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CONTINUITY-LIKE PROPERTIES
AND CONTINUOUS SELECTIONS

J. MALESIC and D. REPOVS (Ljubljana)

1. Introduction

Recall the definition of continuity of a map f between metric spaces
(X,d) and (Y, p):

(Vz € X)(Ve > 0)(36 > 0) (V2 € X)(d(z,z’) <e= p(fla), f(z) < g).

The question arises whether it is possible to choose § > 0, which continuously
depends on the triple (z,¢, f) € X x Rt x C(X,Y), where C(X,Y) denotes
the set of all continuous maps from X into Y, endowed with the metric of
uniform convergence;

dist(f,g) = sup { min { 1, p( f(z), 9(z)) } |z € X}.

In [6] the following result was proved:

THEOREM 1.1. Let (X,d) and (Y, p) be metric spaces and suppose that

X 1s locally compact. Then there exists a continuous function §: X xRt
X C(X,Y) — R* such that for every (z,¢, f) € X x Rt x C(X,Y) and for
every &' € X the following implication holds:

d(z,2) < 8(z,¢, f) = p(f(z), f(z')) <e. O

The purpose of the present paper is: (a) to prove an analogue of Theo-
rem 1.1 where the continuous choice depends on five variables: three of them
are as in Theorem 1.1 and the remaining two are the metrics on the spaces X
and Y, compatible with the given metrizable topologies on X and Y; (b) to
avoid the local compactness restriction in Theorem 1.1; and (c¢) to examine
some similar problems for noncontinuous maps, e.g. for the lower or upper
semicontinuous real-valued functions.

We shall answer (a), (b) and (¢) from a rather formal point of view.
Namely, we shall substitute the inequality p{ f(z), f(z')) < ¢ in the stan-
dard definition of continuity by some suitable predicate P in the variables
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142 J. MALESIC and D. REPOVS

z,z' ¢, f,p. We shall call such a predicate a continuity-like predicate. A pos-
itive answer to (b) was suggested by [1] and [2] and in the present paper we
actually exploit an idea of G. de Marco (as explained in [1}).

For metrizable spaces X and Y we denote by F = F(X,Y) the set of
all single-valued maps: X — Y. We endow the set F' with the topology of
the uniform convergence. If p is a metric on a space Y, compatible with the
topology on Y, then the following metric on a space F is compatible with
the topology of the uniform convergence:

(1) p(fr9) = sup min {1,p(f(z),9(2))}, f,9€F.

For a metrizable space X we denote by Mx the set of all metrics which are
compatible with the topology on X.

Since each metric d: X x X — R is a single-valued function we endow
the set Mx with the relative topology, induced by the inclusion Mx C F(X
x X,R). Hence the metric on the space Mx is defined as follows:

(2) dist(d,d’) = sup min{1,|d(z,2’) - d'(z,2)| }.
r,r'e X

We shall represent different types of continuity of maps from X into Y
as predicates, defined on the domain X x X x Rt x F x Mx x My. Let
P(z,z',¢e, f,d, p) be a predicate (i.e. a logical function) of the variables

(z,2',¢, f,d,p) € X x X x Rt X F x Mx x My.

Denote by P* the subset of X x X x Rt X F x Mx x My consisting of all
6-tuples (z,2’,¢, f,d, p) such that the proposition P(z,z',¢, f,d, p) is valid.

DEFINITION 1.2. Amap f: X — Y is said to be P-continuous if for each
zeX,ee Rt de My, p€ My, there exists a neighborhood U = Uy ¢ 1,4,
C X of the point z such that {z} xU x {e} x {f} x {d} x {p} C P*. Denote
by Fp the set of all P-continuous maps from X into Y. A predicate P is
said to be continuity-like if the set Fp is nonempty.

As special cases of continuity-like predicates one can consider the usual
properties of continuity, lower (upper) semicontinuity of real-valued func-
tions, a-continuity, locally uniform continuity, etc. (See also Section 3.)

DEFINITION 1.3. Let X and Y be metrizable spaces and let P be a
continuity-like predicate on X x X x Rt X F x Mx x My. The multivalued
map Ap : X X Rt X Fp x Mx x My — R, defined by the relation

Ap(,¢, f,d,p) = {§ > 0| V2’ € X d(z,2') < 6 = (z,2',¢, f,d,p) € P}
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CONTINUITY-LIKE PROPERTIES AND CONTINUOUS SELECTIONS 143

is said to be the modulus of a predicate P.

REMARK. From the definition of P-continuous functions it follows imme-
diately that the set Ap(z,¢, f,d,p) is nonempty for a continuity-like predi-
cate P. We also recall that a single-valued map ¢ : A — B is called a selection
of a given multivalued map ® : A — B if ¢(z) € ®(z), for all z € A.

The main result in this note is a criterion for the existence of a continuous
selection 6 of the modulus Ap of a continuity-like predicate P, formulated in
Theorem 1.4 below. Of course, one can consider Ap as a multivalued map
from X X Rt X Fp X Mx X My into R* with nonempty convex values. An
attempt of a direct application of E. Michael’s theory of continuous selections
[5] leads to some restrictions for the domain X, because of the restriction of
lower semicontinuity for Ap, see [6]. Here we avoid E. Michael’s selection
theorems altogether.

Denote by diag X the diagonal subset {(z X z) |z € X} in X x X, and
let

Pf =P"n(X x X xR x Fp x Mx x My).

The definition of a P-continuous map implies that
(diag X) x R x Fp x Mx x My C Fy".

THEOREM 1.4 (criterion for the existence of a continuous selection). Let
P be a continuous-like predicate and let Ap be its modulus. Then the follow-
ing two assertions are equivalent:

(i) There ezists a continuous single-valued selection 6 of modulus Ap;
and

(ii) The set (diag X) x Rt X Fp x Mx x My lies in the interior of the
set P(;" .

2. Proof of Theorem 1.4

Proof of (i) = (ii). Let (zo,o,¢0, fo,do, po) € (diag X) x R* X Fp x Mx
X My be an arbitrary point and let 4 be a continuous selection of Ap.
Denote é¢ = 6(zo, €0, fo,do, po). Since § is continuous, the preimage G
= 5‘1(30/2,-}—00) of the interval (%‘1,4-00) is an open set in the space X
X R* X Fp X Mx x My. The set G contains the point (o, €9, fo,do, po), 0
this point is an interior point of G. By the definition of the product topology

there exists an open neighborhood ¢ of the point (eg, fo,do, po) in the space
R* X Fp x Mx X My and there exists an open ball B(z;r) with radius r such

that B(zo;7) XU C G. We can assume that 7 < %‘1. The set V=B (:co; %‘1)

Acte Mathematica Hungarica 73, 1996



144 J. MALESIC and D. REPOVS

X B(zg;7) X U is open and contains the point (zo,zo,‘eo,fo,do,po). More-
over, V is a subset of P;". To see this, let z € B (a:o; %1) and (2',¢, f,d, p)
€ B(zo;7) X U be arbitrary points. )

Since d(z,20) < %‘1 and d(zo,2') < %‘1 it follows d(z,z') < %‘1. But §(z', ¢,
f,d,p) > é,}, therefore d(z,z') < 3(3:',8,]', d,p). This implies that (z,2',¢, f,
d,p) € PJ'. We have proved that the point (2o, 20, €0, fo, do, Po) is an interior
point of P(;F .

To prove the inverse implication (ii) = (i) we need some lemmas on the
spaces of metrics and on maps between them. Let d and p be metrics on

the spaces X and Y, respectively. It is known that the metric 75, which is
defined by the equality

T4 ((2,9),(«',9)) = d(z,2") + p(3,)
where (z,y) and (z’,y’) are points in X x Y, induces the product topology

on the space X x Y.

LeEMMA 2.1 (on transfer of metrics onto the product space). The map 7 :
Mx x My — Mxyxy which assigns to the pair (d,p) € Mx x My of metrics
the metric 4, € Mxxy, is continvous.

ProoF. Let d,d' € Mx and p,p’ € My. It suffices to prove the inequality
(3) dist(74,, 710 < dist(d,d’) + dist(p, p’).
Let (z,y) € X xY and (2',¥) € X xY. Then

,po((x’ ), (', ?/’)) - Td'p’((z’ ¥), (2, yl)) ,
= |d(z,2") + p(y,9") - d'(2,2") - p'(3,7)]
< |d(z,2") - d(z,2")| + | p(v,¥') - P'(3,¥')]-

Taking a minimum between 1 and the value of the expression on the left,
and between 1 and the value of the expression on the right, respectively, and
then taking the supremum over all four variables z,z’,y and y’, we obtain
the inequality (3). O

In formula (1) we assigned to the metric p, acting on the space Y, the
metric p, acting on the space F' = F(X,Y).

LEMMA 2.2 (on the transfer of a metric onto the space of functions). The
map 7 : My — MFp which assigns to each metric p € My the metric p € Mp,
18 continuous.

PRrOOF. Let p, p' € My. It suffices to prove the inequality
dist(p, p') < dist(p, p).

Acta Mathematica Hungarica 73, 1996



CONTINUITY-LIKE PROPERTIES AND CONTINUOUS SELECTIONS 145

Let f,g € F(X,Y) be arbitrary functions. By the definition of the metric in
the space M it suffices to prove that

min {1,|5(f,9) - 7'(f,9)|} £ dist(p,p").

Moreover, by the definition of metrics p and p’ in F it suffices to prove that
for each z € X, the following inequality holds:

(4)
min{l, |min {1, p(f(2), 9(z)) } ~ min {1,p'( f(z),9(z)) } I} < dist(p, p').

It is easy to show that for arbitrary a,b € R we have
| min{1,a} — min{1,b}| < min {1,|a - 5] }.

Therefore, instead of (4) it suffices to prove the following inequality:

min {1, o(f(2),9(2)) - #'( f(2),9())| } £ dist(p, p").

But since f(z) and g(z) are points in Y, the last inequality holds because of
Definition 1.3 of the metric dist € My. O

Let G =G(X,Y) be some subspace of the space of functions F
= F(X,Y). Also formula (1), used with G instead of F, defines a map
o My — Mg.

LEMMA 2.3. The map 7 : My — Mg is continuous.

PRrOOF. Let r : Mp — Mg be the restriction map. If p € MF is a metric,
then p is a function F' X F — R and r(p) is simply its restriction p|g, -
Since r is continuous and 7 factorizes as

16 My 5> Mp 5 Mg

Tq is also continuous. O

As usual, let € = C(X,Y) denote the subspace of all continuous func-
tions in the space F(X,Y), i.e. C(X,Y) is endowed with the topology of
uniform convergence. It is well-known (see [4]) that the evaluation map
e: X xC(X,Y)— Y which maps every pair (z, f) to the point f(z) €Y, is
jointly continuous, when C(X,Y) is endowed with the topology of uniform
convergence.

Let Z be a metrizable space. Since the space Mz is a subspace of the
space C(Z x Z,R), the following lemma holds.
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LEMMA 2.4. Themape:Z X Z x Mz — R defined by e(2,2',d) = d(z,7')
is continuous. O

Let S be a fixed subset of a metrizable space Z. If d € Mz is a metric,
then for each 2 € Z denote as usual

d(2,5) = :Ielg d(2,3)

and call the number d(z, 5) the distance of the point z from the set §. The
following lemma is a modification of Lemma 2.4.

LEMMA 2.5. The mapes: Z X Mz — R for a fized subset S, defined by
es(z) = d(z,5) is continuous. O

It is well-known that the function fsgq:Z — R defined by fsq(z)
= d(z, §) is continuous [3].

Introduce the map fs : Mz — C(Z,R) by setting fs(d) = fsq4. The func-
tion eg : Z x Mz — R can be factorized as follows:

es:Zx Mg 22255, 7 x ¢(Z,R) = R.
Here e is a jointly continuous map. Therefore only the continuity of fs is to
be proved. It suffices to prove that the following inequality holds for each
2 € Z:
(5) min {1,|d(z,S) - d'(z,5)| } £ dist(d,d).

Inequality (5) can easily be obtained from the fact that for each € > 0, there
exists a point s € § such that

(6) ld(z,8) — d'(z,5)| < |d(z,8) - d'(z,3)| +e.
To prove the inequality (6) it is necessary to consider two different possibil-
ities:
d(z,8) > d'(z,8) or d(z,8) < d(2,5).
In the case when d(z,5) > d’(z, S) we choose an s € 5 such that

(7) d'(z,8) 2 d'(z,5) - ¢.
Combining (7) with d(z, 5) £ d(z,s) we obtain
d(z,5)~d'(z,8) S d(z,8) — d'(z,8)+ ¢

hence also (6). In the case when d(z,S5) < d'(2, 5), the proof is analogous.
a
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Proof of (i) = (i). Assume that each point in the set diag X x R* x Fp
X Mx x My is an interior point in P(;* and construct a continuous selection

6: X xRt X Fp x Mx x My —» Rt

for the modulus Ap.

Let “dist” be the product metric in the space X x X x R* x Fp x Mx
X My and let P~ be the complement of the set P+ in this space. If P~ =0
then Ap = Rt and we can put 6 = 1, for example. In the case P~ # @ for
arbitrary point (z,¢, f,d,p) € X x Rt X Fp X Mx x My let

8(z,e, f,d, p) = dist ((z,2,¢, f,d,p), P~).

Since the point (z,z,¢, f,d,p) is an interior point of Py, § is strictly positive.
Let 2’ € X be a point such that d(z,z’) < §(z,¢, f,d, p). By definition of
the product metric we have that

dist ((z,z,¢, f,d,p),(z,2',¢, f,d,9)) < d(z,2")

hence

dist ((z,2,¢, f,d,p), (2,2, ¢, f,d,p)) € d(z,2") < &(z,e, f,d, p)
= dist ((z,z,¢, f,d,p), P7).

It follows that (z,2',¢, f,d, p) € P+. We have proved that § is a selection for

the modulus Ap. It remains to prove that the function §(x,¢, f,d,p) is a

continuous function of all of its variables.

Denote by Z = X x X x Rt x Fp x Mx x My. The construction of the
function 6 : X X Rt x Fp x Mx x My — R implies that 6 can be composed
from the following sequence of maps:

(1) X x R* x Fp x Mx x My — X?x R* x Fp x M} x MZ, given by the
diagonal embeddings X — X?, Mx — M3, My — MZ and identities on
the remaining factors;

(2) X2xRt X Fp x My X Mj — Z X Mx2 X Mg, X My, X My, given
by the transfers of metrics M3 — M2, My — Mp,, Mx — M, , My
— My, and identities on the remaining factors;

(3) Zx Mx2 X Mp, X Mpg, X My, — Z X Mz, given by the transfer of met-
rics into the product space; and

(4) Z x Mz — R*, given by the evaluation map eg as in Lemma 2.5, for

All these maps are continuous because of Lemmas 2.1-2.5. Theorem 1.4
is thus finally proved. O
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3. Applications

(a) Continuity. The predicate C is defined on the domain of variables
X x X xRt X Fx Mx x My as follows:

C(z,7's¢, f,d,p) = (p(f(2), f(z") <¢).

We assert that C is a continuity-like predicate. Indeed, F coincides with
C(X,Y) # 0. Hence the predicate C is the predicate of the ordinary conti-
nuity.

ProrosiTioN 3.1. The predicate C of the ordinary continuity satisfies
the criterion for ezxistence of continuous selections of the modulus Ac.

Proo¥r. By Theorem 1.4 it suffices to prove that the set C(',*' is an open
subset in the space

Z=XxX xRt x Fox Mx x My.
Take the function ¢ : Z — R defined as follows:
c(z,2s¢, f,d,p) = € — p(f(z), f(2)).

Obviously, ¢"}(R*) = Cf. Hence it remains to prove that ¢ is continuous.
It suffices to prove that the function b: X x X X Fo x My — R, given by
b:(z,2, f,p) — p(f(z), f(z')), is continuous.
The map b can be expressed as the composition of the following maps:
(1) X XX X Fg x My — X x X X F¢ x F¢ X My, given by the diagonal em-
bedding Fo — F¢ X F¢ and the identity maps on the remaining factors;
(2) Xx X x Foc x Foc x My =Y XY x My, given by the jointly continuous
maps X X Fo — Y and the identity map on My; and
(3) Y xY x My — R, given by the jointly continuous map for the metric.
All these maps are continuous because of Lemmas 2.1-2.5. O

COROLLARY 3.2. Let X and Y be metrizable spaces. Then there exists
a continuous function

6: X xRY X C(X,Y)x Mx x My — R*

such that for any (z,¢, f,d,p) € X x Rt x C(X,Y) x Mx X My and for any
2’ € X the following implication holds:

d(z,2") < §(z,¢, f,d,p) = p(f(2), f(=)) <&
Corollary 3.2 is a generalization of Theorem 1.1: our continuous choice
depends on five variables z,¢, f,d, p and the local compactness restriction of
the space X has been deleted.
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(b) Semicontinuity. Let ¥ = R. The function f: X — R is said to be
upper semicontinuous or lower semicontinuous at the point z € X respec-
tively, if for each ¢ > 0 there exists a neighborhood U of the point z € X
such that for any 2’ € U f(z') < f(z) +¢ or f(2') > f(z) — ¢, respectively.

Therefore, the predicates USC and LSC such that USC-continuous func-
tions are upper semicontinuous functions and LSC-continuous functions are
lower semicontinuous functions, are defined as follows:

USC(z,2's¢, f,d,p) = (f(z") < f(z) +¢€)

and
LSC(z,7',¢, f,d,p) = (f(z') > f(z) — )

Obviously, USC and LSC are continuty-like predicates.

Now we use the predicate USC to explain an important detail in Defi-
nition 1.2 and Theorem 1.4. It might seem that P-continuity of maps from
X into Y in Definition 1.2 implies the assertion (ii) in Theorem 1.4, hence
that each continuity-like predicate P satisfies the criterion for existence of a
continuous selection of the modulus Ap.

However, this conjecture is not valid. As a counterexample consider the
following: X =Y =R, P=USC, ¢ = %, d = p = the usual metric on R and
f : R — R defined by

1, 220
0, z>0.

)= {

Obviously, f is upper semicontinuous, i.e. f € Fysc. Projection of the set
Pt onto the (z,z’) plane is the set of points which satisfies the inequality

fa') < @)+

i.e. the union of the first three quadrants.

Obviously, the point (0,0, 3, f,d, p) is not an interior point in the set Py .
Hence the predicate USC does not satisfy the criterion for the existence of a
continuous selection of the modulus Aysc, in the special case when X = R.
This fact is valid in general:

PRrROPOSITION 3.3. Let X be a nondiscrete metric space. Then there are

no continuous selections for the moduli Aysc an Apsc of the predicates USC
and LSC,

ProOF. Let 2 € X be an accumulation point, let ¢ = % and let f: X
— R be defined as follows:

fley=1,  f(y)=0 for y#a.
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The function f is upper semicontinuous. It is obvious that

AUSC (za %’ f7 d) = (0’00)

AUSC (%%,f,d) C (O’d(z7y)) for y # Z.

Hence, for any selection é of the modulus Aysc the following has to hold:

6(y,§,f,d) <d(z,y) for y#2

or
lim § (y, l,f,d) =0.
y—z 2

Since 6 (z, %, f,d) > 0, the selection § is discontinuous at the point (z, 3, f,d).
0

Although there is no continuous selection
§:X xRY x Fysc Xx Mx x Mg — R*

of the modulus Aysc with respect to all variables (z,¢, f,d, p) € X X Rt

X Fysc X Mx X My, there exists a selection § which is continuous with re-
spect to the variable ¢, only.

PRrROPOSITION 3.4. For each quadruple of the variables (z, f,d,p) there
erists a continuous function

b5, RY = RF
such that the function

8(1‘?51 fs d7 P) = 3-‘lfvf'dvp(€)

is a selection of the modulus Aysc.

PRrooOF. It is obvious that for each quintuple (2,¢, f,d, p) of variables the
set Aysc(z,é¢, f,d,p) is an interval with the number 0 as the left endpoint.
Also, Aysc is a nondecreasing multivalued map of ¢, i.e. if &’ > ¢, then

AUSC(my &, f’ da P) g AUSC(z, 511 f’ da P)-
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Now the problem is elementary. Namely,

A(e) = Ausc(z,¢, f,d,p)

is a multivalued map A : R* — R such that for each ¢ € Rt the set A(e)
C R* is an interval with zero as the left endpoint. Moreover, A(¢) is a
nondecreasing map of the variable ¢, i.e.

Ve' (¢' >e) = (A(e) € A€')).

The problem is to construct a continuous single-valued selection & : R+
— R* for the multivalued map A.

First we construct a step function § : Rt — R* which is a selection for
A. For each natural number 7, construct the set

ATl (%) = {5'% € A(e)}.

Since A(¢) is a nondecreasing function, each set A~} (%) is either empty set
or an interval of the form (e,,00) or [¢,,00). Since A is a strictly positive
function, there are sets A~1 (;1;) which are not empty.

Moreover, for each n € N the following holds:

2 (3)ea (55)

1
6|(5n+115n] = n + 1'

hence €, > €,41. Set

By construction, ¢ is a nondecreasing step-function and for each £ > 0, é(¢)
€ A(e), i.e. § is a selection for A.
Now, since the nondecreasing step function 6 is constructed, it is easy to

construct a continuous “lower” selection §. Fig. 1 illustrates the idea of the
construction.

It is clear that & is a piecewise linear function which attains the value
-7 at the point &,.

(¢) a-continuity. Let X,Y be metric spaces with metrics d and p, re-
spectively, and let & : X — [0, +00] be a function. A map f: X — Y is said
to be a-continuous if

Ve >0 Vz€ X 36 >0 such that (Vz' € X)(d(m,:c') <é

= p(f(2), f(2)) < al2) +¢).
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sup A(e)
é(e)

5(e)

Lo €4 £3 €9 £ £
Fig. 1

The function « is called the degree of discontinuity. Denote by 0 and oo func-
tions on X, identically equal to 0 and oo, respectively. Then 0-continuous
maps are exactly ordinary continuous maps and oco-continuous maps are all
maps. If o, are degrees of discontinuity and if a(z) £ 8(2) for all z € X
then each a-continuous map is also a §-continuous map.

In particular, each ordinarily continuous map is a-continuous for an arbi-
trary degree « of discontinuity. But the converse does not hold. For example,
let zo € X, %0,y1 € Y be points such that p(yo, 1) = @(2o) > 0. Then the

map
N, T Io
flz) = { #
Yo, T =20

is a-continuous but not ordinarily continuous.
For a given degree o of discontinuity, let us introduce the predicate P,
of a-continuity, by the following formula:

Pal,@'s¢,f,dyp) = (p( (&), S(2)) < a(a) + ).

Since each (ordinarily) continuous map is also a-continuous, the predicate
P, is continuity-like (cf. Definition 1.2).
The following result is an immediate consequence of Theorem 1.4.

ProvrosiTioN 3.5. If (Y, p) is a connected metric space with infinite di-
ameter and if the degree o of discontinuity is not a lower semicontinuous
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function, then the modulus of a-continuity

Apm:XXR'*'XFPC.XM)(XMy-—»R+

does not admit a continuous selection 6.

PRrOOF. Let a be not lower semicontinuous at a point zo € X. Then,
there exists a positive number ¢ such that for each neighborhood U of the
point zg there is a point x € U such that a(z) < a(zo) — €¢. Since Y is con-
nected and has infinite diameter, it is possible to choose points yo,y; € Y
such that p(y, y1) = a(z¢). Let us introduce the map

)= {1 270

Yo, T = Zo.

Obviously, the map fp is a-continuous. We assert that for arbitrary metrics
do, po the point

(20, 20, €0, fo, do, o) € diag X x X x RY x Fp, x Mx x My

is not an interior point in the set P;': o- The assertion holds since there is a
point z in each neighborhood U of the point z such that

p( fo(zo), fo(z)) = a(zo) > alz) + €0

and therefore, the point (z, zo, €9, fo, do, po) does not belong to the set P7.

By Theorem 1.4, the modulus Ap, does not admit a continuous selection 6.
O

CONIJECTURE 3.6. If the degree a of discontinuity is a lower semicontin-
uous function then the modulus Ap, admits a continuous selection 6.
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