each ordinarily continuous map is α -continuous for an arbitrary degree α of discontinuity. But the converse does not hold. For example, let $x_0 \in X$, $y_0, y_1 \in Y$ be points such that $\rho(y_0, y_1) = \alpha(x_0) > 0$. Then the map

$$f(x) = \begin{cases} y_1, & x \neq x_0 \\ y_0, & x = x_0 \end{cases}$$

is α -continuous but not ordinarily continuous.

For a given degree α of discontinuity, let us introduce the predicate P_{α} of α -continuity, by the following formula:

$$P_{\alpha}(x,x',\varepsilon,f,d,
ho) = \Big(
hoig(f(x'),f(x)ig) < lpha(x) + arepsilonig).$$

Since each (ordinarily) continuous map is also α -continuous, the predicate P_{α} is continuity-like (cf. Definition 1.2).

The following result is an immediate consequence of Theorem 1.4.

PROPOSITION 3.5. If (Y, ρ) is a connected metric space with infinite diameter and if the degree α of discontinuity is not a lower semicontinuous

function, then the modulus of α -continuity

$$\Delta_{P_{\alpha}}: X \times \mathbf{R}^{+} \times F_{P_{\alpha}} \times M_X \times M_Y \to \mathbf{R}^{+}$$

does not admit a continuous selection $\hat{\delta}$.

PROOF. Let α be not lower semicontinuous at a point $x_0 \in X$. Then, there exists a positive number ε_0 such that for each neighborhood \mathcal{U} of the point x_0 there is a point $x \in \mathcal{U}$ such that $\alpha(x) < \alpha(x_0) - \varepsilon_0$. Since Y is connected and has infinite diameter, it is possible to choose points $y_0, y_1 \in Y$ such that $\rho(y_0, y_1) = \alpha(x_0)$. Let us introduce the map

$$f_0(x) = \begin{cases} y_1, & x \neq x_0 \\ y_0, & x = x_0. \end{cases}$$

Obviously, the map f_0 is α -continuous. We assert that for arbitrary metrics d_0, ρ_0 the point

$$(x_0, x_0, \varepsilon_0, f_0, d_0, \rho_0) \in \operatorname{diag} X \times X \times \mathbf{R}^+ \times F_{P_\alpha} \times M_X \times M_Y$$

is not an interior point in the set $P_{\alpha,0}^+$. The assertion holds since there is a point x in each neighborhood \mathcal{U} of the point x_0 such that

$$\rho(f_0(x_0), f_0(x)) = \alpha(x_0) > \alpha(x) + \varepsilon_0$$

and therefore, the point $(x, x_0, \varepsilon_0, f_0, d_0, \rho_0)$ does not belong to the set P_{α}^+ . By Theorem 1.4, the modulus $\Delta_{P_{\alpha}}$ does not admit a continuous selection $\hat{\delta}$.

CONJECTURE 3.6. If the degree α of discontinuity is a lower semicontinuous function then the modulus $\Delta_{P_{\alpha}}$ admits a continuous selection $\hat{\delta}$.

Acknowledgements. Both authors were supported in part by the Ministry of Science and Technology of the Republic of Slovenia research grant No. P1-0214-101-94. We wish to thank P. V. Semenov and the referee for many valuable suggestions and comments.

References

 G. Artico and U. Marconi, A continuity result in calculus, in Proc. Int. Conf. Topol. (Trieste, 1993), G. Gentili, Ed., Rend. Ist. Mat. Univ. Trieste 25 (1993), 5-8.

[2] V. G. Gutev, Continuity of the modulus of continuity, preprint, Univ. of Sofia (1994).

- [3] S. T. Hu, Theory of Retracts, Wayne State Univ. Press (Detroit, 1965).
- [4] J. L. Kelley, General Topology, D. van Nostrand (Princeton, N.J., 1955).

154 J. MALEŠIČ and D. REPOVŠ: CONTINUITY-LIKE PROPERTIES ...

[5] E. Michael, Continuous selections I, Ann. of Math., 63 (1956), 361-382.

[6] D. Repovš and P. V. Semenov, An application of the theory of selections in analysis, in *Proc. Int. Conf. Topol.* (Trieste, 1993), G. Gentili, Ed., Rend. Ist. Mat. Univ. Trieste 25 (1993), 441-446.

(Received March 21, 1995; revised September 25, 1995)

INSTITUTE FOR MATHEMATICS, PHYSICS AND MECHANICS UNIVERSITY OF LJUBLJANA P.O. BOX 2964, LJUBLJANA 1001 SLOVENIA