CONTINUITY-LIKE PROPERTIES AND CONTINUOUS SELECTIONS

J. MALEŠIČ and D. REPOVŠ (Ljubljana)

1. Introduction

Recall the definition of continuity of a map f between metric spaces (X, d) and (Y, ρ):

$$
(\forall x \in X)(\forall \varepsilon>0)(\exists \delta>0)\left(\forall x^{\prime} \in X\right)\left(d\left(x, x^{\prime}\right)<\varepsilon \Rightarrow \rho\left(f(x), f\left(x^{\prime}\right)\right)<\varepsilon\right) .
$$

The question arises whether it is possible to choose $\delta>0$, which continuously depends on the triple $(x, \varepsilon, f) \in X \times \mathbf{R}^{+} \times \mathcal{C}(X, Y)$, where $\mathcal{C}(X, Y)$ denotes the set of all continuous maps from X into Y, endowed with the metric of uniform convergence:

$$
\operatorname{dist}(f, g)=\sup \{\min \{1, \rho(f(x), g(x))\} \mid x \in X\} .
$$

In [6] the following result was proved:
Theorem 1.1. Let (X, d) and (Y, ρ) be metric spaces and suppose that X is locally compact. Then there exists a continuous function $\hat{\delta}: X \times \mathbf{R}^{+}$ $\times C(X, Y) \rightarrow \mathbf{R}^{+}$such that for every $(x, \varepsilon, f) \in X \times \mathbf{R}^{+} \times C(X, Y)$ and for every $x^{\prime} \in X$ the following implication holds:

$$
d\left(x, x^{\prime}\right)<\hat{\delta}(x, \varepsilon, f) \Rightarrow \rho\left(f(x), f\left(x^{\prime}\right)\right)<\varepsilon .
$$

The purpose of the present paper is: (a) to prove an analogue of Theorem 1.1 where the continuous choice depends on five variables: three of them are as in Theorem 1.1 and the remaining two are the metrics on the spaces X and Y, compatible with the given metrizable topologies on X and Y; (b) to avoid the local compactness restriction in Theorem 1.1; and (c) to examine some similar problems for noncontinuous maps, e.g. for the lower or upper semicontinuous real-valued functions.

We shall answer (a), (b) and (c) from a rather formal point of view. Namely, we shall substitute the inequality $\rho\left(f(x), f\left(x^{\prime}\right)\right)<\varepsilon$ in the standard definition of continuity by some suitable predicate P in the variables
$x, x^{\prime}, \varepsilon, f, \rho$. We shall call such a predicate a continuity-like predicate. A positive answer to (b) was suggested by [1] and [2] and in the present paper we actually exploit an idea of G. de Marco (as explained in [1]).

For metrizable spaces X and Y we denote by $F=F(X, Y)$ the set of all single-valued maps: $X \rightarrow Y$. We endow the set F with the topology of the uniform convergence. If ρ is a metric on a space Y, compatible with the topology on Y, then the following metric on a space F is compatible with the topology of the uniform convergence:

$$
\begin{equation*}
\tilde{\rho}(f, g)=\sup _{x \in X} \min \{1, \rho(f(x), g(x))\}, \quad f, g \in F . \tag{1}
\end{equation*}
$$

For a metrizable space X we denote by M_{X} the set of all metrics which are compatible with the topology on X.

Since each metric $d: X \times X \rightarrow \mathbf{R}$ is a single-valued function we endow the set M_{X} with the relative topology, induced by the inclusion $M_{X} \subset F(X$ $\times X, \mathbf{R})$. Hence the metric on the space M_{X} is defined as follows:

$$
\begin{equation*}
\operatorname{dist}\left(d, d^{\prime}\right)=\sup _{x, x^{\prime} \in X} \min \left\{1,\left|d\left(x, x^{\prime}\right)-d^{\prime}\left(x, x^{\prime}\right)\right|\right\} \tag{2}
\end{equation*}
$$

We shall represent different types of continuity of maps from X into Y as predicates, defined on the domain $X \times X \times \mathbf{R}^{+} \times F \times M_{X} \times M_{Y}$. Let $P\left(x, x^{\prime}, \varepsilon, f, d, \rho\right)$ be a predicate (i.e. a logical function) of the variables

$$
\left(x, x^{\prime}, \varepsilon, f, d, \rho\right) \in X \times X \times \mathbf{R}^{+} \times F \times M_{X} \times M_{Y} .
$$

Denote by P^{+}the subset of $X \times X \times \mathbf{R}^{+} \times F \times M_{X} \times M_{Y}$ consisting of all 6 -tuples ($x, x^{\prime}, \varepsilon, f, d, \rho$) such that the proposition $P\left(x, x^{\prime}, \varepsilon, f, d, \rho\right)$ is valid.

Definition 1.2. A map $f: X \rightarrow Y$ is said to be P-continuous if for each $x \in X, \varepsilon \in \mathbf{R}^{+}, d \in M_{X}, \rho \in M_{Y}$, there exists a neighborhood $\mathcal{U}=\mathcal{U}_{x, \varepsilon, f, d, \rho}$ $\subset X$ of the point x such that $\{x\} \times \mathcal{U} \times\{\varepsilon\} \times\{f\} \times\{d\} \times\{\rho\} \subset P^{+}$. Denote by F_{P} the set of all P-continuous maps from X into Y. A predicate P is said to be continuity-like if the set F_{P} is nonempty.

As special cases of continuity-like predicates one can consider the usual properties of continuity, lower (upper) semicontinuity of real-valued functions, α-continuity, locally uniform continuity, etc. (See also Section 3.)

Definition 1.3. Let X and Y be metrizable spaces and let P be a continuity-like predicate on $X \times X \times \mathbf{R}^{+} \times F \times M_{X} \times M_{Y}$. The multivalued map $\Delta_{P}: X \times \mathbf{R}^{+} \times F_{P} \times M_{X} \times M_{Y} \rightarrow \mathbf{R}^{+}$, defined by the relation

$$
\Delta_{P}(x, \varepsilon, f, d, \rho)=\left\{\delta>0 \mid \forall x^{\prime} \in X d\left(x, x^{\prime}\right)<\delta \Rightarrow\left(x, x^{\prime}, \varepsilon, f, d, \rho\right) \in P^{+}\right\}
$$

is said to be the modulus of a predicate P.
Remark. From the definition of P-continuous functions it follows immediately that the set $\Delta_{P}(x, \varepsilon, f, d, \rho)$ is nonempty for a continuity-like predicate P. We also recall that a single-valued map $\phi: A \rightarrow B$ is called a selection of a given multivalued map $\Phi: A \rightarrow B$ if $\phi(x) \in \Phi(x)$, for all $x \in A$.

The main result in this note is a criterion for the existence of a continuous selection $\hat{\delta}$ of the modulus Δ_{P} of a continuity-like predicate P, formulated in Theorem 1.4 below. Of course, one can consider Δ_{P} as a multivalued map from $X \times \mathbf{R}^{+} \times F_{P} \times M_{X} \times M_{Y}$ into \mathbf{R}^{+}with nonempty convex values. An attempt of a direct application of E. Michael's theory of continuous selections [5] leads to some restrictions for the domain X, because of the restriction of lower semicontinuity for Δ_{P}, see [6]. Here we avoid E. Michael's selection theorems altogether.

Denote by diag X the diagonal subset $\{(x \times x) \mid x \in X\}$ in $X \times X$, and let

$$
P_{0}^{+}=P^{+} \cap\left(X \times X \times \mathbf{R}^{+} \times F_{P} \times M_{X} \times M_{Y}\right) .
$$

The definition of a P-continuous map implies that

$$
(\operatorname{diag} X) \times \mathbf{R}^{+} \times F_{P} \times M_{X} \times M_{Y} \subset P_{0}^{+} .
$$

Theorem 1.4 (criterion for the existence of a continuous selection). Let P be a continuous-like predicate and let Δ_{P} be its modulus. Then the following two assertions are equivalent:
(i) There exists a continuous single-valued selection $\hat{\delta}$ of modulus Δ_{P}; and
(ii) The set $(\operatorname{diag} X) \times \mathbf{R}^{+} \times F_{P} \times M_{X} \times M_{Y}$ lies in the interior of the set P_{0}^{+}.

2. Proof of Theorem 1.4

Proof of (i) \Rightarrow (ii). Let $\left(x_{0}, x_{0}, \varepsilon_{0}, f_{0}, d_{0}, \rho_{0}\right) \in(\operatorname{diag} X) \times \mathbf{R}^{+} \times F_{P} \times M_{X}$ $\times M_{Y}$ be an arbitrary point and let $\hat{\delta}$ be a continuous selection of Δ_{P}. Denote $\hat{\delta}_{0}=\hat{\delta}\left(x_{0}, \varepsilon_{0}, f_{0}, d_{0}, \rho_{0}\right)$. Since $\hat{\delta}$ is continuous, the preimage G $=\hat{\delta}^{-1}\left(\hat{\delta}_{0} / 2,+\infty\right)$ of the interval $\left(\frac{\hat{\delta}_{0}}{2},+\infty\right)$ is an open set in the space X $\times \mathbf{R}^{+} \times F_{P} \times M_{X} \times M_{Y}$. The set G contains the point ($x_{0}, \varepsilon_{0}, f_{0}, d_{0}, \rho_{0}$), so this point is an interior point of G. By the definition of the product topology there exists an open neighborhood \mathcal{U} of the point $\left(\varepsilon_{0}, f_{0}, d_{0}, \rho_{0}\right)$ in the space $\mathbf{R}^{+} \times F_{P} \times M_{X} \times M_{Y}$ and there exists an open ball $B\left(x_{0} ; r\right)$ with radius r such that $B\left(x_{0} ; r\right) \times \mathcal{U} \subset G$. We can assume that $r<\frac{\hat{\delta}_{0}}{4}$. The set $\mathcal{V}=B\left(x_{0} ; \frac{\hat{\delta}_{0}}{4}\right)$
$\times B\left(x_{0} ; r\right) \times \mathcal{U}$ is open and contains the point ($\left.x_{0}, x_{0}, \varepsilon_{0}, f_{0}, d_{0}, \rho_{0}\right)$. Moreover, \mathcal{V} is a subset of P_{0}^{+}. To see this, let $x \in B\left(x_{0} ; \frac{\hat{\delta}_{0}}{4}\right)$ and $\left(x^{\prime}, \varepsilon, f, d, \rho\right)$ $\in B\left(x_{0} ; r\right) \times \mathcal{U}$ be arbitrary points.

Since $d\left(x, x_{0}\right)<\frac{\hat{\delta}_{0}}{4}$ and $d\left(x_{0}, x^{\prime}\right)<\frac{\hat{\delta}_{0}}{4}$ it follows $d\left(x, x^{\prime}\right)<\frac{\hat{\delta}_{0}}{2}$. But $\hat{\delta}\left(x^{\prime}, \varepsilon\right.$, $f, d, \rho)>\frac{\hat{\delta}_{0}}{2}$, therefore $d\left(x, x^{\prime}\right)<\hat{\delta}\left(x^{\prime}, \varepsilon, f, d, \rho\right)$. This implies that ($x, x^{\prime}, \varepsilon, f$, $d, \rho) \in P_{0}^{+}$. We have proved that the point ($x_{0}, x_{0}, \varepsilon_{0}, f_{0}, d_{0}, \rho_{0}$) is an interior point of P_{0}^{+}.

To prove the inverse implication (ii) \Rightarrow (i) we need some lemmas on the spaces of metrics and on maps between them. Let d and ρ be metrics on the spaces X and Y, respectively. It is known that the metric $\tau_{d \rho}$ which is defined by the equality

$$
\tau_{d \rho}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=d\left(x, x^{\prime}\right)+\rho\left(y, y^{\prime}\right)
$$

where (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are points in $X \times Y$, induces the product topology on the space $X \times Y$.

Lemma 2.1 (on transfer of metrics onto the product space). The map τ : $M_{X} \times M_{Y} \rightarrow M_{X \times Y}$ which assigns to the pair $(d, \rho) \in M_{X} \times M_{Y}$ of metrics the metric $\tau_{d \rho} \in M_{X \times Y}$, is continuous.

Proof. Let $d, d^{\prime} \in M_{X}$ and $\rho, \rho^{\prime} \in M_{Y}$. It suffices to prove the inequality

$$
\begin{equation*}
\operatorname{dist}\left(\tau_{d \rho}, \tau_{d^{\prime} \rho^{\prime}}\right) \leqq \operatorname{dist}\left(d, d^{\prime}\right)+\operatorname{dist}\left(\rho, \rho^{\prime}\right) \tag{3}
\end{equation*}
$$

Let $(x, y) \in X \times Y$ and $\left(x^{\prime}, y^{\prime}\right) \in X \times Y$. Then

$$
\begin{aligned}
& \left|\tau_{d \rho}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)-\tau_{d^{\prime} \rho^{\prime}}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)\right| \\
& =\left|d\left(x, x^{\prime}\right)+\rho\left(y, y^{\prime}\right)-d^{\prime}\left(x, x^{\prime}\right)-\rho^{\prime}\left(y, y^{\prime}\right)\right| \\
& \leqq\left|d\left(x, x^{\prime}\right)-d^{\prime}\left(x, x^{\prime}\right)\right|+\left|\rho\left(y, y^{\prime}\right)-\rho^{\prime}\left(y, y^{\prime}\right)\right| .
\end{aligned}
$$

Taking a minimum between 1 and the value of the expression on the left, and between 1 and the value of the expression on the right, respectively, and then taking the supremum over all four variables x, x^{\prime}, y and y^{\prime}, we obtain the inequality (3).

In formula (1) we assigned to the metric ρ, acting on the space Y, the metric $\tilde{\rho}$, acting on the space $F=F(X, Y)$.

Lemma 2.2 (on the transfer of a metric onto the space of functions). The map $\tau: M_{Y} \rightarrow M_{F}$ which assigns to each metric $\rho \in M_{Y}$ the metric $\tilde{\rho} \in M_{F}$, is continuous.

Proof. Let $\rho, \rho^{\prime} \in M_{Y}$. It suffices to prove the inequality

$$
\operatorname{dist}\left(\tilde{\rho}, \tilde{\rho}^{\prime}\right) \leqq \operatorname{dist}\left(\rho, \rho^{\prime}\right)
$$

Let $f, g \in F(X, Y)$ be arbitrary functions. By the definition of the metric in the space M_{F} it suffices to prove that

$$
\min \left\{1,\left|\tilde{\rho}(f, g)-\tilde{\rho}^{\prime}(f, g)\right|\right\} \leqq \operatorname{dist}\left(\rho, \rho^{\prime}\right) .
$$

Moreover, by the definition of metrics $\tilde{\rho}$ and $\tilde{\rho}^{\prime}$ in F it suffices to prove that for each $x \in X$, the following inequality holds:

$$
\begin{equation*}
\min \left\{1,\left|\min \{1, \rho(f(x), g(x))\}-\min \left\{1, \rho^{\prime}(f(x), g(x))\right\}\right|\right\} \leqq \operatorname{dist}\left(\rho, \rho^{\prime}\right) \tag{4}
\end{equation*}
$$

It is easy to show that for arbitrary $a, b \in \mathbf{R}$ we have

$$
|\min \{1, a\}-\min \{1, b\}| \leqq \min \{1,|a-b|\} .
$$

Therefore, instead of (4) it suffices to prove the following inequality:

$$
\min \left\{1,\left|\rho(f(x), g(x))-\rho^{\prime}(f(x), g(x))\right|\right\} \leqq \operatorname{dist}\left(\rho, \rho^{\prime}\right)
$$

But since $f(x)$ and $g(x)$ are points in Y, the last inequality holds because of Definition 1.3 of the metric dist $\in M_{Y}$.

Let $G=G(X, Y)$ be some subspace of the space of functions F $=F(X, Y)$. Also formula (1), used with G instead of F, defines a map $\tau_{G}: M_{Y} \rightarrow M_{G}$.

Lemma 2.3. The map $\tau_{G}: M_{Y} \rightarrow M_{G}$ is continuous.
Proof. Let $r: M_{F} \rightarrow M_{G}$ be the restriction map. If $\tilde{\rho} \in M_{F}$ is a metric, then $\tilde{\rho}$ is a function $F \times F \rightarrow \mathbf{R}$ and $r(\tilde{\rho})$ is simply its restriction $\left.\tilde{\rho}\right|_{G \times G}$. Since r is continuous and τ_{G} factorizes as

$$
\tau_{G}: M_{Y} \xrightarrow{\tau} M_{F} \xrightarrow{r} M_{G}
$$

τ_{G} is also continuous.
As usual, let $\mathcal{C}=\mathcal{C}(X, Y)$ denote the subspace of all continuous functions in the space $F(X, Y)$, i.e. $\mathcal{C}(X, Y)$ is endowed with the topology of uniform convergence. It is well-known (see [4]) that the evaluation map $e: X \times \mathcal{C}(X, Y) \rightarrow Y$ which maps every pair (x, f) to the point $f(x) \in Y$, is jointly continuous, when $\mathcal{C}(X, Y)$ is endowed with the topology of uniform convergence.

Let Z be a metrizable space. Since the space M_{Z} is a subspace of the space $\mathcal{C}(Z \times Z, \mathbf{R})$, the following lemma holds.

Lemma 2.4. The map $e: Z \times Z \times M_{Z} \rightarrow \mathbf{R}$ defined by $e\left(z, z^{\prime}, d\right)=d\left(z, z^{\prime}\right)$ is continuous.

Let S be a fixed subset of a metrizable space Z. If $d \in M_{Z}$ is a metric, then for each $z \in Z$ denote as usual

$$
d(z, S)=\inf _{s \in S} d(z, s)
$$

and call the number $d(z, S)$ the distance of the point z from the set S. The following lemma is a modification of Lemma 2.4.

Lemma 2.5. The map $e_{S}: Z \times M_{Z} \rightarrow \mathbf{R}$ for a fixed subset S, defined by $e_{S}(z)=d(z, S)$ is continuous.

It is well-known that the function $f_{S, d}: Z \rightarrow \mathbf{R}$ defined by $f_{S, d}(z)$ $=d(z, S)$ is continuous [3].

Introduce the map $f_{S}: M_{Z} \rightarrow \mathcal{C}(Z, \mathbf{R})$ by setting $f_{S}(d)=f_{S, d}$. The function $e_{S}: Z \times M_{Z} \rightarrow \mathbf{R}$ can be factorized as follows:

$$
e_{S}: Z \times M_{Z} \xrightarrow{\mathrm{id}_{Z} \times f_{S}} Z \times C(Z, \mathbf{R}) \xrightarrow{e} \mathbf{R} .
$$

Here e is a jointly continuous map. Therefore only the continuity of f_{S} is to be proved. It suffices to prove that the following inequality holds for each $z \in Z$:

$$
\begin{equation*}
\min \left\{1,\left|d(z, S)-d^{\prime}(z, S)\right|\right\} \leqq \operatorname{dist}\left(d, d^{\prime}\right) \tag{5}
\end{equation*}
$$

Inequality (5) can easily be obtained from the fact that for each $\varepsilon>0$, there exists a point $s \in S$ such that

$$
\begin{equation*}
\left|d(z, S)-d^{\prime}(z, S)\right|<\left|d(z, s)-d^{\prime}(z, s)\right|+\varepsilon . \tag{6}
\end{equation*}
$$

To prove the inequality (6) it is necessary to consider two different possibilities:

$$
d(z, S)>d^{\prime}(z, S) \text { or } d(z, S)<d^{\prime}(z, S)
$$

In the case when $d(z, S)>d^{\prime}(z, S)$ we choose an $s \in S$ such that

$$
\begin{equation*}
d^{\prime}(z, s) \geqq d^{\prime}(z, S)-\varepsilon . \tag{7}
\end{equation*}
$$

Combining (7) with $d(z, S) \leqq d(z, s)$ we obtain

$$
d(z, S)-d^{\prime}(z, S) \leqq d(z, s)-d^{\prime}(z, s)+\varepsilon
$$

hence also (6). In the case when $d(z, S)<d^{\prime}(z, S)$, the proof is analogous.

Proof of (ii) \Rightarrow (i). Assume that each point in the set diag $X \times \mathbf{R}^{+} \times F_{P}$ $\times M_{X} \times M_{Y}$ is an interior point in P_{0}^{+}and construct a continuous selection

$$
\hat{\delta}: X \times \mathbf{R}^{+} \times F_{P} \times M_{X} \times M_{Y} \rightarrow \mathbf{R}^{+}
$$

for the modulus Δ_{P}.
Let "dist" be the product metric in the space $X \times X \times \mathbf{R}^{+} \times F_{P} \times M_{X}$ $\times M_{Y}$ and let P^{-}be the complement of the set P^{+}in this space. If $P^{-}=\emptyset$ then $\Delta_{P} \equiv \mathbf{R}^{+}$and we can put $\hat{\delta} \equiv 1$, for example. In the case $P^{-} \neq \emptyset$ for arbitrary point $(x, \varepsilon, f, d, \rho) \in X \times \mathbf{R}^{+} \times F_{P} \times M_{X} \times M_{Y}$ let

$$
\hat{\delta}(x, \varepsilon, f, d, \rho)=\operatorname{dist}\left((x, x, \varepsilon, f, d, \rho), P^{-}\right)
$$

Since the point ($x, x, \varepsilon, f, d, \rho$) is an interior point of $P_{0}^{+}, \hat{\delta}$ is strictly positive.
Let $x^{\prime} \in X$ be a point such that $d\left(x, x^{\prime}\right)<\hat{\delta}(x, \varepsilon, f, d, \rho)$. By definition of the product metric we have that

$$
\operatorname{dist}\left((x, x, \varepsilon, f, d, \rho),\left(x, x^{\prime}, \varepsilon, f, d, g\right)\right) \leqq d\left(x, x^{\prime}\right)
$$

hence

$$
\begin{gathered}
\operatorname{dist}\left((x, x, \varepsilon, f, d, \rho),\left(x, x^{\prime}, \varepsilon, f, d, \rho\right)\right) \leqq d\left(x, x^{\prime}\right)<\hat{\delta}(x, \varepsilon, f, d, \rho) \\
=\operatorname{dist}\left((x, x, \varepsilon, f, d, \rho), P^{-}\right)
\end{gathered}
$$

It follows that $\left(x, x^{\prime}, \varepsilon, f, d, \rho\right) \in P^{+}$. We have proved that $\hat{\delta}$ is a selection for the modulus Δ_{P}. It remains to prove that the function $\hat{\delta}(x, \varepsilon, f, d, \rho)$ is a continuous function of all of its variables.

Denote by $Z=X \times X \times \mathbf{R}^{+} \times F_{P} \times M_{X} \times M_{Y}$. The construction of the function $\hat{\delta}: X \times \mathbf{R}^{+} \times F_{P} \times M_{X} \times M_{Y} \rightarrow \mathbf{R}^{+}$implies that $\hat{\delta}$ can be composed from the following sequence of maps:
(1) $X \times \mathbf{R}^{+} \times F_{P} \times M_{X} \times M_{Y} \rightarrow X^{2} \times \mathbf{R}^{+} \times F_{P} \times M_{X}^{4} \times M_{Y}^{2}$, given by the diagonal embeddings $X \rightarrow X^{2}, M_{X} \rightarrow M_{X}^{4}, M_{Y} \rightarrow M_{Y}^{2}$ and identities on the remaining factors;
(2) $X^{2} \times \mathbf{R}^{+} \times F_{P} \times M_{X}^{4} \times M_{Y}^{2} \rightarrow Z \times M_{X^{2}} \times M_{F_{P}} \times M_{M_{X}} \times M_{M_{Y}}$, given by the transfers of metrics $M_{X}^{2} \rightarrow M_{X^{2}}, M_{Y} \rightarrow M_{F_{P}}, M_{X} \rightarrow M_{M_{X}}, M_{Y}$ $\rightarrow M_{M_{Y}}$ and identities on the remaining factors;
(3) $Z \times M_{X^{2}} \times M_{F_{P}} \times M_{M_{X}} \times M_{M_{Y}} \rightarrow Z \times M_{Z}$, given by the transfer of metrics into the product space; and
(4) $Z \times M_{Z} \rightarrow \mathbf{R}^{+}$, given by the evaluation map e_{S} as in Lemma 2.5 , for $S=P^{-}$.
All these maps are continuous because of Lemmas 2.1-2.5. Theorem 1.4 is thus finally proved.

3. Applications

(a) Continuity. The predicate C is defined on the domain of variables $X \times X \times \mathbf{R}^{+} \times F \times M_{X} \times M_{Y}$ as follows:

$$
C\left(x, x^{\prime}, \varepsilon, f, d, \rho\right)=\left(\rho\left(f(x), f\left(x^{\prime}\right)\right)<\varepsilon\right) .
$$

We assert that C is a continuity-like predicate. Indeed, F_{C} coincides with $\mathcal{C}(X, Y) \neq \emptyset$. Hence the predicate C is the predicate of the ordinary continuity.

Proposition 3.1. The predicate C of the ordinary continuity satisfies the criterion for existence of continuous selections of the modulus Δ_{C}.

Proof. By Theorem 1.4 it suffices to prove that the set C_{0}^{+}is an open subset in the space

$$
Z=X \times X \times \mathbf{R}^{+} \times F_{C} \times M_{X} \times M_{Y} .
$$

Take the function $c: Z \rightarrow \mathbf{R}$ defined as follows:

$$
c\left(x, x^{\prime}, \varepsilon, f, d, \rho\right)=\varepsilon-\rho\left(f(x), f\left(x^{\prime}\right)\right)
$$

Obviously, $c^{-1}\left(\mathbf{R}^{+}\right)=C_{0}^{+}$. Hence it remains to prove that c is continuous. It suffices to prove that the function $b: X \times X \times F_{C} \times M_{Y} \rightarrow \mathbf{R}$, given by $b:\left(x, x^{\prime}, f, \rho\right) \mapsto \rho\left(f(x), f\left(x^{\prime}\right)\right)$, is continuous.

The map b can be expressed as the composition of the following maps:
(1) $X \times X \times F_{C} \times M_{Y} \rightarrow X \times X \times F_{C} \times F_{C} \times M_{Y}$, given by the diagonal embedding $F_{C} \rightarrow F_{C} \times F_{C}$ and the identity maps on the remaining factors;
(2) $X \times X \times F_{C} \times F_{C} \times M_{Y} \rightarrow Y \times Y \times M_{Y}$, given by the jointly continuous maps $X \times F_{C} \rightarrow Y$ and the identity map on M_{Y}; and
(3) $Y \times Y \times M_{Y} \rightarrow \mathbf{R}$, given by the jointly continuous map for the metric. All these maps are continuous because of Lemmas 2.1-2.5.
Corollary 3.2. Let X and Y be metrizable spaces. Then there exists a continuous function

$$
\hat{\delta}: X \times \mathbf{R}^{+} \times \mathcal{C}(X, Y) \times M_{X} \times M_{Y} \rightarrow \mathbf{R}^{+}
$$

such that for any $(x, \varepsilon, f, d, \rho) \in X \times \mathbf{R}^{+} \times \mathcal{C}(X, Y) \times M_{X} \times M_{Y}$ and for any $x^{\prime} \in X$ the following implication holds:

$$
d\left(x, x^{\prime}\right)<\hat{\delta}(x, \varepsilon, f, d, \rho) \Rightarrow \rho\left(f(x), f\left(x^{\prime}\right)\right)<\varepsilon .
$$

Corollary 3.2 is a generalization of Theorem 1.1: our continuous choice depends on five variables $x, \varepsilon, f, d, \rho$ and the local compactness restriction of the space X has been deleted.
(b) Semicontinuity. Let $Y=\mathbf{R}$. The function $f: X \rightarrow \mathbf{R}$ is said to be upper semicontinuous or lower semicontinuous at the point $x \in X$ respectively, if for each $\varepsilon>0$ there exists a neighborhood \mathcal{U} of the point $x \in X$ such that for any $x^{\prime} \in \mathcal{U} f\left(x^{\prime}\right)<f(x)+\varepsilon$ or $f\left(x^{\prime}\right)>f(x)-\varepsilon$, respectively.

Therefore, the predicates USC and LSC such that USC-continuous functions are upper semicontinuous functions and LSC-continuous functions are lower semicontinuous functions, are defined as follows:

$$
\operatorname{USC}\left(x, x^{\prime}, \varepsilon, f, d, \rho\right)=\left(f\left(x^{\prime}\right)<f(x)+\varepsilon\right)
$$

and

$$
\operatorname{LSC}\left(x, x^{\prime}, \varepsilon, f, d, \rho\right)=\left(f\left(x^{\prime}\right)>f(x)-\varepsilon\right)
$$

Obviously, USC and LSC are continuty-like predicates.
Now we use the predicate USC to explain an important detail in Definition 1.2 and Theorem 1.4. It might seem that P-continuity of maps from X into Y in Definition 1.2 implies the assertion (ii) in Theorem 1.4, hence that each continuity-like predicate P satisfies the criterion for existence of a continuous selection of the modulus Δ_{P}.

However, this conjecture is not valid. As a counterexample consider the following: $X=Y=\mathbf{R}, P=\mathrm{USC}, \varepsilon=\frac{1}{2}, d=\rho=$ the usual metric on \mathbf{R} and $f: \mathbf{R} \rightarrow \mathbf{R}$ defined by

$$
f(x)= \begin{cases}1, & x \leqq 0 \\ 0, & x>0 .\end{cases}
$$

Obviously, f is upper semicontinuous, i.e. $f \in F_{\text {USC }}$. Projection of the set P^{+}onto the $\left(x, x^{\prime}\right)$ plane is the set of points which satisfies the inequality

$$
f\left(x^{\prime}\right)<f(x)+\frac{1}{2}
$$

i.e. the union of the first three quadrants.

Obviously, the point ($0,0, \frac{1}{2}, f, d, \rho$) is not an interior point in the set P_{0}^{+}. Hence the predicate USC does not satisfy the criterion for the existence of a continuous selection of the modulus Δ_{USC}, in the special case when $X=\mathbf{R}$. This fact is valid in general:

Proposition 3.3. Let X be a nondiscrete metric space. Then there are no continuous selections for the moduli Δ_{USC} an Δ_{LSC} of the predicates USC and LSC.

Proof. Let $x \in X$ be an accumulation point, let $\varepsilon=\frac{1}{2}$ and let $f: X$ $\rightarrow \mathbf{R}$ be defined as follows:

$$
f(x)=1, \quad f(y)=0 \text { for } y \neq x
$$

The function f is upper semicontinuous. It is obvious that

$$
\Delta_{\mathrm{USC}}\left(x, \frac{1}{2}, f, d\right)=(0, \infty)
$$

and

$$
\Delta_{\mathrm{USC}}\left(y, \frac{1}{2}, f, d\right) \subset(0, d(x, y)) \text { for } y \neq x
$$

Hence, for any selection δ of the modulus $\Delta_{\text {USC }}$ the following has to hold:

$$
\delta\left(y, \frac{1}{2}, f, d\right)<d(x, y) \text { for } y \neq x
$$

or

$$
\lim _{y \rightarrow x} \delta\left(y, \frac{1}{2}, f, d\right)=0
$$

Since $\delta\left(x, \frac{1}{2}, f, d\right)>0$, the selection δ is discontinuous at the point $\left(x, \frac{1}{2}, f, d\right)$.

Although there is no continuous selection

$$
\delta: X \times \mathbf{R}^{+} \times F_{\mathrm{USC}} \times M_{X} \times M_{\mathbf{R}} \rightarrow \mathbf{R}^{+}
$$

of the modulus $\Delta_{\text {USC }}$ with respect to all variables $(x, \varepsilon, f, d, \rho) \in X \times \mathbf{R}^{+}$ $\times F_{\text {USC }} \times M_{X} \times M_{Y}$, there exists a selection $\hat{\delta}$ which is continuous with respect to the variable ε, only.

Proposition 3.4. For each quadruple of the variables (x, f, d, ρ) there exists a continuous function

$$
\hat{\delta}_{x, f, d, \rho}: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}
$$

such that the function

$$
\hat{\delta}(x, \varepsilon, f, d, \rho)=\hat{\delta}_{x, f, d, \rho}(\varepsilon)
$$

is a selection of the modulus $\Delta_{\text {USC }}$.
Proof. It is obvious that for each quintuple ($x, \varepsilon, f, d, \rho$) of variables the set $\Delta_{\mathrm{USC}}(x, \varepsilon, f, d, \rho)$ is an interval with the number 0 as the left endpoint. Also, $\Delta_{\text {USC }}$ is a nondecreasing multivalued map of ε, i.e. if $\varepsilon^{\prime}>\varepsilon$, then

$$
\Delta_{\mathrm{USC}}(x, \varepsilon, f, d, \rho) \cong \Delta_{\mathrm{USC}}\left(x, \varepsilon^{\prime}, f, d, \rho\right)
$$

Now the problem is elementary. Namely,

$$
\Delta(\varepsilon)=\Delta_{\mathrm{USC}}(x, \varepsilon, f, d, \rho)
$$

is a multivalued map $\Delta: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$such that for each $\varepsilon \in \mathbf{R}^{+}$the set $\Delta(\varepsilon)$ $\subset \mathbf{R}^{+}$is an interval with zero as the left endpoint. Moreover, $\Delta(\varepsilon)$ is a nondecreasing map of the variable ε, i.e.

$$
\forall \varepsilon^{\prime} \quad\left(\varepsilon^{\prime}>\varepsilon\right) \Rightarrow\left(\Delta(\varepsilon) \cong \Delta\left(\varepsilon^{\prime}\right)\right) .
$$

The problem is to construct a continuous single-valued selection $\hat{\delta}: \mathbf{R}^{+}$ $\rightarrow \mathbf{R}^{+}$for the multivalued map Δ.

First we construct a step function $\delta: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$which is a selection for Δ. For each natural number n, construct the set

$$
\Delta^{-1}\left(\frac{1}{n}\right)=\left\{\varepsilon \left\lvert\, \frac{1}{n} \in \Delta(\varepsilon)\right.\right\} .
$$

Since $\Delta(\varepsilon)$ is a nondecreasing function, each set $\Delta^{-1}\left(\frac{1}{n}\right)$ is either empty set or an interval of the form $\left(\varepsilon_{n}, \infty\right)$ or $\left[\varepsilon_{n}, \infty\right)$. Since Δ is a strictly positive function, there are sets $\Delta^{-1}\left(\frac{1}{n}\right)$ which are not empty.

Moreover, for each $n \in \mathbf{N}$ the following holds:

$$
\Delta^{-1}\left(\frac{1}{n}\right) \subset \Delta^{-1}\left(\frac{1}{n+1}\right)
$$

hence $\varepsilon_{n}>\varepsilon_{n+1}$. Set

$$
\left.\delta\right|_{\left(\varepsilon_{n+1}, \varepsilon_{n}\right]}=\frac{1}{n+1} .
$$

By construction, δ is a nondecreasing step-function and for each $\varepsilon>0, \delta(\varepsilon)$ $\in \Delta(\varepsilon)$, i.e. δ is a selection for Δ.

Now, since the nondecreasing step function δ is constructed, it is easy to construct a continuous "lower" selection $\hat{\delta}$. Fig. 1 illustrates the idea of the construction.

It is clear that $\hat{\delta}$ is a piecewise linear function which attains the value $\frac{1}{n+1}$ at the point ε_{n}.
(c) α-continuity. Let X, Y be metric spaces with metrics d and ρ, respectively, and let $\alpha: X \rightarrow[0,+\infty]$ be a function. A map $f: X \rightarrow Y$ is said to be α-continuous if

$$
\begin{gathered}
\forall \varepsilon>0 \quad \forall x \in X \exists \delta>0 \text { such that }\left(\forall x^{\prime} \in X\right)\left(d\left(x, x^{\prime}\right)<\delta\right. \\
\left.\Rightarrow \rho\left(f\left(x^{\prime}\right), f(x)\right)<\alpha(x)+\varepsilon\right) .
\end{gathered}
$$

Fig. 1
The function α is called the degree of discontinuity. Denote by 0 and ∞ functions on X, identically equal to 0 and ∞, respectively. Then 0 -continuous maps are exactly ordinary continuous maps and ∞-continuous maps are all maps. If α, β are degrees of discontinuity and if $\alpha(x) \leqq \beta(x)$ for all $x \in X$ then each α-continuous map is also a β-continuous map.

In particular, each ordinarily continuous map is α-continuous for an arbitrary degree α of discontinuity. But the converse does not hold. For example, let $x_{0} \in X, y_{0}, y_{1} \in Y$ be points such that $\rho\left(y_{0}, y_{1}\right)=\alpha\left(x_{0}\right)>0$. Then the map

$$
f(x)= \begin{cases}y_{1}, & x \neq x_{0} \\ y_{0}, & x=x_{0}\end{cases}
$$

is α-continuous but not ordinarily continuous.
For a given degree α of discontinuity, let us introduce the predicate P_{α} of α-continuity, by the following formula:

$$
P_{\alpha}\left(x, x^{\prime}, \varepsilon, f, d, \rho\right)=\left(\rho\left(f\left(x^{\prime}\right), f(x)\right)<\alpha(x)+\varepsilon\right) .
$$

Since each (ordinarily) continuous map is also α-continuous, the predicate P_{α} is continuity-like (cf. Definition 1.2).

The following result is an immediate consequence of Theorem 1.4.
Proposition 3.5. If (Y, ρ) is a connected metric space with infinite diameter and if the degree α of discontinuity is not a lower semicontinuous
function, then the modulus of α-continuity

$$
\Delta_{P_{\alpha}}: X \times \mathbf{R}^{+} \times F_{P_{\alpha}} \times M_{X} \times M_{Y} \rightarrow \mathbf{R}^{+}
$$

does not admit a continuous selection $\hat{\delta}$.
Proof. Let α be not lower semicontinuous at a point $x_{0} \in X$. Then, there exists a positive number ε_{0} such that for each neighborhood \mathcal{U} of the point x_{0} there is a point $x \in \mathcal{U}$ such that $\alpha(x)<\alpha\left(x_{0}\right)-\varepsilon_{0}$. Since Y is connected and has infinite diameter, it is possible to choose points $y_{0}, y_{1} \in Y$ such that $\rho\left(y_{0}, y_{1}\right)=\alpha\left(x_{0}\right)$. Let us introduce the map

$$
f_{0}(x)= \begin{cases}y_{1}, & x \neq x_{0} \\ y_{0}, & x=x_{0}\end{cases}
$$

Obviously, the map f_{0} is α-continuous. We assert that for arbitrary metrics d_{0}, ρ_{0} the point

$$
\left(x_{0}, x_{0}, \varepsilon_{0}, f_{0}, d_{0}, \rho_{0}\right) \in \operatorname{diag} X \times X \times \mathbf{R}^{+} \times F_{P_{\alpha}} \times M_{X} \times M_{Y}
$$

is not an interior point in the set $P_{\alpha, 0}^{+}$. The assertion holds since there is a point x in each neighborhood \mathcal{U} of the point x_{0} such that

$$
\rho\left(f_{0}\left(x_{0}\right), f_{0}(x)\right)=\alpha\left(x_{0}\right)>\alpha(x)+\varepsilon_{0}
$$

and therefore, the point ($x, x_{0}, \varepsilon_{0}, f_{0}, d_{0}, \rho_{0}$) does not belong to the set P_{α}^{+}. By Theorem 1.4, the modulus $\Delta_{P_{\alpha}}$ does not admit a continuous selection $\hat{\delta}$.

Conjecture 3.6. If the degree α of discontinuity is a lower semicontinuous function then the modulus $\Delta_{P_{\alpha}}$ admits a continuous selection $\hat{\delta}$.

Acknowledgements. Both authors were supported in part by the Ministry of Science and Technology of the Republic of Slovenia research grant No. P1-0214-101-94. We wish to thank P. V. Semenov and the referee for many valuable suggestions and comments.

References

[1] G. Artico and U. Marconi, A continuity result in calculus, in Proc. Int. Conf. Topol.
(Trieste, 1993), G. Gentili, Ed., Rend. Ist. Mat. Univ. Trieste 25 (1993), 5-8.
[2] V. G. Gutev, Continuity of the modulus of continuity, preprint, Univ. of Sofia (1994).
[3] S. T. Hu, Theory of Retracts, Wayne State Univ. Press (Detroit, 1965).
[4] J. L. Kelley, General Topology, D. van Nostrand (Princeton, N.J., 1955).
[5] E. Michael, Continuous selections I, Ann. of Math., 63 (1956), 361-382.
[6] D. Repovš and P. V. Semenov, An application of the theory of selections in analysis, in Proc. Int. Conf. Topol. (Trieste, 1993), G. Gentili, Ed., Rend. Ist. Mat. Univ. Trieste 25 (1993), 441-446.
(Received March 21, 1995; revised September 25, 1995)

INSTITUTE FOR MATHEMATICS, PHYSICS AND MECHANICS
UNIVERSITY OF LJUBLJANA
P.O. BOX 2964, LJUBLJANA 1001

SLOVENIA

