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CONTINUITY-LIKE PROPERTIES 
A N D  C O N T I N U O U S  SELECTIONS 

J. MALESI0 and D. REPOV$ (Ljubljana) 

1. I n t r o d u c t i o n  

Recall the definition of continuity of a map f between metric spaces 
(X,d) and (Y,p): 

(VxE X)(Ve > 0)(3~ > 0) (Vx' E X)(d(x ,x ' )<  e ~ p( f (x) , f (x ' ) )  < e). 

The question arises whether it is possible to choose ~ > 0, which continuously 
depends on the triple (x, e, f )  E X x R + x C(X, Y), where C(X, Y) denotes 
the set of all continuous maps from X into Y, endowed with the metric of 
uniform convergence: 

dist(f,g) = sup { min{l,p(f(x),g(x))}[x E X} .  

In [6] the following result was proved: 

THEOREM 1.1. Let (X, d) and (Y, p) be metric spaces and suppose that 
X is locally compact. Then there exists a continuous function ~ : X x R + 
x C(X ,Y)  ~ R + such that for every (x ,e , f )  E X x It + x C(X ,Y)  and for 
every x ~ E X the following implication holds: 

d(x,x') < ~(x,E,f) ~ p( f (x) , f (x ' ) )  < e. [] 

The purpose of the present paper is: (a) to prove an analogue of Theo- 
rem 1.1 where the continuous choice depends on five variables: three of them 
are as in Theorem 1.1 and the remaining two are the metrics on the spaces X 
and Y, compatible with the given metrizable topologies on X and Y; (b) to 
avoid the local compactness restriction in Theorem 1.1; and (c) to examine 
some similar problems for noncontinuous maps, e.g. for the lower or upper 
semicontinuous real-valued functions. 

We shall answer (a), (b) and (c) from a rather formal point of view. 
Namely, we shall substitute the inequality p(f (x) , f (x ' ) )  < e in the stan- 
dard definition of continuity by some suitable predicate P in the variables 
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x, x', ~, f ,  p. We shall call such a predicate a continuity-like predicate. A pos- 
itive answer to (b) was suggested by [1] and [2] and in the present paper we 
actually exploit an idea of G. de Marco (as explained in [1]). 

For metrizable spaces X and Y we denote by F = F ( X , Y )  the set of 
all single-valued maps: X --+ Y. We endow the set F with the topology of 
the uniform convergence. If p is a metric on a space Y, compatible with the 
topology on Y, then the following metric on a space F is compatible with 
the topology of the uniform convergence: 

(1) ~ ( f , g ) - s u p m i n { 1 , p ( f ( x ) , g ( x ) ) } ,  f ,  g e F .  
xEX 

For a metrizable space X we denote by Mx the set of all metrics which are 
compatible with the topology on X. 

Since each metric d : X x X --* R is a single-valued function we endow 
the set Mx with the relative topology, induced by the inclusion Mx C F ( X  
x X, It) .  Hence the metric on the space Mx is defined as follows: 

(2) dist(d,d')= sup min{1,[d(x,x')-d'(x,x')[}. 
x,x'EX 

We shall represent different types of continuity of maps from X into Y 
as predicates, defined on the domain X × X x I t  + x F × Mx × M r .  Let 
P(x, x', ~, f, d, p) be a predicate (i.e. a logical function) of the variables 

(x, x', E, f ,  d, p) E X x X x R + x F X Mx x Mr.  

Denote by P+ the subset of X x X x t t  + x F x Mx x My consisting of all 
6-tuples (x, x', e, f ,  d, p) such that the proposition P(x, x', s, .f, d, p) is valid. 

DEFINITION 1.2. A map f : X --* Y is said to be P-continuous if for each 
x E X ,  E E It +, d E Mx,  p E Mr,  there exists a neighborhood/4 = U=,~,/,d,p 
C X of the point x such that  {x} x/4 x {E} x {f} x {d} x {p} C P+.  Denote 
by Fp the set of all P-continuous maps from X into Y. A predicate P is 
said to be continuity-like if the set Fp is nonempty. 

As special cases of continuity-like predicates one can consider the usual 
properties of continuity, lower (upper) semicontinuity of real-valued func- 
tions, a-continuity, locally uniform continuity, etc. (See also Section 3.) 

DEFINITION 1.3. Let X and Y be metrizable spaces and let P be a 
continuity-like predicate on X x X x t t  + x F x Mx x My.  The multivalued 
map Ap  : X x t t  + × Fp x Mx x My ~ I t+ ,  defined by the relation 

= { a > O IV=' Xd(= ,= ' )  < (=,=',E,f,d,p) e+} 
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is said to be the modulus of a predicate P.  

REMARK. From the definition of P-continuous functions it follows imme- 
diately that  the set Ap(x,  ¢, f,  d, p) is nonempty for a continuity-like predi- 
cate P.  We also recall that  a single-valued map ¢ : A ~ B is called a selection 
of a given multivalued map (I) : A --* B if ¢(x) E ¢(x),  for all x E A. 

The main result in this note is a criterion for the existence of a continuous 
selection ~ of the modulus Ap of a continuity-like predicate P,  formulated in 
Theorem 1.4 below. Of course, one can consider Ap as a multivalued map 
from X × t t  + x Fp x Mx x My into R + with nonempty convex values. An 
a t tempt  of a direct application of E. Michael's theory of continuous selections 
[5] leads to some restrictions for the domain X, because of the restriction of 
lower semicontinuity for Ap, see [6]. Here we avoid E. Michael's selection 
theorems altogether. 

Denote by d iagX the diagonal subset {(x × x) lx C X )  in X × X,  and 
let 

P+ = P+ n (X × X × R + x Fp x M x x My). 

The definition of a P-continuous map implies that  

(diag X) x t t  + x Fp x Mx x My C P+. 

THEOREM 1.4 (criterion for the existence of a continuous selection). Let 
P be a continuous-like predicate and let Ap be its modulus. Then the follow- 
ing two assertions are equivalent: 

(i) There exists a continuous single-valued selection ~ of modulus Ap; 
and 

(ii) The set (d iagX)  x R + x Fp x Mx x My lies in the interior of the 
set P+. 

2. P r o o f  o f  T h e o r e m  1.4 

Proof of(i) =~ (ii). Let (Xo,Xo, Eo, fo,do,Po) E (diagX) x R + x Fp x Mx 
x M r  be an arbitrary point and let 6 be a continuous selection of Ap.  
Denote ~o = ~(xo, eo, fo,do,po). Since ~ is continuous, the preimage G 

: + - )  i , , t e rw ,  i,, open _'< 

X R + x Fp × MX x My. The set G contains the point (Xo, Eo,fo,do,Po), so 
this point is an interior point of G. By the definition of the product topology 
there exists an open neighborhood b /o f  the point (E0, f0, do, Po) in the space 
R + × Fp x Mx x My and there exists an open ball B(x0; r) with radius r such 

that  B(xo;r)×bt C G. We can assume that  r < ~04. The set 1)= B (x0;-~) 
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X B(x0; r) x /4  is open and contains the point (Xo, Xo,¢o, fo, do, po). More- 

Y is asubset  of P0 +. To see this, let x E  , (x0; ~ )  and over, (~', ~, S, d, p) 
E B(x0; r) x/4 be arbitrary points. 

Since d(x, x0) < ~0 and d(xo, x') < h it follows d(x, x') < ~0 But ~(x', E, 4 4 2 '  

f ,d ,p )  > ~ ,  therefore d(x,x  ~) < ~(xt ,~, f ,d,p).  This implies that (x,x~,E,f,  
d, p) E Po +. We have proved that the point (xo, Xo, Eo, fo, do, Po) is an interior 
point of P+.  

To prove the inverse implication (ii) =v (i) we need some lemmas on the 
spaces of metrics and on maps between them. Let d and p be metrics on 
the spaces X and Y, respectively. It is known that the metric rdp which is 
defined by the equality 

where (x, y) and (x', y') are points in X x Y, induces the product topology 
on the space X x Y. 

LEMMA 2.1 (on transfer of metrics onto the product space). The map r : 
M x  x My ~ Mx×y which assigns to the pair (d,p) E M x  x My of metrics 
the metric ~'dp C Mx×y,  is continuous. 

PROOF. Let d,d t E M x  and p, pl E My.  It suffices to prove the inequality 

(3) dist(rdp, rd,p,) <= dist(d,d) + dist(p,p'). 

Let (x,y) E X x Y and (x',yl) E X x Y. Then 

I~d~((x, y),(x', y')) - ~'~'((x,  Y),(x', ~')) I 
= I d(~, ~') + p(y, y ' ) -  d'(~, ~ ' ) -  Y(Y, Y')I 

=< I d(~, ~ ') - d'(x, ~')l + IP(Y, Y') - Y(~, Y')I. 
Taking a minimum between 1 and the value of the expression on the left, 
and between 1 and the value of the expression on the right, respectively, and 
then taking the supremum over all four variables x, x t, y and y~, we obtain 
the inequality (3). [] 

In formula (1) we assigned to the metric p, acting on the space Y, the 
metric ),  acting on the space F = F(X ,  Y).  

LEMMA 2.2 (on the transfer of a metric onto the space of functions). The 
map r : My  --~ MR which assigns to each metric p E My  the metric ~ E MF, 
is continuous. 

PRooF. Let p, p~ E My.  It suffices to prove the inequality 

dist(tS, ~') _< dist(p, p'). 

Ac~a Ma~hematica Hungarlca 73, 1996 



CONTINUITY-LIKE PROPERTIES AND CONTINUOUS SELECTIONS 145 

Let f ,  g E F(X ,  Y)  be arbitrary functions. By the definition of the metric in 
the space ME it suffices to prove that 

min { 1, [~(f,g) - fi'(f,g)[ } _< dist(p,p'). 

Moreover, by the definition of metrics ~ and ~, in F it suffices to prove that 
for each x E X, the following inequality holds: 

(4) 
min { 1, Imin { i , p ( f (x ) ,g (z ) )  } - min { 1 ,p ' ( f (x) ,g(x))  }[ } = dist(p, p'). 

It is easy to show that for arbitrary a, b E R we have 

[min{1, a } -  min{1,b}[ < min { 1 , [ a - b [  }. 

Therefore, instead of (4) it suffices to prove the following inequality: 

min {1 ,[p( f (x ) ,g(x) )  - p ' ( f ( x ) , g ( z ) ) l  } <= dist(p,p'). 

But since f ( x )  and g(x) are points in Y, the last inequality holds because of 
Definition 1.3 of the metric (fist E My. [--1 

Let G = G ( X , Y )  be some subspace of the space of functions F 
= F ( X , Y ) .  Also formula (1), used with G instead of F, defines a map 
rG : My ~ MG. 

LEMMA 2.3. The map ra : My --* MG is continuous. 

PROOF. Let r : MF --~ Ma be the restriction map. If ~ E MF is a metric, 
then D is a function F × F --+ R and r(~) is simply its restriction [~}a×a. 
Since r is continuous and rG factorizes as 

rG : My r_~ MF ~ Ma 

rG is also continuous. [] 

As usual, let C = C(X, Y) denote the subspace of all continuous func- 
tions in the space F ( X , Y ) ,  i.e. C(X,Y) is endowed with the topology of 
uniform convergence. It is well-known (see [4]) that the evaluation map 
e : X x C(X, Y)  --. Y which maps every pair (x, f )  to the point f ( x )  E Y ,  is 
jointly continuous, when C(X, Y)  is endowed with the topology of uniform 
convergence. 

Let Z be a metrizable space. Since the space Mz is a subspace of the 
space C(Z x Z, It), the following lemma holds. 
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LEMMA 2.4. The map e : Z x Z x M z  ~ t t  defined by e(z, z', d) = d(z, z') 
is continuous. [] 

Let S be a fixed subset of a metrizable space Z. If d E M z  is a metric,  
then  for each z E Z denote as usual 

d(z ,S)  = in fd ( z , s )  
sES 

and call the number  d(z, S) the distance of the point z from the set S. The  
following lemma is a modification of Lemma 2.4. 

LEMMA 2.5. The map es : Z x M z  --* I t  for a fixed subset S, defined by 
es(z)  = d(z, S) is continuous. [] 

It is well-known tha t  the function fs, d : Z  ~ t t  defined by fS,d(Z) 
= d(z, S) is continuous [3]. 

Introduce the  map  f s  : M z  ~ C ( Z , R )  by sett ing f s (d)  = fS,d. The  func- 
t ion es : Z x M z  ~ R can be factorized as follows: 

idz ×Is 
e s : Z x M z  - : Z x C ( Z , R )  ~ , I t .  

Here e is a jointly continuous map.  Therefore only the continuity of f s  is to 
be proved. It suffices to  prove tha t  the following inequality holds for each 
z ~ Z :  

(5) min { 1, ld(z ,S) -d ' ( z ,S)]}  <= dist(d,d ' ) .  

Inequali ty (5) can easily be obtained from the fact tha t  for each ¢ > 0, there 
exists a point  s E S such tha t  

(6) Id(z,S)-d'(z,S)l  < Id(z,s)-d'(z,s)l +~. 

To prove the  inequality (6) it is necessary to consider two different possibil- 
ities: 

d(z ,S)  > d ' (z ,S)  or d(z ,S)  < d ' (z ,S) .  

In the case when d(z, S) > dl(z, S) we choose an s E S such tha t  

(7) d'(z,s) > d ' ( z , S ) -  E. 

Combining (7) with d(z ,S )  <_ d(z , s )  we obtain 

d(z, S) - d'(z, S) < d(z, s) - d'(~, s) + c 

hence also (6). In the case when d(z, S) < d'(z, S), the  proof  is analogous. 
[] 
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Proof of (ii) =~ (i). Assume that each point in the set diag X x I t+ x Fp 
x Mx  x My is an interior point in P0 + and construct a continuous selection 

: X x It+ x Fp x Mx x My --, It+ 

for the modulus Ap. 
Let "dist" be the product metric in the space X x X x R + x Fp x M x  

x My and let P -  be the complement of the set P+ in this space. If P -  = 0 
then Ap - It+ and we can put ~ - 1, for example. In the case P -  # 0 for 
arbitrary point (z, e, f,  d, p) E X x R + x Fp x Mx x My let 

;5(x,e, f ,d ,p)  = dist ( (x ,x ,e ,  f , d , p ) , P - )  . 

Since the point (x, x, e, f, d, p) is an interior point of P0 + , ~ is strictly positive. 
Let x' E X be a point such that d(x,x')  < ~(z ,e , f ,d ,p) .  By definition of 

the product metric we have that 

dist ( ( x , x , e , f , d , p ) , ( x , x ' , E , f , d , g ) )  <= d(x,x')  

hence 

dist ( ( x , z , e , f , d , p ) , ( z , z ' , e , f , d , p ) )  <= d(:~,z') < ~(x ,e , f ,d ,p)  

= dist ( (x ,x ,e ,  f , d , p ) , P - ) .  

It follows that (x, ~ ,  e, f, d, p) E P+. We have proved that ~ is a selection for 
the modulus Ap. It remains to prove that the function ~(x ,e , f ,d ,p )  is a 
continuous function of all of its variables. 

Denote by Z = X x X × R + x Fp × Mx x My.  The construction of the 
function ~ : X x t t  + × Fp × Mx  x My ~ It+ implies that ~ can be composed 
from the following sequence of maps: 
(1) X x I t+ x Fp x Mx  x My --+ X 2 × It+ x Fp x M~: x M~,, given by the 

diagonal embeddings X ~ X 2, Mx  ~ M~ , Mr  --+ M~, and identities on 
the remaining factors; 

(2) X 2 X It+ X Fp X M~¢ X M~ --+ Z x Mx2 x MFp X MMx × MMy, given 
by the transfers of metrics M R --+ MX~ , My ~ MFv, Mx  -~ MMx, My 
--* MMr and identities on the remaining factors; 

(3) Z x Mx2 x MFe x MMx X MMy -+ Z x Mz,  given by the transfer of met- 
rics into the product space; and 

(4) Z x Mz -+ It+,  given by the evaluation map es as in Lemma 2.5, for 
S = P - .  
All these maps are continuous because of Lemmas 2.1-2.5. Theorem 1.4 

is thus finally proved. [] 
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3. Applications 

(a) Continuity. The predicate C is defined on the domain of variables 
X x X x t t  + x F x M× x M y  as follows: 

C(x ,x ' ,E , f , d ,p )  = ( p ( f ( x ) , f ( x ' ) )  < E). 

We assert that  C is a continuity-like predicate. Indeed, Fc coincides with 
C(X, Y) ~ 0. Hence the predicate C is the predicate of the ordinary conti- 
nuity. 

PROPOSITION 3.1. The predicate C of the ordinary continuity satisfies 
the criterion for existence of continuous selections of the modulus A c .  

PROOF. By Theorem 1.4 it suffices to prove that  the set Co+ is an open 
subset in the space 

Z = X x X x t t  + x Fc x M x x MY.  

Take the function c : Z --* R defined as follows: 

e(x,x',E, f ,d ,p)  = ~ - p( f (x) ,  f (x ' ))  . 

Obviously, c - l ( R  +) = Co +. Hence it remains to prove that  c is continuous. 
It suffices to prove that  the function b : X × X × Fc  × My --* R,, given by 
b: (x ,x ' , f ,p)~-* p ( f ( x ) , f ( x ' ) ) , i s  continuous. 

The map b can be expressed as the composition of the following maps: 
(1) X × X x -Pc x M y  ~ X x X × Fc × -Pc × My ,  given by the diagonal em- 

bedding Fc ~ Fc × Fc  and the identity maps on the remaining factors; 
(2) X × X × Fc × -Pc × My  ---* Y × Y × My ,  given by the jointly continuous 

maps X x Fc  --* Y and the identity map on My; and 
(3) Y x Y × My --. R,  given by the jointly continuous map for the metric. 

All these maps are continuous because of Lemmas 2.1-2.5. [] 

COROLLARY 3.2. Let X and Y be metrizable spaces. Then 'there exists 
a continuous function 

: X x t t  + × C ( X , Y )  X M x  × M y ~ I t  + 

such that for any (x, E, f ,  d, p) e X x t t  + × C(X, Y) x M× x My  and for any 
x ~ E X the following implication holds: 

d(x,x')  < ~(x ,~ , f ,d ,p)  ~ p ( f ( x ) , f ( x ' ) )  < ~. 

Corollary 3.2 is a generalization of Theorem 1.1: our continuous choice 
depends on five variables x,E, f ,  d,p and the local compactness restriction of 
the space X has been deleted. 
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(b) Semicontinuity. Let Y = R. The function f : X --, R is said to be 
upper semicontinuous or lower semicontinuous at the point x E X respec- 
tively, if for each ~ > 0 there exists a neighborhood U of the point x E X 
such that for any x' e LI f (x ' )  < f (x )  + ~ or f ( x  t) > f (x )  - e, respectively. 

Therefore, the predicates USC and LSC such that USC-continuous func- 
tions are upper semicontinuous functions and LSC-continuous functions are 
lower semicontinuous functions, are defined as follows: 

USC(x,x ' ,E, f ,d ,p)  = ( f (x ' )  < f (x )  + ¢) 

and 

L S C ( x , x ' , E , f , d , p ) -  ( f (x ' )  > f ( x ) - E )  

Obviously, USC and LSC are continuty-like predicates. 
Now we use the predicate USC to explain an important detail in Defi- 

nition 1.2 and Theorem 1.4. It might seem that P-continuity of maps from 
X into Y in Definition 1.2 implies the assertion (ii) in Theorem 1.4, hence 
that each continuity-like predicate P satisfies the criterion for existence of a 
continuous selection of the modulus Ap. 

However, this conjecture is not valid. As a counterexample consider the 
following: X = Y = It, P = USC, ~ = ½, d = p = the usual metric on t t  and 
f : t t  --+ R defined by 

1, x _ 0  
f ( x ) =  O, x > O. 

Obviously, f is upper semicontinuous, i.e. f E Fusc. Projection of the set 
P+ onto the (x, x ~) plane is the set of points which satisfies the inequality 

1 
/(x') < f(x) + 

i.e. the union of the first three quadrants. 
Obviously, the point (0,0, ½, f ,d ,p)  is not an interior point in the set P+.  

Hence the predicate USC does not satisfy the criterion for the existence of a 
continuous selection of the modulus Ausc,  in the special case when X = It.. 
This fact is valid in general: 

PROPOSITION 3.3. Let X be a nondiscrete metric space. Then there are 
no continuous selections for the moduli Ausc an ALSc of the predicates USC 
and LSC, 

PRool~. Let x E X be an accumulation point, let E = ½ and let f : X 
--~ t t  be defined as follows: 

f ( x )  - l, f (y)  -- O for y ~ x .  
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The function f is upper semicontinuous. It is obvious that 

and 

Hence, for any selection $ of the modulus Ausc the following has to hold: 

o r  

lJm6(y,~,f,d) =0.  
y---*x 

Since6(x, ½, f ,d) > 0, the selection 6 is discontinuous at the point (z,'~, f,  d). 
D 

Although there is no continuous selection 

6 : X x t t  + x Fusc x Mx x MR --* R + 

of the modulus Ausc with respect to all variables (z, z, f, d, p) E X x t t  + 
× Fuse x Mx × My,  there exists a selection 6 which is continuous with re- 
spect to the variable z, only. 

PROPOSITION 3.4. For each quadruple of the variables (x , f ,d ,p)  there 
exists a continuous function 

such that the function 

~x,f,d,p : P~ + "+ l ~ h  

~(x, E, f, d, p) = ~x,f ,d,p(8) 

is a selection of the modulus Ausc. 

PRooF. It is obvious that for each quintuple (x, ~, f, d, p) of variables the 
set AUSC(X,E, f, d, p) is an interval with the number 0 as the left endpoint. 
Also, Ausc is a nondecreasing maltivalued map of t, i.e. if ~' > E, then 

Ausc(x , ~, f, d, p) C AUSC(X , E', f, d, p). 
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Now the problem is elementary. Namely, 

A(E) = A u s c ( x  , ~, f ,  d, p) 

is a multivalued map A : I t+  - ,  I t+ such that  for each z E I t+ the set A(E) 
C I t+  is an interval with zero as the left endpoint. Moreover, A(E) is a 
nondecreasing map of the variable ~, i.e. 

w'  > c__ 

The problem is to construct a continuous single-valued selection ~ : R  + 
t t  + for the multivalued map A. 
First we construct a step function ~f : I t+ - ,  t t  + which is a selection for 

A. For each natural  number n, construct the set 

A-1 ( 1 )  -- {£ 1 E A(E)}. 

Since A(e ) i s  a nondecreasing function, each set A -1 (~) is either empty  set 
or an interval of the form (en, oo) or [E~, oo). Since A is a strictly positive 
function, there are sets A -1 (-~) which are not empty. 

Moreover, for each n E N the following holds: 

i -1 ( 1 )  C A-1 ( - ~ )  

hence en > gn+l. Set 
1 

~fl(~"+l'~n] - n + 1" 

By construction, ~f is a nondecreasing step-function and for each s > 0, 8(E) 
E A(e),  i.e. 8 is a selection for A. 

Now, since the nondecreasing step function 6 is constructed, it is easy to 
construct a continuous "lower" selection ~. Fig. 1 illustrates the idea of the 
construction. 

It is clear that  ~ is a piecewise linear function which attains the value 
1 at the point ~n. n+l 

(c)  a-continuity. Let X, Y be metric spaces with metrics d and p, re- 
spectively, and let a : X --, [0, +oo] be a function. A map f : X ~ Y is said 
to be a-continuous if 

W > 0  Vx e X 3~f > 0 such that  (Vx' e X)(d(x,  x') < 

< + 
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½ 

¼ m 

supA(e) 
~(~) 

t(E) 

. ,  E4 E3 E2 E 1 C 

Fig. I 

The function a is called the degree of discontinuity. Denote by 0 and oo func- 
tions on X,  identically equal to 0 and oo, respectively. Then 0-continuous 
maps are exactly ordinary continuous maps and co-continuous maps are all 
maps.  If a,/3 are degrees of discontinuity and if a(x)  __< f3(x) for all x E X 
then each a-cont inuous  map is also a 13-continuous map.  

In part icular ,  each ordinarily continuous map is a-continuous for an arbi- 
t rary degree a of discontinuity. But the converse does not hold. For example,  
let xo E X ,  yo, yl E Y be points such that  p(Yo, yl) = a(x0) > 0. Then the 
map  

,f x ¢ xo 
f ( x )  ( Yo, x : Xo 

is a -cont inuous  but  not ordinarily continuous. 
For a given degree a of discontinuity, let us introduce the predicate P~ 

of a-continuity,  by the following formula: 

P ~ ( x , x ' , e , f , d , p ) =  ( p ( f ( x ' ) , f ( x ) )  < a ( x ) + s ) .  

Since each (ordinarily) continuous map is also a-continuous,  the predicate 
P~ is continuity-like (eft Definition 1.2). 

The  following result is an immediate  consequence of Theorem 1.4. 

PROPOSITION 3.5. If  (Y,p) is a connected metric space with infinite di- 
ameter and if the degree a of discontinuity is not a lower semicontinuous 
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function, then the modulus of a-continuity 

Ap~ : X x R  + x F P ~  x M x x M y ~ R  + 

does not admit a continuous selection ~. 

PROOF. Let a be not lower semicontinuous at a point xo E X. Then, 
there exists a positive number Co such that for each neighborhood H of the 
point Xo there is a point x E/4 such that a(x) < a(xo) - ¢o. Since Y is con- 
nected and has infinite diameter, it is possible to choose points yo, Yl E Y 
such that p(yo, Yi) "- a(Xo).  Let us introduce the map 

fo(X) : { Yl, X ~ X 0 
Y0, X : X 0. 

Obviously, the map fo is a-continuous. We assert that for arbitrary metrics 
do, Po the point 

(Xo, x0, So, f0, do, P0) E diag X x X x R + × Fp~ × M x  × My 

is not an interior point in the set P~+o" The assertion holds since there is a 
point x in each neighborhood H of the point xo such that 

p(fo(xo), A(x)) = a(xo) > 

and therefore, the point (x, xo, Eo, fo, do, po) does not belong to the set P+.  
By Theorem 1.4, the modulus Ap~ does not admit a continuous selection ~f. 
[] 

CONJECTURE 3.6. If  the degree a of discontinuity is a lower semicontin- 
uous function then the modulus Ap~ admits a continuous selection ~. 
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