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Abstract

For a completely distributive quantale L, L-fuzzy strongest postcondition predicate transformers are introduced, and it is shown
that, under reasonable assumptions, they are linear or affine continuous mappings between continuous L-idempotent semimodules
of L-fuzzy monotonic predicates.
© 2012 Elsevier B.V. All rights reserved.
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0. Introduction

Predicate transformers, which were introduced in the pioneering work of Dijkstra [6], are powerful tools for analyzing
the total or partial correctness of computer programs. The main idea is that a final state after execution of a program
depends on its initial state; hence there is an interdependency between validity of statements (predicates) about the
initial and the final states. One can ask, e.g., what are minimal requirements on an initial state that ensure that the final
state satisfies a certain condition. Then these requirements form the weakest precondition for the given condition. On
the other hand, the most precise knowledge about an output of a program for an input, that satisfies some predicate,
is the strongest postcondition for this predicate. Such “forward” and “backward” dependencies are called predicate
transformers.

Things become more complicated because of randomness or/and non-determinism, which can arise from unpre-
dictable influence, “angelic” or “demonic” (with the obvious connotations). For simplicity, assume first that only
randomness is present, and a set S of possible states is finite. We mostly follow [16], but notation will partially vary.
A subprobabilistic distribution D : S → [0, 1] guarantees that the probability of each state s ∈ S is at least D(s).
Obviously it is required that

∑
s∈S D(s) ≤ 1, and 1 −∑

s∈S D(s) “goes to” unspecified state of the system. We say
that a subprobabilistic distribution D is refined by another subprobabilistic distribution D′ on S (written D � D′)
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if D(s) ≤ D′(s) for all s ∈ S; this means that D′ offers more precise knowledge than D. This partial order makes the set
S̄ of all subprobabilistic distributions on S a complete lower semilattice, with the bottom element 0=“no information”.

A random variable � : S → R+ is called a probabilistic predicate, and �(s) can be treated as a degree of appropriate-
ness of s ∈ S for some purpose (the more, the better). In particular, if �(S) ⊂ {0, 1}, then all elements of S are divided
into “bad” and “good”. For a subprobabilistic distribution D, the expectation

∫
D � = ∑

s∈S D(s) · �(s) is a maximal
expected degree guaranteed by D.

A deterministic probabilistic program p : S → S̄ sends each initial state s ∈ S to a subprobabilistic distribution
p(s) of possible finite states, where the probability 1 −∑

s′∈S p(s)(s′) is related to unknown behavior of the program,
in particular, to the cases when the program does not terminate. Similarly, a program p′ : S → S̄ refines a program
p : S → S̄ (written p � p′) if p(s) � p′(s) for each initial state s ∈ S. If an initial probability distribution is partially
described (estimated from below) by a subprobabilistic distribution D ∈ S̄, then a probability of a final state s′ ∈ S
is greater or equal than D′(s′) = ∑

s∈S D(s) · p(s)(s′). Therefore, for a probabilistic predicate � : S → R+, the
expectation after execution of the program has the best estimate from below∫

D′
� =

∑
s,s′∈S

D(s) · p(s)(s′) · �(s′).

A predicate � : S → R+ is called a (probabilistic) precondition for �, and � then is a (probabilistic) postcondition for
�, if for each initial subprobabilistic distribution D ∈ S̄ and the respective final subprobabilistic distribution D′ ∈ S̄,
we have

∫
D � ≤ ∫

D′ �, i.e., the expected value � ≥ 0 of � guarantees that the expectation of � is also equal or greater
than �. It is easy to see that the strongest (i.e., the least) postcondition sp(p)(�) of � is determined with the formula

sp(p)(�)(s′) =
∑
s∈S

�(s) · p(s)(s′), s′ ∈ S.

Observe that all probabilistic predicates on S form a cone, and the mapping sp(p) is additive and positively uniform,
i.e., preserves multiplication by non-negative numbers. In this paper we shall construct and investigate an analogue of
this mapping. Similarly, for a given predicate � ∈ S̄, a weakest (greatest) precondition wp(p)(�) can be found. See [16]
on how nondeterminism can be incorporated into this model by mapping each initial state not to a single distribution,
but to a set of distributions.

This is also closely related to the notion of approximate correctness of a computer program [15]. Although a number
that expresses “approximateness” can be also treated as degree of belief, the entire theory by Mingsheng Ying is
based on probabilistic logic and well suited to study probabilistic programs. It is also focused more on uncertainty of
assumptions and conclusions than on imprecision in description of input and output data, as one could expect based
on the term “approximate”. For example, the refinement index of two probabilistic predicates is defined as the belief
probability to which one probabilistic predicate is refined by another. There are several parallels between this theory
and what we are doing in the sequel.

This approach, however, has intrinsic restrictions: we assume that a system is sufficiently described with knowledge
which states or random events (sets of states) are realized, or what are the probabilities of their realization. For a
simple program, like the examples in [16], this assumption is realistic, but if, e.g., our program removes artifacts from
a sufficiently large color image, then the state space S is too huge to apply the above apparatus. To reduce S, one
can divide all possible images into a reasonable number of classes. Boundaries between these classes cannot be clear;
therefore the predicates will not be tolerant to small changes in images. Next, careful study of probability distributions
of the class of a possible output for a given class of an input image is a nontrivial task. Even if this goal is achieved,
the respective predicate transformers describe average results, and say nothing about rare extreme cases, which may
make the program unusable.

For such “huge-dimensional” cases we suggest to resign from the purely probabilistic approach and to decrease the
“dimensionality” by allowing fuzzy predicates. The idea is to have less predicates, which may be “more or fewer” true,
and their values for each possible portion of information about a system present the greatest known degrees of truth,
certainty, precision, quality, etc., which we can reliably count for. For example, such a predicate can assign to each
square part, with integer coordinates of the vertices, of a given image a numerical measure of its quality. Then an image
is incompletely but efficiently described with a finite collection of numbers, which is considered to be the value of the
predicate. Observe that two such collections can be incomparable, e.g., if two images are damaged in different places.
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Hence, the considered predicates can attain values in sets which are only partially ordered, although fuzziness is most
often expressed on a numeric scale, e.g., [0, 1].

From now on we shall talk about “truth values” of fuzzy predicates, but this term is used for the sake of convenience
and does not restricts possible interpretations to fuzzy logic only, although it is also possible. We expect that all known
semantics of fuzziness [2,8] can be applied; see the examples in the next section.

Fuzzy predicate transformers also have been studied mostly in [0, 1]-settings [3,4]. This paper is devoted to con-
structing and investigating L-fuzzy (where L is a suitable lattice) strongest postcondition predicate transformers that
are determined by state transformers, i.e., by L-fuzzy knowledge about what we can expect (more precisely, what is
guaranteed in the worst case) for each initial state of a system. We are interested in order and topological properties of
predicate transformers. It will be shown that spaces of predicates are idempotent semimodules, which are analogues
of vector spaces, and under certain (not very restrictive) conditions the strongest postcondition predicate transformers
are linear or affine continuous mappings between these semimodules.

1. Semimodules of monotonic predicates

Throughout this paper, if f, g are functions with a common domain, � is a constant, and ∗ is a binary operation,
then we denote by f ∗g, �∗ f and f ∗� the functions with the same domain obtained by pointwise application of the
operation ∗ (provided it is defined for the corresponding values). In the sequel supp and inf p for a family of functions
with a common domain to a poset will denote the pointwise suprema and infima, respectively.

See [11] for basic definitions and facts on partially ordered sets, including continuous semilattices and lattices. Here
we shall recall only notation and a few definitions. For a poset X, the same set, but with the reversed order, is denoted
by Xop. An element a approximates b or is way below b, in a poset X, which is written as a>b, if, for each directed
subset C ⊂ X such that b ≤ sup C , there is c ∈ C such that a ≤ c. A poset X is called continuous if, for each b ∈ X ,
the set of all a>b is directed and has b as its lowest upper bound. A poset is directed complete if each its non-empty
directed subset has a least upper bound. A continuous directed complete poset is called a domain. A domain which
is additionally a meet semilattice (a complete lattice) is called a continuous semilattice (respectively a continuous
lattice).

The Scott topology on a poset X is the least topology such that all lower sets C that are closed under directed suprema
are closed. The lower topology on X is the least topology such that the sets {a ∈ X |b ≤ a} are closed for all b ∈ X .
The join, i.e., the least topology that contains the Scott and the lower topologies, is called the Lawson topology.

In the sequel L will be a completely distributive lattice, i.e., a compact Hausdorff distributive Lawson lattice with its
Lawson topology. A topological lattice (semilattice) is said to be Lawson if for each point it possesses a local base that
consists of sublattices (respectively of subsemilattices). Note that the same is true for Lop. We denote by 0, 1, ⊕, and ⊗
the bottom element, the top element, the join, and the meet in L, respectively. The elements of this (arbitrary, but fixed
throughout the paper) lattice will be used to express truth values. The operation ⊕ is the disjunction, but the conjunction
does not necessarily coincide with ⊗. Although complete distributivity is a very strong requirement, a lot of important
lattices fall into this class, e.g., all complete linearly ordered sets, including I = [0, 1] or any other segment in R, all
finite distributive lattices, all products of completely distributive lattices, in particular, I � for all cardinals �. In fact, a
lattice is completely distributive if and only if it is order isomorphic to a complete sublattice of some I �.

We shall also use basic notions of denotational semantics of programming languages. Consider a state of a compu-
tational process or a system. All possible (probably incomplete) portions of information we can have about this state
form a domain of computation D [9]. This set carries a partial order ≤ which represents a hierarchy of information
or knowledge: the more information an element contains (i.e., the more specific/restrictive it is), the higher it is. See
[9] for more details, in particular, for an explanation why it is natural to demand that D is a domain, i.e., a continuous
directed complete poset. In addition to this, it is also often required that there is a least element 0 ∈ D (no information
at all), and that for all a and b in D there is a meet a ∧ b, which, e.g., can be (but not necessarily is) treated as “a or b
is true”.

Following [13], for a domain D we call elements of the set [D → Lop]op L-fuzzy monotonic predicates on D (here
[A → B] stands for the set of mappings from A to B that are Scott continuous, i.e., they preserve directed suprema).
For m ∈ [D → Lop]op and a ∈ D, we regard m(a) as the truth value of a; hence it is required that m(b) ≤ m(a) for
all a ≤ b. The secondop means that we order fuzzy predicates pointwise, i.e., m1 ≤ m2 iff m1(a) ≤ m2(a) in L (not in
Lop!) for all a ∈ D. We denote M [L] D = [D → Lop]op, and, for a domain D with a bottom element, consider also
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the subset M[L] D ⊂ M [L] D of all normalized predicates that take 0 ∈ D (no information) to 1 ∈ L (complete truth).
Observe that M[L] D is a complete sublattice of M [L] D.

Example 1.1. Let a system have a finite or countable state space S. Each subset A ⊂ S is identified with it characteristic
mapping �A : S → {0, 1}, which is a Boolean predicate “current state s is in A”. A smaller subset A corresponds to
more information; therefore the set D of all subsets of S is partially ordered by reverse inclusion. Then D is a continuous
lattice, and the {0, 1}-fuzzy monotonic predicates on D are precisely �A for all A ⊂ S.

If the system changes its state randomly, then different schemes are possible. Generally, an incomplete probabilistic
knowledge is a mapping m : D → [0, 1] such that for all A ⊂ S the probability P(A) is at least m(A). Of course,
A ≤ B, i.e., A ⊃ B, implies m(A) ≥ m(B), and �-additivity of probability requires that m sends the directed unions
of subsets of S to the corresponding suprema in [0, 1]. Thus m is a [0, 1]-fuzzy monotonic predicate.

Observe that m may not necessarily be reduced to a collection of estimates for the probabilities of individual states
s ∈ S. For example, if all that we know is P({s1, s2}) ≥ 0, 5, then the only subprobabilistic distribution that is surely
less or equal than the actual distribution is trivial, i.e., zero for all states.

Of course, m can be determined by (sub)probabilistic distributions. Let an exact probability distribution be unknown,
but one of n possible, which are bounded from below respectively by subprobabilistic distributions P1, P2, . . . , Pn ∈ S̄.
The greatest guaranteed probability of a random event A ∈ D is equal to m(A) = inf1≤i≤n

∑
s∈A Pi (s). Then m is a

[0, 1]-valued fuzzy monotonic predicate, which “aggregates” all possible probability distributions in the assumption
of “demonic” non-determinism.

Thus numeric fuzzy predicates can arise in purely probabilistic settings, with the semantics “truth value = guaran-
teed probability”. Observe that the probability of S is always 1, hence the mentioned predicates may be considered
normalized.

Example 1.2. Let an image be divided into n parts, and the quality of each of them can be rated in the scale L =
{0, 1, . . . , m}, e.g., 0=“awful”, 1=“bad”, . . . , m=“perfect”. Then the state space is equal to S = Ln . The domain of
computation D can also be put equal to Ln , and d = (d1, d2, . . . , dn) will mean “the actual quality si of ith part is not
worse than di for all 1 ≤ i ≤ n”. This implies that (d1, d2, . . . , dn) ≤ (d ′

1, d ′
2, . . . , d ′

n) in D if and only if d1 ≤ d ′
1,

d2 ≤ d ′
2, . . . , dn ≤ d ′

n .
For each q = (q1, q2, . . . , qn) ∈ Ln , let the predicates mq , m′

q , m′′
q : D → L be defined by the formulae

mq ((d1, d2, . . . , dn)) = max{k ∈ L|di ≥ qi − (m − k) for all i = 1, 2, . . . , n},
m′

q ((d1, d2, . . . , dn)) = max{k ∈ L|di ≥ min{k, qi } for all i = 1, 2, . . . , n},
m′′

q ((d1, d2, . . . , dn)) = max{k ∈ L| max{di , m − k} ≥ qi for all i = 1, 2, . . . , n},
for all (d1, d2, . . . , dn) ∈ S. Then mq ((d1, d2, . . . , dn)) shows the worse relative loss of quality w.r.t. (q1, q2, . . . , qn),
m′

q ((d1, d2, . . . , dn)) shows “below what degree” the quality of (d1, d2, . . . , dn) is not worse than (q1, q2, . . . , qn), and
m′′

q ((d1, d2, . . . , dn)) shows “above what degree” the quality of (d1, d2, . . . , dn) is not worse than (q1, q2, . . . , qn). In
all these cases the predicates compare the guaranteed quality of an input with a desired one. Thus we can construct a
predicate like “the image is perfect at the center and at least good at the angles”.

Moreover, we can rate parts of an image in several aspects, with separate scales L1, L2, . . . , Lr for each, then the
resulting L = L1 × L2 × · · · × Lr will be a finite distributive lattice, which is not linearly ordered.

It follows from [10, Theorem 4] (classified as “folklore knowledge” in [13]) that, for a domain D and a completely
distributive lattice L, the set [D → Lop] is a completely distributive lattice as well. Hence, this is also valid for M [L] D
and (if D contains a least element) M[L] D.

For an element d0 ∈ D, we denote by �[L] D(d0) the function D → L that sends each d ∈ D to 1 if d ≤ d0 and to 0
otherwise. It is easy to see that �[L] D(d0) ∈ M[L] D ⊂ M [L] D, and 	D

L = �[L] D(0) is a least element of M[L] D.

Lemma 1.3. For a domain D, the mapping �[L] D : D → M [L] D is continuous w.r.t. the Scott topologies and w.r.t.
the lower topologies. If D is a complete continuous semilattice, then �[L] D is an embedding w.r.t. the Scott topologies,
the lower topologies, and the Lawson topologies.
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Proof. Obviously, �[L] D(d1) ≤ �[L] D(d2) if and only if d1 ≤ d2. Observe also that �[L] D(d0) is a least m ∈ M [L] D
such that m(d0) = 1. If D ⊂ D is directed and supD = d0, then sup{�[L] D(d)|d ∈ D} is a least m ∈ M [L] D such that
m ≥ �[L] D(d) for all d ∈ D, which is equivalent to m(d) = 1 for all d ∈ D. Since m : D → Lop is Scott continuous,
i.e., it preserves directed suprema, which is, in turn, equivalent to m(supD) = m(d0) = 1. By the above such m is
equal to �[L] D(d0). Hence, �[L] D preserves directed suprema as well.

To show that �[L] D is lower continuous, it suffices to show that, for all m ∈ M [L] D, the set

�[L] D−1({m}↑) = {d0 ∈ D|�[L] D(d0) ≥ m}
is closed in the lower topology on D. The inequality �[L] D(d0) ≥ m means that �[L] D(d0)(d) = 1 for all d ∈ D such
that m(d) � 0; in other words, d0 is an upper bound of the set {d ∈ D|m(d) � 0}. This implies that

�[L] D−1({m}↑) =
⋂

{{d}↑ ⊂ D|m(d) � 0, d ∈ D},
which is closed in the lower topology on D.

If D is a complete continuous semilattice, then it is compact Hausdorff in its Lawson topology; therefore, a continuous
injective mapping from it to a compactum M [L] D is an embedding. Due to the completeness of D, this implies that the
isotone mapping �[L] D is also an embedding w.r.t. the Scott topologies and w.r.t. the lower topologies. �

Therefore, we consider D as a subdcpo of M [L] D, and a complete continuous semilattice D is additionally a subspace
of M [L] D w.r.t. the Scott, the lower, and the Lawson topologies on the both sets.

Infima and finite suprema in the complete lattices M [L] D and M[L] D of functions are taken pointwise, whereas
arbitrary suprema are described by the following easy, but useful statement. For a function f : D → L , let

f u(b) = inf{ f (a)|a ∈ D, a>b} for all b ∈ D.

Observe that f u is always a monotonic predicate. Moreover [21, Lemma I.4]:

Lemma 1.4. For an antitone function f : D → L , the function f u is the least monotonic predicate f ′ such that
f ≤ f ′ pointwise.

Hence, for a family F ⊂ M [L] D (or F ⊂ M[L] D), we have inf F = inf pF , supF = (suppF)u . For finite F , the
latteru can be dropped.

Lemma 1.5. Let a set F ⊂ M [L] D (or F ⊂ M[L] D) be compact in the relative lower topology. Then suppF ∈ M [L] D
(resp. suppF ∈ M[L] D); therefore supF = suppF .

Proof. Assume to the contrary, that there exists a0 ∈ D such that

sup{ f (a)| f ∈ F} ≥ � � �0 = sup{ f (a0)| f ∈ F}
for all a ∈ D, a>a0. The complete distributivity of L implies that there is � ∈ L such that � ≤ �, � � �0, and if 
 ⊂ L
satisfies sup 
 ≥ �, then there is � ∈ 
, � ≥ � (such � is said to be way-way below �, cf. [11]). The set

Fa = { f ∈ F | f (a) ≥ �} = { f ∈ F | f ≥ m},
where

m(a′) =
{

�, a′ ≤ a

0, a′ � a
for a′ ∈ D

is closed in F . The family {Fa |a>a0} of nonempty sets is directed; therefore by compactness it has a common element
f0 ∈ F , i.e., f0(a) ≥ � for all a>a0. Then by the Scott continuity of f0 : D → Lop we obtain

�0 = sup{ f (a0)| f ∈ F} ≥ f0(a0) ≥ �,

which is a contradiction. �
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We use notation ⊕̄ and ⊗̄ for, respectively, joins and meets both in M [L] D and M[L] D.
In the sequel we shall additionally require that L be a unital quantale [20], i.e., there exists an associative binary

operation ∗ : L × L → L such that 1 is a two-sided unit and ∗ is infinitely distributive w.r.t. supremum in both variables,
which is equivalent to being continuous w.r.t. the Scott topology on L. Observe that, for such ∗, its infinite distributivity
w.r.t. infima also means continuity w.r.t. the Lawson topology on L. Recall that we treat ⊕ as a disjunction, and ∗
will be a (possibly noncommutative) conjunction in an L-valued fuzzy logic [12]. The Boolean case is obtained for
L = {0, 1}, ⊕ = ∨ and ∗ = ∧. On the other hand, let the finite linearly ordered set L = {0, 1, . . . , m} be used to express
absolute and relative quality of input, certainty, precision, etc., cf. Example 1.2. Then the operations i∗ j ≡ min{i, j}
and i∗ j ≡ max{i + j − m, 0} can be reasonable choices, which reflect the natural assumption that combination of two
distorted, imprecise, or uncertain inputs produces an equally or more distorted, imprecise, or uncertain output.

Lemma 1.6. For � ∈ L , a predicate m ∈ M [L] D, and an antitone function f : D → L , we have m(b) ≥ �∗ f (b)
(resp. m(b) ≥ f (b)∗�) for all b ∈ D if and only if m(b) ≥ �∗ f u(b) (resp. m(b) ≥ f u(b)∗�) for all b ∈ D.

Proof. Since f ≤ f u , “if” is trivial. Assume that m(b) ≥ �∗ f (b) for all b ∈ D. Then for all a ∈ D, a>b the inequality
f u(a) ≥ f (b) implies m(a) ≥ �∗ f u(b). Putting a → b, we obtain m(b) ≥ �∗ f u(b). �

Remark 1.7. The latter statement can be expressed by the formulae

(�∗ f )u = (�∗ f u)u, ( f ∗�)u = ( f u∗�)u,

for each antitone function f : D → L and � ∈ L . It is also easy to see that, for a family { fi |i ∈ I} of antitone functions
D → L , the equality(

supp
i∈I

fi

)u

=
(

supp
i∈I

( fi )
u

)u

is valid.

The operation ∗ induces binary operations �̄ and �̄ on the posets M [L] D and M[L] D, which make them L-idempotent
compact Lawson semimodules [19]. Recall that a (left idempotent) (L , ⊕, ∗)-semimodule [1] is a set X with operations
⊕̄ : X × X → X and ∗̄ : L × X → X such that for all x, y, z ∈ X , �, � ∈ L:

(1) x⊕̄y = y⊕̄x ;
(2) (x⊕̄y)⊕̄z = x⊕̄(y⊕̄z);
(3) there is an (obviously unique) element 0̄ ∈ X such that x⊕̄0̄ = x for all x;
(4) �∗̄(x⊕̄y) = (�∗̄x)⊕̄(�∗̄y), (� ⊕ �)∗̄x = (�∗̄x)⊕̄(�∗̄x);
(5) (�∗�)∗̄x = �∗̄(�∗̄x);
(6) 1∗̄x = x ; and
(7) 0∗̄x = 0̄.

Observe that these axioms imply that (X, ⊕̄) is an upper semilattice with a bottom element 0̄, and �∗̄0̄ = 0̄ for all
� ∈ L . The operation ∗̄ is isotone in both variables.

Hence, an (L , ⊕, ∗)-semimodule is an analogue of a vector space. Similarly, analogues exist for linear and affine
mappings. A mapping f : X → Y between (L , ⊕, ∗)-semimodules is called linear if, for all x1, . . . , xn ∈ X and
�1, . . . , �n ∈ L , the equality

f (�1∗̄x1⊕̄ . . . ⊕̄�n ∗̄xn) = �1∗̄ f (x1)⊕̄ . . . ⊕̄�n ∗̄ f (xn)

is valid. If the latter equality is ensured only whenever �1 ⊕ · · · ⊕ �n = 1, then f is called affine. Observe that an affine
mapping f preserves joins, i.e., f (x1⊕̄x2) = f (x1)⊕̄ f (x2) for all x1, x2 ∈ X . An affine mapping is linear if and only
if it preserves the least element.

We call a triple (X, ⊕̄, ∗̄) a continuous (L , ⊕, ∗)-semimodule [19] if (X, ⊕̄, ∗̄) is an (L , ⊕, ∗)-semimodule, X is a
continuous (hence complete) lattice, and ∗̄ : L × X → X is infinitely distributive w.r.t. all suprema in both variables.
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Then X with its Lawson topology is a compact Hausdorff Lawson lower semilattice with a top element, and ∗̄ is jointly
continuous w.r.t. the Scott topologies on L and X.

For m ∈ M [L] D, we define ��̄m to be a least predicate m′ : D → L such that �∗m(b) ≤ m′(b) for all b ∈ D, i.e.,
��̄m = (�∗m)u . Then

(��̄m)(b) = inf{�∗m(a)|a ∈ D, a>b}.
For m ∈ M[L] D, we need to “adjust” the result

(��̄m)(b) = (��̄m)(d)⊕̄	D
L =

{
(��̄m)(b), b � 0;
1, b = 0.

Lemma 1.8. For �, � ∈ L , m ∈ M [L] D

��̄(��̄m) = (�∗�)�̄m.

Proof. By Remark 1.7

��̄(��̄m) = (�∗(�∗m)u)u = (�∗(�∗m))u = (�∗�)�̄m. �

Now the equality

��̄(��̄m) = (�∗�)�̄m,

for all �, � ∈ L , m ∈ M[L] D is immediate. Both operations �̄ and �̄ are infinitely distributive w.r.t. supremum
in the both arguments (because ∗ is such an operation); hence, both are lower semicontinuous. Using routine, but
straightforward calculations ([19]; the same but in terms of hyperspaces in [18]) we obtain:

Proposition 1.9. The triples (M [L] D, ⊕̄, �̄) and (M[L] D, ⊕̄, �̄) are continuous (L , ⊕, ∗)-semimodules.

Remark 1.10. It is easy to see that, if ∗ is also infinitely distributive w.r.t. infimum, then �∗m ∈ [D → Lop]op for all
� ∈ L , m ∈ [D → Lop]op. Therefore, in this case ��̄m coincides with �∗m.

For two predicates m1, m2 : D → L , their join (i.e., the argumentwise supremum) m1⊕̄m2 can be interpreted as
disjunction: “m1 or m2”. Multiplication of a predicate m : D → L by � ∈ L either does not change this predicate or
makes it more “pessimistic”, or, equivalently, more “demanding”. Since the sets of L-fuzzy monotonic predicates are
“vector-like” spaces, we can apply to them the tools of idempotent linear algebra and idempotent functional analysis,
although these theories are rather limited and poor comparing to the “conventional” classical analogues. In particular,
results of [19] allow:

• to approximate L-fuzzy monotonic predicates from below and from above with predicates that attain only finite sets
of values;

• to study and approximate predicates with special properties, e.g., meet- and join-preserving; and
• to construct the predicate that is dual to a given one, if the latter expresses an undesirable property which have to be

avoided, etc.

2. Strongest postcondition predicate transformers

We treat each mapping m : D → L as “it is known that, for each d ∈ D, its truth value is at least m(d)”. Similarly,
an arbitrary mapping � : D → M [L] D′ is interpreted as “if a ∈ D is true, then the truth value of each b ∈ D′ is at
least �(a)(b)”. Note that �(a)(b) is implicitly considered as a “conditional” truth value, i.e., if a is “partially true” at a
degree ≥ �, then b is true at least at a degree �∗�(a)(b).

Hence, such a � is an L-fuzzy state transformer. For a given �, we say that m : D → L is a precondition and
m′ : D′ → L is a postcondition for each other w.r.t. �, if, for all a ∈ D and b ∈ D′, the “guaranteed” truth value m′(b)
is greater or equal to m(a)∗�(a)(b), i.e., to the result of modus ponens.
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Obviously, for an antitone function m : D → L , its strongest (least) postcondition sp(�)(m) in M [L] D′ is determined
by the equality

sp(�)(m)(b) = inf{sup{m(a)∗�(a)(b′)|a ∈ D}|b′ ∈ D′, b′>b}, b ∈ D′.

Again, if we restrict ourselves to normalized predicates, the strongest postcondition must be corrected

sp(�)(m)(b) = sp(�)(m)(b)⊕̄	D
L =

{
sp(�)(m)(b), b � 0;
1, b = 0.

It is easy to see that, for all d ∈ D and isotone � : D → M [L] D′, we have sp(�)(�[L] D(d)) = �(d), hence sp(�)
is an isotone extension of �. Similarly, for an isotone mapping � : D → M[L] D′, the mapping sp(�)(�[L] D(d)) is
an isotone extension as well. The mapping sp(�) and sp(�) are called (L-fuzzy) strongest postcondition predicate
transformers induced by the state transformer �, and are analogues of crisp (i.e., Boolean) predicate transformers,
which were introduced by Dijkstra [6]. Compare also with the weakest precondition predicate transformers, cf. [3,4].
Their L-valued “angelic” and “demonic” analogues were introduced and investigated in [5] by means of topology. The
latter reference contains also an example of a security system, which analyzes security threats of different severities
and nature and imposes security measures of the corresponding level. This is naturally expressed with elements of
lattices; therefore, the authors propose to “consider possible definitions for lattice-valued predicate transformers”. Here
is another example.

Example 2.1. Assume that a program processes a sequence of n frames. The quality si of ith frame is rated in the
scale L = {0, 1, . . . , m}. The domain of computation is equal to D = Ln , and the meaning of d = (d1, d2, . . . , dm) is
“s1 ≥ d1, s2 ≥ d2, . . . , sn ≥ dn”. The multiplication i∗ j = max{i + j − m, 0} is considered on L, making it a finite
quantale. The truth value of d = (d1, d2, . . . , dn) is defined as

max{k ∈ L|si ≥ di∗k for all i = 1, 2, . . . , n}
(observe that it is ms(d) for s = (s1, s2, . . . , sn), cf. Example 1.2). Assume that it is known that, if the quality of ith
frame, 0 < i < n, is ≥ k − 1, and the quality of the two neighboring frames is ≥ k, then, after the program execution,
the quality of ith frame will be ≥ k, for all 1 ≤ k ≤ m. This information can be expressed via the state transformer
� : D → M [L] D that sends

s = (0, . . . , m
i−1

, m − 1
i

, m
i+1

, . . . , 0) for 0 < i < n,

to mq , where

q = (0, . . . , 0
i−1

, m
i
, 0

i+1
, . . . , 0),

and all other s ∈ D to the constant zero predicate. Similarly we can add the fact that the quality of each frame will not
be worse than before, etc. The resulting predicate transformer sp(�) : M [L] D → M [L] D sends a known quality of the
frames before the program run to the most guaranteed quality after its execution.

To simplify our exposition, we consider in this section not necessarily normalized monotonic predicates.

Lemma 2.2. With respect to a Scott continuous mapping � : D → M [L] D′, a monotonic predicate m′ : D′ → L is a
postcondition for an antitone function m : D → L if and only if m′ is a postcondition for mu : D → L .

Proof. Since m ≤ mu , “if” is immediate. Let m′(b) ≥ m(a)∗�(a)(b) for all a ∈ D, b ∈ D′. Then m′(b) ≥
m(a′)∗�(a′)(b) ≥ mu(a)∗�(a′)(b) for all a′>a. This implies m′ ≥ mu(a)∗suppa′>a

�(a′), therefore, by
Lemma 1.6

m′ ≥ mu(a)∗
(

supp
a′>a

�(a′)

)u

= mu(a)∗ sup
a′>a

�(a′) = mu(a)∗�(a′),

the last equality is due to the Scott continuity of �. �
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Proposition 2.3. Let � be a mapping D → M [L] D′. Then sp(�) : M [L] D → M [L] D′ preserves joins (hence finite
suprema). For an isotone �, the mapping sp(�) preserves all suprema if and only if � is Scott continuous, i.e., preserves
directed suprema.

Proof. Let m = m1⊕̄m2, for m, m1, m2 ∈ M [L] D. Then, for m′ ∈ M [L] D′, a ∈ D, b ∈ D′, the inequality m′(b) ≥
(m1⊕̄m2)(a)∗�(a)(b) is valid if and only if both m′(b) ≥ m1(a)∗�(a)(b) and m′(b) ≥ m2(a)∗�(a)(b) are satisfied.
Therefore

min{m′ ∈ M [L] D′|m′(b) ≥ (m1⊕̄m2)(a)∗�(a)(b) for all a ∈ D, b ∈ D′}
= min{m′ ∈ M [L] D′|m′(b) ≥ m1(a)∗�(a)(b) for all a ∈ D, b ∈ D′}
⊕̄ min{m′ ∈ M [L] D′|m′(b) ≥ m2(a)∗�(a)(b) for all a ∈ D, b ∈ D′},

i.e.,

sp(�)(m1⊕̄m2) = sp(�)(m1)⊕̄sp(�)(m2).

Now let � be isotone. If sp(�) preserves all suprema, than it is Scott continuous, as well as � = sp(�) ◦ �[L] D′.
If � is Scott continuous and {mi |i ∈ I} ⊂ M [L] D, then due to monotonicity

sp(�)

(
sup
i∈I

mi

)
≥ sup

i∈I
sp(�)(mi ).

On the other hand, supi∈I sp(�)(mi ) is a postcondition for all mi ; hence, by Lemma 2.2 for (suppi∈Imi )u =
supi∈I mi . Therefore

sup
i∈I

sp(�)(mi ) ≥ sp(�)

(
sup
i∈I

mi

)
,

and sp(�) preserves all suprema. �

Unfortunately, an analogue of Proposition 2.3 for lower topologies is not valid, even if ∗ is infinitely distributive
w.r.t. both suprema and infima.

Example 2.4. Let D = {0, 1, 1′} ∪ {1 + (1/n)|n = 1, 2, 3, . . .} with the usual numeric order, except that 1′ is an extra
copy of 1, and 1 and 1′ are incomparable. Each directed set in D has a greatest element; hence, D is a directed complete
continuous poset. Thus, D is an incomplete continuous semilattice with a least element 0. All upper sets in D are lower
closed and Scott open; therefore, all isotone mappings from D to any poset are continuous w.r.t. both the lower and the
Scott topologies.

Also, let L = D′ = {0, 1}; ∗ = ∧; and � : D → M [L] D′ be an isotone mapping defined as follows:

�(d) =
{

0̄, d ∈ {0, 1, 1′},
	D′

L , d /∈ {0, 1, 1′},
d ∈ D.

Then

sp(�)(m)(0) =

⎧⎪⎨
⎪⎩

1 if there is d ∈
{

1 + 1

n
|n = 1, 2, 3, . . .

}
, m(d) = 1,

0 otherwise.

Therefore, there is a greatest element m1 in the complement of the preimage sp(�)−1({	D′
L }↑) in M [L] D

m1(d) =
{

1, d ∈ {0, 1, 1′},
0, d /∈ {0, 1, 1′}, d ∈ D.

However, there are no minimal elements in the preimage itself; hence, it is not lower closed.
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Thus sp(�)(m)(0) is not lower continuous.

To obtain the required analogue, we must apply additional requirements.

Proposition 2.5. Let D and D′ be complete continuous semilattices, � : D → M [L] D′ an isotone mapping, and
∗ : L × L → L infinitely distributive also w.r.t. infimum in both variables. Then sp(�) is lower continuous if and only
if � is lower continuous, and in this case sp(�) is defined by a simpler formula

sp(�)(m)(b) = sup{m(a)∗�(a)(b)|a ∈ D}, b ∈ D′.

Proof. Recall that such an operation ∗ : L × L → L is continuous w.r.t. the lower and the Lawson topologies on
L, while the previously required infinite distributivity w.r.t. supremum implies only the Scott continuity of �. The
semilattices D and D′ with the Lawson topologies are compact Hausdorff topological semilattices.

Necessity is due to Lemma 1.3, because � = sp(�) ◦ �[L] D, and �[L] D is lower continuous.
Sufficiency: The mapping that sends each a ∈ D to m(a)∗�(a) ∈ M [L] D is continuous w.r.t. the Lawson topology on

D and the lower topology on M [L] D. Hence, the set {m(a)∗�(a)|a ∈ D} is compact in the lower topology on M [L] D.
By Lemma 1.5 its pointwise limit is in M [L] D; therefore, it coincides with sp(�)(m).

Let m ∈ M [L] D \ sp(�)−1({m′}↑), m′ ∈ M [L] D′, then sp(�)(m)(b) = sup{m(a)∗�(a)(b)|a ∈ D} = � � m′(b) for
some b ∈ D′.

The set {(m(a), �(a)(b))|a ∈ D} is contained in the closed, therefore compact, lower set {(�, �) ∈ L × L|�∗� ≤ �}.
The operation ∗ is isotone and Lawson continuous. Hence, there are �1, �1, . . . , �n, �n ∈ L such that the open set

U = (L × L) \ ({�1}↑ × {�1}↑ ∪ . . . ∪ {�n}↑ × {�n}↑)

contains

{(�, �) ∈ L × L|�∗� ≤ �},
and sup{�∗�|(�, �) ∈ U } = �′ � m′(b). By the above, for neither of a ∈ D and i = 1, . . . , n, the inequalities m(a) ≥ �i

and �(a)(b) ≥ �i are valid simultaneously. The set

Bi = {a ∈ D|�(a)(b) ≥ �i } = {a ∈ D|�(a) ≥ �i∗�[L] D′(b)}
is closed w.r.t. the lower topology due to the continuity of �. It has an empty intersection with the Scott closed set

Ai = {a ∈ D|m(a) ≥ �i }.
By compactness, there is a finite collection ai1, . . . , aiki ∈ D such that the set

{a ∈ D|ai j ≤ a for some 1 ≤ j ≤ ki }
contains Bi and has an empty intersection with Ai . Then the set

V = {c ∈ M [L] D|c � �i∗�[L] D(ai j ) for all 1 ≤ i ≤ n, 1 ≤ j ≤ ki }
is an open neighborhood of m in the lower topology, and, if c ∈ V , then c(a) � �i whenever �(a)(b) ≥ �i , 1 ≤ i ≤ n.

Therefore, if c ∈ V , then

sup{c(a)∗�(a)(b)|a ∈ D} ≤ �′ � m′(b),

hence, sp(�)(c)(b) � m′(b), and all preimages sp(�)−1({m′}↑) are closed, which implies the required continuity of
sp(�). �

Proposition 2.6. Let � be a mapping D → M [L] D′. If (a) � is Scott continuous, or (b) ∗ is infinitely distributive w.r.t.
infimum, then the mapping sp(�) : M [L] D → M [L] D′ is linear.
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Proof. Join preservation is due to Proposition 2.3.
Let a mapping � : D → M [L] D′ be Scott continuous (a). Then

sp(�)(��̄m) = sp(�)((�∗m)u)
Lemma 2.2====== sp(�)(�∗m)

=
(

supp
a∈D

�∗m(a)∗�(a)

)u
Lemma 1.6======

(
�∗
(

supp
a∈D

m(a)∗�(a)

)u)u

= ��̄sp(�)(m).

Assume (b). Then

sp(�)(��̄m)(b) = sp(�)(�∗m)(b)

= inf{sup{�∗m(a)∗�(a)(b′)|a ∈ D}|b′ ∈ D′, b′>b}
= inf{�∗ sup{m(a)∗�(a)(b′)|a ∈ D}|b′ ∈ D′, b′>b}
= �∗ inf{sup{m(a)∗�(a)(b′)|a ∈ D}|b′ ∈ D′, b′>b}
= ��̄sp(�)(m)(b), for all m ∈ M [L] D, b ∈ D′. �

Remark 2.7. In the presence of (a) or (b), the mapping sp(�) can be characterized as the least linear mapping  :
M [L] D → M [L] D′ such that (�[L] D(d)) = �(d) for all d ∈ D.

Remark 2.8. All statements in this section have straightforward analogues for normalized predicates. The only sig-
nificant distinction is that, if a mapping � : D → M[L] D′ satisfies the conditions that are analogous to ones of
Proposition 2.6, then the mapping sp(�) : M[L] D → M[L] D′ is affine, instead of linear. Proofs can be obtained mutatis
mutandis, without any major changes.

3. Epilogue

We have shown that L-fuzzy strongest postcondition predicate transformers are related to L-idempotent linear or
affine operators between continuous L-semimodules. Now it is possible to study linear and affine approximations of
predicate transformers from above and from below. These approximations are related to attempts to describe a program
behavior in a more economical way, dropping less important details.

It has been observed, e.g., by Doberkat [7] that monads and Kleisli composition [14] arise in description of combining
several programs into a pipe and composing the respective predicate transformers. While, for probabilistic programs,
these monads are based on (sub)probability measures, for non-probabilistic fuzzy semantics we propose to use monads
of lattice-valued non-additive measures [17].

Treatment of L-fuzzy weakest precondition predicates transformers, similar to a proposed one for strongest precon-
dition predicate transformers, as well as a demonstration that relations between these classes can be properly expressed
in terms of category theory, will be the topic of our future publications. In particular, Galois connections [19] will be
used to investigate compatibility of L-fuzzy knowledge and of nondeterministic programs.
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