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Nonlinear mappings preserving at least one eigenvalue

by

Constantin Costara (Constanţa) and Dušan Repovš (Ljubljana)

Abstract. We prove that if F is a Lipschitz map from the set of all complex n × n
matrices into itself with F (0) = 0 such that given any x and y we know that F (x)−F (y)
and x − y have at least one common eigenvalue, then either F (x) = uxu−1 or F (x) =
uxtu−1 for all x, for some invertible n× n matrix u. We arrive at the same conclusion by
supposing F to be of class C1 on a domain inMn containing the null matrix, instead of
Lipschitz. We also prove that if F is of class C1 on a domain containing the null matrix
satisfying F (0) = 0 and ρ(F (x)−F (y)) = ρ(x− y) for all x and y, where ρ(·) denotes the
spectral radius, then there exists γ ∈ C of modulus one such that either γ−1F or γ−1F is
of the above form, where F is the (complex) conjugate of F .

1. Introduction and statement of results. Linear preserver prob-
lems deal with the question of characterizing those linear transformations
on an algebra which leave invariant a certain subset, function or relation
defined on the underlying algebra. The study of such transformations be-
gan with Frobenius in 1897, who characterized the linear maps on matrix
algebras preserving the determinant. In 1949, Dieudonné characterized the
invertible linear maps preserving the set of singular matrices. In 1959, Mar-
cus and Moyls [7, Theorem 6] proved that if T :Mn →Mn is linear (with
respect to complex scalars) and an eigenvalue preserver, then there exists an
invertible u ∈Mn such that either
(1.1) T (x) = uxu−1 (x ∈Mn) or T (x) = uxtu−1 (x ∈Mn).

(For a fixed integer n ≥ 1, we denote byMn the space of all complex n× n
matrices and xt stands for the transpose of x ∈ Mn.) By a density argu-
ment, one can easily see that we arrive at the same conclusion by supposing
σ(T (x)) = σ(x) for all x ∈ Mn, where σ(x) stands for the spectrum of x,
that is, the set of all its eigenvalues without counting multiplicities.

One of the best known results in the theory of linear preservers is the
Gleason–Kahane–Żelazko theorem (cf. e.g. [11]), which asserts that a uni-
tal linear functional f defined on a (complex, unital) Banach algebra A is
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multiplicative if it preserves invertibility. For unital linear functionals, the
assumption of preserving invertibility is easily seen to be equivalent to the
condition that f(x) belongs to the spectrum of x for every x ∈ A. Without
assuming linearity, one needs to impose stronger preservation properties on f
in order to arrive at the same conclusion. Kowalski and Słodkowski proved
in [6] that every functional f on a Banach algebra A (no linearity assumed
on f) with f(0) = 0 such that the difference of the value of any two elements
is contained in the spectrum of the difference of those two elements, is linear
and multiplicative. Thus, we may replace the linearity assumption and the
spectrum-preserving property of f by a single weaker assumption and still
arrive at the same conclusion.

In view of this result, it is quite natural to relax the hypothesis of linearity
and try to find a criterion of Kowalski–Słodkowski type for maps defined on
matrix spaces to be linear morphisms or antimorphisms. For example, Mrčun
proved that the result of Marcus and Moyls [7, Theorem 6] also holds if one
supposes that T is only R-linear (that is, additive and homogeneous with
respect to scalars from the real field).

Lemma 1.1 ([9, Lemma 3]). Let T :Mn →Mn be an R-linear mapping
such that T (x) and x have the same spectrum for all x ∈ Mn. Then T is
C-linear (and therefore of the form (1.1)).

Mrčun then used the assertion of Lemma 1.1 and ideas from [6] to solve
the following nonlinear preserver problem on matrix spaces.

Theorem 1.2 ([9, Theorem 1]). Let F : Mn → Mn be a Lipschitz
mapping with F (0) = 0 such that
(1.2) σ(F (x)− F (y)) ⊆ σ(x− y) (x, y ∈Mn).
Then T is of the form (1.1).

The most difficult part of the proof of [9, Theorem 1] was to show that
under the assumptions of Theorem 1.2 the map F is not far from being
holomorphic onMn (see the proof of [9, Lemma 4]), and this heavily depends
on Lemma 1.1. The following is a generalization of [9, Lemma 3].

Lemma 1.3. Let T :Mn →Mn be an R-linear mapping such that T (x)
and x always have at least one common eigenvalue. Then T is C-linear.

With the same basic idea as the one from the proof of [9, Theorem 1], but
with the use of Lemma 1.3 instead of Lemma 1.1, we obtain the following
generalization of Theorem 1.2.

Theorem 1.4. Let F :Mn →Mn be a Lipschitz mapping with F (0) = 0
such that
(1.3) σ(F (x)− F (y)) ∩ σ(x− y) 6= ∅ (x, y ∈Mn).
Then F is of the form (1.1).
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The idea to impose certain spectral properties on F in order to make
it holomorphic also works in the case of C1-functions. Motivated by consid-
erations related to the study of biholomorphic maps of the open spectral
unit ball of Mn, Baribeau and Ransford proved that if U and V are open
subsets of Mn and F : U → V is a bijective function of class C1 such that
σ(F (x)) = σ(x) for every x ∈ U , then F (x) is conjugate to x for all x ∈ U [3,
Corollary 1.2]. For example, this statement holds when F is a bijective holo-
morphic spectrum-preserving map. When F is supposed to be holomorphic,
we may ask F to preserve only one eigenvalue, in order to obtain the same re-
sult: it was proved in [5, Corollary 1.2] that if U ⊆Mn is a domain containing
the null matrix, V ⊆Mn is open and F : U → V is a bijective holomorphic
map such that F (x) and x always have at least one common eigenvalue, then
F (x) and x are conjugate for all x ∈ U . We use this to prove a statement
analogous to the one of Theorem 1.4 in the context of C1-functions.

Theorem 1.5. Let U ⊆ Mn be a domain containing the null matrix,
and F : U →Mn a function of class C1 with F (0) = 0. If

(1.4) σ(F (x)− F (y)) ∩ σ(x− y) 6= ∅ (x, y ∈ U),

then F is of the form (1.1).

For x ∈ Mn, denote by ρ(x) its spectral radius. It was proved in [5,
Corollary 1.4] that if U ⊆ Mn is a domain containing the null matrix,
V ⊆ Mn is open and F : U → V is a bijective holomorphic map such
that F (x) and x always have the same spectral radius, then there exists a
complex number γ of modulus one such that γ−1F (x) and x are conjugate
for all x ∈ U . We use this to prove the following version of Theorem 1.5.

Theorem 1.6. Let U ⊆Mn be a domain containing the null matrix and
F : U →Mn be a function of class C1 with F (0) = 0. If

(1.5) ρ(F (x)− F (y)) = ρ(x− y) (x, y ∈ U),

then there exists γ ∈ C of modulus one such that either γ−1F or γ−1F is
of the form (1.1). (The map F : U → Mn is defined by F (x) = F (x), the
matrix obtained from F (x) by entrywise complex conjugation.)

2. Proof of Lemma 1.3. We shall need the following lemma.

Lemma 2.1. Let u ∈ Mn be an invertible matrix such that the mapping
K :Mn →Mn given by

(2.1) K(x) =
x+ uxu−1

2
(x ∈Mn)

satisfies K(x2) = K(x)2 for all x. Then K is the identity onMn.
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Proof. For all x we have
x2 + ux2u−1

2
= K(x2) = K(x)2 =

x2

4
+
xuxu−1

4
+
uxu−1x

4
+
ux2u−1

4
,

and therefore
(x− uxu−1)2 = 0 (x ∈Mn).

In particular, ρ(x− uxu−1) = 0 for every x inMn. For x 7→ xu this gives

ρ(xu− ux) = 0 (x ∈Mn).

Using [2, Theorem 5.2.1] we conclude that u belongs to the center Z(Mn)
ofMn. Then (2.1) implies that K(x) = x for all x.

Proof of Lemma 1.3. If n = 1 then T is the identity on C. So suppose
now that n ≥ 2. Given r ∈ R, we have σ(T (e−irx)) ∩ σ(e−irx) 6= ∅, that is,
σ(eirT (e−irx)) ∩ σ(x) 6= ∅. Using the R-linearity of T , we obtain

eirT (e−irx) = (cos r + i sin r)(T (x) cos r − T (ix) sin r)

=
T (x) + T (ix)/i

2
+ e2ir T (x)− T (ix)/i

2
.

Thus

(2.2) σ(R(x) + ζS(x)) ∩ σ(x) 6= ∅ (x ∈Mn, |ζ| = 1),

where we denoted

R(x) =
T (x) + T (ix)/i

2
and S(x) =

T (x)− T (ix)/i
2

for x ∈Mn. Since T is R-linear, the same holds for R. One can easily check
that R(ix) = iR(x) for all x, and therefore R is C-linear.

For x ∈Mn, denoting by P (λ) its characteristic polynomial we use (2.2)
to show that detP (R(x) + ζS(x)) = 0 for all ζ of modulus one. Then the
same holds for all complex numbers ζ, and in particular detP (R(x)) = 0.
This means that R(x) and x always have at least one common eigenvalue.
Using now [1, Theorem 3] we deduce that R is of the form (1.1). Then
without loss of generality we may suppose that R(x) = x for all x ∈Mn. (If
R(x) = uxu−1 for all x ∈Mn then we work with x 7→ u−1T (x)u instead of T ,
and if R(x) = uxtu−1 for all x ∈ Mn then we work with x 7→ (u−1T (x)u)t

instead of T.) This means that

(2.3) T (x) + T (ix)/i = 2x (x ∈Mn).

Define now the mapping W :Mn →Mn by putting

W (x) = T

(
x+ x∗

2

)
+ iT

(
x− x∗

2i

)
(x ∈Mn).

One can easily check that W is C-linear. Moreover, for an arbitrary Hermi-
tian matrix x we have W (x) = T (x), and therefore σ(W (x)) ∩ σ(x) 6= ∅.
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Then [1, Corollary 3] implies that W is an eigenvalue-preserver, so by [7,
Theorem 6] there exists an invertible matrix u such that

(2.4) W (x) = uxu−1 (x ∈Mn) or W (x) = uxtu−1 (x ∈Mn).

Suppose that the first case occurs in (2.4). Then T (x) = uxu−1 for all x
satisfying x = x∗. Given an arbitrary x ∈ Mn, writing it as x = x1 + ix2

with x1, x2 Hermitian matrices and using (2.3) we get

T (x) = T (x1) + T (ix2) = ux1u
−1 + i(2x2 − T (x2))

= u(x1 − ix2)u−1 + 2ix2,

and therefore

(2.5) T (x) = x+ (ux∗u−1 − x∗) (x ∈Mn).

Since σ(T (λx)/λ) ∩ σ(x) 6= ∅ for all λ ∈ C \ {0}, it follows that σ(x +
ζ(ux∗u−1− x∗))∩ σ(x) 6= ∅ for all x ∈Mn and |ζ| = 1 in C. Once more, for
x ∈ Mn denoting by P (λ) its characteristic polynomial we have detP (x +
ζ(ux∗u−1−x∗)) = 0 for all ζ ∈ C. Thus σ(x+ζ(ux∗u−1−x∗))∩σ(x) 6= ∅ for
all x ∈Mn and ζ ∈ C. Taking ζ = 1/2 we obtain σ(x+ (ux∗u−1 − x∗)/2) ∩
σ(x) 6= ∅ for all x ∈Mn. Define K :Mn →Mn by putting

K(x) = x+ (uxu−1 − x)/2 = (x+ uxu−1)/2.

Then K is C-linear and σ(K(x))∩σ(x) 6= ∅ for all x ∈Mn satisfying x = x∗.
Using once more [1, Corollary 3], we find thatK is a Jordan morphism. Hence
Lemma 2.1 implies that K(x) = x for all x. Then uxu−1 = x for all x, and
(2.5) gives T (x) = x for all x. In particular, T is C-linear.

Let us now prove that the second case in (2.4) cannot occur. If W (x) =
uxtu−1 for all x, then exactly as in the proof of (2.5) we deduce that T (x) =
x+(uxu−1−x∗) for all x, where x is the matrix obtained from x by entrywise
conjugation. Once more, σ(T (λx)/λ) ∩ σ(x) 6= ∅ for all nonzero λ gives
σ(x+ (uxu−1 − x∗)/2)∩ σ(x) 6= ∅ for all x ∈Mn. Define J :Mn →Mn by
putting

J(x) = x+ (uxtu−1 − x)/2 = (x+ uxtu−1)/2.

Then J is C-linear and σ(J(x))∩σ(x) 6= ∅ for all x ∈Mn satisfying x = x∗.
It follows by [1, Corollary 3] that J is either a morphism or an antimorphism.
In both cases we have Tr(J(xy)) = Tr(J(x)J(y)) for all x, y ∈ Mn, where
Tr(·) denotes the usual trace onMn. Using the properties of the trace now
gives

Tr(x(2y − uytu−1 − utyt(ut)−1)) = 0 (x, y ∈Mn).

It follows that y = (uytu−1 + utyt(ut)−1)/2 for all y ∈ Mn, which can be
rewritten as

u−1ztu =
z + (u−1ut)z(u−1ut)−1

2
(z ∈Mn).
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Since z 7→ u−1ztu is a Jordan morphism onMn, using Lemma 2.1 we deduce
that u−1ztu = z for all z inMn. Then ab = (u−1atu)(u−1btu) = u−1(ba)tu =
ba for all a, b ∈Mn, and we arrive at a contradiction.

We now use Lemma 1.3 to give a new proof of a special case of a result of
Bhatia, Šemrl and Sourour on maps on matrices that preserve the spectral
radius distance [4, Theorem 1.1].

Corollary 2.2. Let T :Mn →Mn be an R-linear mapping such that
ρ(T (x)) = ρ(x) for all x. Then either T or T is C-linear.

Proof. Even though T is not supposed to be C-linear, it shares all the
basic properties of spectral isometries [8]. Let us first prove that T is bijective.
Since T is R-linear andMn is of finite dimension over R, it suffices to prove
that T is injective. Since T is additive, we must prove that T (x) = 0 implies
x = 0. This follows from the identity

ρ(y) = ρ(T (y)) = ρ(T (y) + T (x)) = ρ(T (y + x)) = ρ(y + x),

which is valid for all y ∈ Mn, and from the characterization of the radical
given by [2, Theorem 5.3.1].

We now prove that T sends the center Z(Mn) ofMn into itself. By [2,
Theorem 5.2.2], we have x ∈ Z(Mn) if and only if there exists M > 0 such
that ρ(x+ y) ≤M(1 + ρ(y)) for all y ∈ Mn. So if x = λIn for some λ ∈ C,
then for all y ∈Mn we have

ρ(T (x) + y) = ρ(T (x) + T (z)) = ρ(x+ z) ≤M(1 + ρ(z)) = M(1 + ρ(y)).

(Since T is bijective, there exists z such that T (z) = y.) Thus T (x) ∈ Z(Mn).
In particular, T (In) = µIn for some |µ| = 1. So by multiplying T with µ−1,
we may suppose that T (In) = In. Also, T (iIn) = ζIn for some complex
number ζ with |ζ| = 1. Therefore√

r2 + s2 = ρ((s+ ri)In) = ρ(T ((s+ ri)In)) = ρ((s+ ζr)In) = |s+ rζ|
for all r, s ∈ R implies that either ζ = i or ζ = −i. In the first case we have
T (iIn) = iIn and hence, by the R-linearity of T , we get T (λIn) = λIn for all
λ ∈ C. In the second case we obtain T (λIn) = λIn for all λ ∈ C.

We complete the proof by showing, for example, that if T (λIn) = λIn
for all λ ∈ C then T preserves the peripheral spectrum. If this is true, then
x and T (x) always have at least one common eigenvalue and Lemma 1.3
implies that T is C-linear. So let x ∈ Mn and consider λ ∈ σ(x) such that
ρ(x) = |λ|. Then

ρ(T (x) + λIn) = ρ(T (x+ λIn)) = ρ(x+ λIn) = 2|λ| = 2ρ(x),

and hence there exists α ∈ σ(T (x)) such that |α + λ| = 2|λ|. Since |α| ≤
ρ(T (x)) = |λ|, it follows that α = λ. Therefore, the peripheral spectrum of
x lies inside the peripheral spectrum of T (x). Since T−1 also preserves the
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spectral radius and T−1(λIn) = λIn for all λ ∈ C, we may conclude that x
and T (x) always have the same peripheral spectrum.

Corollary 2.3. Suppose that T : Mn → Mn is an R-linear mapping
which preserves the spectral radius. There exists then a complex number γ of
modulus one such that either γ−1T or γ−1T is of the form (1.1).

Proof. We use Corollary 2.2 and we suppose, for example, that T is
C-linear. As we have seen in the proof of Corollary 2.2, since ρ(T (x)) = ρ(x)
for all x we find that T (In) = γIn for some |γ| = 1. Thus γ−1T :Mn →Mn

is a unital spectral isomorphism, and therefore a Jordan isomorphism [8,
Corollary 5]. Thus γ−1T is of the form (1.1).

3. Proofs for the case of Lipschitz functions. Let us first recall that
the real (respectively, complex ) differential of a function F :Mn →Mm at
a point x0 ∈ Mn is a mapping (DF )x0 : Mn → Mm which is linear with
respect to the real (respectively, complex) scalars, and such that

lim
x→0

‖F (x0 + x)− F (x0)− (DF )x0(x)‖
‖x‖

= 0.

(We work with the operator norm onMn.)
We shall use the following lemmas. The first one is a consequence of a

result of Rademacher [12, p. 50].

Lemma 3.1. Let n be a positive integer and f : Mn → C a Lipschitz
function. Then f has real differentials a.e. with respect to the Lebesgue mea-
sure m onMn.

The second one is a generalization of a result from [6, Lemma 3.2].

Lemma 3.2 ([9, Lemma 4]). Let f : Mn → C be a Lipschitz function
and assume that f has complex differentials a.e. with respect to the Lebesgue
measure onMn. Then for all a, b ∈Mn, the function fa,b : C→ C given by

fa,b(z) = f(a+ bz) (z ∈ C)

is affine.

Proof of Theorem 1.4. We use the ideas from [9, proof of Theorem 1].
Let Fs,k :Mn → C be given by

Fs,k(x) = (F (x))s,k (x ∈Mn)

for s, k = 1, . . . , n. Since F is Lipschitz this implies that all the mappings
Fs,k are Lipschitz. By Lemma 3.1, the function Fs,k has real differentials
on Mn \ Zs,k with m(Zs,k) = 0. Denoting Z =

⋃n
s,k=1 Zs,k, we see that

m(Z) = 0 and the real differential (DTs,k)x exists for all s, k = 1, . . . , n and
for all x ∈Mn\Z. Then for all x ∈Mn\Z we conclude that F :Mn →Mn
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has real differential (DF )x :Mn →Mn at x given by

(DF )x(u) = ((DFs,k)x(u))n
s,k=1 (u ∈Mn).

Given x ∈Mn \ Z, we see by (1.3) that for all strictly positive integers m,

σ

(
F (x+ u/m)− F (x)

1/m

)
∩ σ(u) 6= ∅ (u ∈Mn).

For m→∞, using the continuity properties for the spectrum it follows that

σ((DF )x(u)) ∩ σ(u) 6= ∅ (x ∈Mn \ Z; u ∈Mn).

Then Lemma 1.3 shows that (DF )x : Mn → Mn is C-linear, and hence
(DFs,k)x :Mn → C are C -linear mappings for all x ∈ Mn \ Z and s, k =
1, . . . , n. By Lemma 3.2, fixing any a, b ∈Mn we find that λ 7→ Fs,k(a+λb)
is affine, and hence the same must hold for Fa,b : C→Mn given by

Fa,b(λ) = F (a+ λb) (λ ∈ C).

Thus Fa,b(λ) = λ(Fa,b(1)− Fa,b(0)) + Fa,b(0) for all λ ∈ C, that is,

(3.1) F (a+ λb) = λ(F (a+ b)− F (a)) + F (a) (λ ∈ C, a, b ∈Mn).

Taking a = 0 in (3.1) we obtain F (λb) = λF (b) for every λ ∈ C and for
every b ∈ Mn. Taking λ = 1 and replacing b by (c − a)/2 in (3.1) we get
F (c) = F (a+ c)− F (a), which yields

F (a+ c) = F (a) + F (c) (a, c ∈Mn).

Thus F :Mn →Mn is C-linear.
For y = 0 in (1.3) we see that σ(F (x)) ∩ σ(x) 6= ∅ for all x ∈ Mn. Since

F is C-linear, it follows from [1, Theorem 2] that F is indeed of the form
(1.1).

4. Proofs for the case of C1-functions. For conjugate matrices x and
y inMn, we shall write x ∼ y.

Proof of Theorem 1.5. By hypothesis, the function F has real differential
(DF )x at every point x of U . The proof of Theorem 1.4 shows that in fact
(DF )x : Mn → Mn is C-linear for all x in U . This implies that F is
holomorphic on U [10, Theorem 1.2]. By (1.4) we also have

σ((DF )x(v)) ∩ σ(v) 6= ∅ (x ∈ U, v ∈Mn),

and using [1, Theorem 2] we deduce that (DF )x is of the form (1.1) for all
x in U . In particular (DF )0 : Mn → Mn is invertible, and by the inverse
mapping theorem there exists δ > 0 such that denoting by W the open ball
(with respect to the operator norm) of center 0 and radius δ inMn we find
that W ⊆ U , F (W ) ⊆ Mn is open and F : W → F (W ) is biholomorphic.
For x with ‖x‖ < δ/2, let us define ϕx : {h : ‖h‖ < δ/2} → Mn by putting
ϕx(h) = F (x + h) − F (x). By (1.4), we have σ(ϕx(h)) ∩ σ(h) 6= ∅ for all
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‖h‖ < δ/2. Using [5, Corollary 1.2] we obtain ϕx(h) ∼ h for ‖h‖ < δ/2. That
is, F (x+ h)− F (x) ∼ h for all x, h with ‖x‖, ‖h‖ < δ/2.

There exists an invertible u ∈ Mn such that either (DF )0(v) = uvu−1

for all v, or (DF )0(v) = uvtu−1 for all v. If the first case occurs, we consider
G : U →Mn given by G(x) = u−1F (x)u, and in the second case we consider
G : U → Mn given by G(x) = (u−1F (x)u)t. In both cases, we obtain a
holomorphic function G on U such that G(0) = 0, G′(0) is the identity on
Mn, and

(4.1) G(x+ h)−G(x) ∼ h (‖x‖, ‖h‖ < δ/2).

We finish the proof by showing that G with the above properties must be
the identity on U . To see this, first observe that by taking x = 0 in (4.1)
we have G(h) ∼ h for all h with ‖h‖ < δ/2. Then G(h)2 ∼ h2 for all such
h, and thus Tr(G(h)) = Tr(h) and Tr(G(h)2) = Tr(h2) for ‖h‖ < δ/2. Also,
for ‖x‖, ‖y‖ < δ/4 by (4.1) we have (G(x) − G(y)) ∼ (x − y). This gives
(G(x)−G(y))2 ∼ (x− y)2, and in particular

Tr((G(x)−G(y))2) = Tr((x− y)2).
For ‖x‖, ‖y‖ < δ/4, since Tr(G(x)2) = Tr(x2) and Tr(G(y)2) = Tr(y2) it
follows that Tr(G(x)G(y)) = Tr(xy). Thus for all x with ‖x‖ < δ/4 and for
all y we have

(4.2) Tr(G(x)G(λy)) = λTr(xy)

for all λ in a neighborhood of 0 ∈ C. Since G′(0) is the identity, it follows
that G(λy) = λy +

∑∞
j=2 λ

jbj for λ near 0, for some (bj)j≥2 ⊆ Mn. By
equating the coefficients of λ in (4.2) we get

Tr((G(x)− x)y) = 0 (‖x‖ < δ/4, y ∈Mn).

Thus G(x) = x for ‖x‖ < δ/4, and by the identity principle for holomorphic
functions we conclude that G(x) = x for all x ∈ U .

Proof of Theorem 1.6. Using the continuity of the spectral radius, from
(1.5) we obtain

ρ((DF )x(v)) = ρ(v) (x ∈ U, v ∈Mn).

By Corollary 2.2, given any x ∈ U we find that either (DF )x is C-linear, or
(DF )x is C-linear. Defining

U1 = {x ∈ U : (DF )x is C-linear}, U2 = {x ∈ U : (DF )x is C-linear},
we conclude that U1, U2 ⊆ U are disjoint subsets (by Corollary 2.3, we see
that (DF )x : Mn → Mn is always invertible, and hence we cannot have
(DF )x = 0 for some x in U) with U1 ∪ U2 = U . Also, since F is of class C1

it follows that U1, U2 ⊆ U are (possibly empty) closed subsets. Since U is a
domain, one of the Uj is empty. So suppose, for example, that U = U1. (In
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the remaining case, we work with F instead of F .) Then [10, Theorem 1.2]
shows that F is holomorphic on U .

We now proceed as in the proof of Theorem 1.5; we shall use [5, Corollary
1.4] instead of [5, Corollary 1.2]. For 0 ∈ U , by Corollary 2.3 there exists
a complex number γ of modulus one and an invertible u such that either
γ−1(DF )0(v) = uvu−1 for all v, or γ−1(DF )0(v) = uvtu−1 for all v. Suppose,
for example, that the first case occurs, and define G : U →Mn by putting
G(x) = γ−1u−1F (x)u. Then G is holomorphic, G(0) = 0, G′(0) = the
identity ofMn, and (1.5) gives

(4.3) ρ(G(x)−G(y)) = ρ(x− y) (x, y ∈ U).

Since G′(0) is invertible, there exists δ > 0 such that G(W ) ⊆ Mn is open
and G : W → G(W ) is biholomorphic, where W is the open ball with center
0 and radius δ in Mn. Taking y = 0 in (4.3) we have ρ(G(x)) = ρ(x) for
all x ∈ U . Using [5, Corollary 1.4], we establish the existence of ξ ∈ C of
modulus one such that G(x) ∼ ξx for ‖x‖ < δ. Then G(λIn) = ξλIn for
|λ| < δ, and taking the derivative with respect to λ and using that G′(0) is
the identity, we get ξ = 1. Thus

(4.4) G(x) ∼ x (‖x‖ < δ).

For ‖x‖ < δ/2 in Mn, define ϕx : {h : ‖h‖ < δ/2} → Mn by putting
ϕx(h) = G(x+h)−G(x). By (4.3), we have ρ(ϕx(h)) = ρ(h) for all ‖h‖ < δ/2.
Using [5, Corollary 1.4] we verify the existence of ξx ∈ C of modulus one
such that ϕx(h) ∼ ξxh for ‖h‖ < δ/2. That is, G(x + h) − G(x) ∼ ξxh
for all h with ‖h‖ < δ/2. For h = (δ/4)In we get G(x + (δ/4)In) − G(x) =
ξx(δ/4)In. Taking the trace and using (4.4) we deduce that ξx = 1. Therefore,
G(x+ h)−G(x) ∼ h for all x, h with ‖x‖, ‖h‖ < δ/2, and from this, exactly
as in the final part of the proof of Theorem 1.5, we conclude that G is the
identity on U .
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