
Acta Math. Hungar., 124 (3) (2009), 201�214.
DOI: 10.1007/s10474-009-8144-8

THE CONTINUITY OF THE INVERSION AND
THE STRUCTURE OF MAXIMAL SUBGROUPS
IN COUNTABLY COMPACT TOPOLOGICAL

SEMIGROUPS
O. GUTIK1, D. PAGON2 and D. REPOV�3

1 Department of Mechanics and Mathematics, Ivan Franko Lviv National University,
Universytetska 1, Lviv, 79000, Ukraine

e-mails: o_ gutik@franko.lviv.ua, ovgutik@yahoo.com
2 Institute of Mathematics, Physics and Mechanics, and

Faculty of Natural Sciences and Mathematics, University of Maribor, Gosposvetska 84,
Maribor 2000, Slovenia

e-mail: dusan.pagon@uni-mb.si
3 Faculty of Mathematics and Physics, and Faculty of Education, University of Ljubljana,

P.O.B. 2964, Ljubljana, 1001, Slovenia
e-mail: dusan.repovs@guest.arnes.si

(Received July 28, 2008; revised March 23, 2009; accepted March 24, 2009)

Abstract. We search for conditions on a countably compact (pseudo-
compact) topological semigroup under which: (i) each maximal subgroup H(e) in
S is a (closed) topological subgroup in S; (ii) the Cli�ord part H(S) (i.e. the union
of all maximal subgroups) of the semigroup S is a closed subset in S; (iii) the inver-
sion inv : H(S) → H(S) is continuous; and (iv) the projection π : H(S) → E(S),
π : x 7−→ xx−1, onto the subset of idempotents E(S) of S, is continuous.

In this paper all topological spaces will be assumed to be Hausdor�. We
shall follow the terminology of [7, 8, 11]. We shall denote the cardinality of
continuum by c and the topological closure of subset A in a topological space
by A. We shall call a T3-space a regular topological space.

A topological space X is said to be countably compact if any countable
open cover of X contains a �nite subcover [11]. A topological space X is called
pseudocompact if each continuous real-valued function on X is bounded [11].
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A topological space X is said to be sequential if each non-closed subset A
of X contains a sequence of points {xn}∞n=1 that converges to some point
x ∈ X \A. Obviously, a topological space X is sequential if a subset A of
X is closed if and only if together with any convergent sequence A contains
its limit [11]. A topological space X is called sequentially compact if each
sequence {xn}∞n=1 ⊂ X has a convergent subsequence [11].

We recall that the Stone��ech compacti�cation of a Tychono� space X
is a compact Hausdor� space βX containing X is a dense subspace so that
each continuous map f : X → Y to a compact Hausdor� space Y extends to
a continuous map f : βX → Y [11].

A semigroup is a set with a binary associative operation. An element e of
a semigroup S is called an idempotent if ee = e. If S is a semigroup, then we
denote the subset of all idempotents of S by E(S). A semigroup S is called
inverse if for any x ∈ S there exists a unique y ∈ S such that xyx = x and
yxy = y. Such an element y is called inverse of x and is denoted by x−1.
If S is an inverse semigroup, then the map which takes x ∈ S to the inverse
element of x is called the inversion and will be denoted by inv.

If S is a semigroup and e is an idempotent in S, then e lies in the maximal
subgroup H(e) with the identity e. If a semigroup S is a union of groups then
S is called Cli�ord. On a Cli�ord semigroup S =

⋃ {
H(e) | e ∈ E(S)

}
the

inversion inv : S → S is de�ned which maps each element x ∈ H(e) to its
inverse element x−1 in H(e). We also observe that on any Cli�ord semigroup
the projection π : S → E(S), π(x) = x · x−1, is de�ned. For a semigroup S
let

H(S) =
⋃

e∈E(S)

{
H(e) | H(e) is a maximal subgroup in S with identity e

}

= {s ∈ S | there exists y ∈ S such that xy = yx, xyx = x, yxy = y}.

A topological space S which is algebraically a semigroup with a con-
tinuous semigroup operation is called a topological semigroup. A topological
inverse semigroup is a topological semigroup S that is algebraically an in-
verse semigroup with continuous inversion. If τ is a topology on a (inverse)
semigroup S such that (S, τ) is a topological (inverse) semigroup, then τ is
called a (inverse) semigroup topology on S. By a paratopological group we
understand a pair (G, τ) consisting of a group G and a topology τ on G mak-
ing the group operation on G continuous. A paratopological group G with
continuous inversion is called a topological group.

Finite semigroups and compact topological semigroups have similar prop-
erties. For example every �nite semigroup and every compact topological
semigroup contains idempotents and minimal ideals [26], which are com-
pletely simple semigroups [25, 27], and every (0�)simple compact topological
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(and hence �nite) semigroup is completely (0-)simple [20, 25, 27]. Also, a
cancellative compact topological (and hence �nite) semigroup is a topologi-
cal group [19].

Compact topological semigroups do not contain the bicyclic semigroup
[15]. Gutik and Repov² [14] proved that a countably compact topological in-
verse semigroup does not contain the bicyclic semigroup. Banakh, Dimitrova
and Gutik [2] showed that no topological semigroup S with countably com-
pact square S × S contains the bicyclic semigroup. They also constructed
in [3] a consistent example of a countably compact topological semigroup S
which contains the bicyclic semigroup.

It is well known that the closure of a (commutative) subsemigroup of a
topological semigroup is a (commutative) subsemigroup [7, Vol. 1, p. 9]. Note
that the closure of a subgroup in a topological semigroup is not necesarily a
subgroup. But in the case when S is a compact topological semigroup or a
topological inverse semigroup, the closure of a subgroup in S is a subgroup,
moreover every maximal subgroup of S is closed (see [7, Vol. 1, Theorem 1.11]
and [9]).

Also, every compact subgroup of a topological semigroup with induced
topology is a topological semigroup. The results when the inversion is contin-
uous in a topological semigroup which is algebraically a group (i.e. a paratopo-
logical group) have been extended to some classes of �compact-like� paratopo-
logical groups, in particular: regular locally compact paratopological groups
[10], regular countably compact paratopological groups [22], quasi-regular
pseudo-compact paratopological groups [22], topologically periodic Hausdor�
countably compact paratopological groups [5], �ech-complete paratopologi-
cal groups [6], strongly Baire semitopological groups [16].

On the other hand, Ravsky [21], using a result of Koszmider, Tomita
and Watson [17], constructed an MA-example of a Hausdor� countably com-
pact paratopological group failing to be a topological group. Also Grant [13]
and Yur'eva [29] showed that a Hausdor� cancellative sequential countably
compact topological semigroup is a topological group. Bokalo and Guran
[5] established that an analogous theorem is true for cancellative sequentially
compact semigroups. Robbie and Svetlichny [23] constructed a CH-example of
a countably compact topological semigroup which is not a topological group.

In summary (see [7]), for a compact topological semigroup S the following
conditions hold:

(1) each maximal subgroup H(e) in S is a compact topological subgroup
in S;

(2) the subset H(S) is closed in S;
(3) the inversion map inv : H(S) → H(S) is continuous; and
(4) the projection π : H(S) → E(S) is continuous.
Since sequential compactness, countable compactness and pseudocom-

pactness are generalization of compactness, it is natural to pose the following
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question: For which compact-like topological semigroups do the conditions
(1)�(4) above hold?

In this paper we shall answer this question by giving su�cient conditions
on a countably compact (pseudocompact) topological semigroup under which:
(i) each maximal subgroup H(e) in S is a (closed) topological subgroup in
S; (ii) the Cli�ord part H(S) of the semigroup S is a closed subset in S; and
(iii) the inversion inv : H(S) → H(S) and the projection π : H(S) → E(S)
are continuous.

A topological group G is called totally bounded if for any open neighbour-
hood U of the identity e of G there exists a �nite subset A in G such that
A · U = G (see [28]).

Theorem 1. Let S be a Tychono� topological semigroup with the pseudo-
compact square S × S. Then S embeds into a compact topological semigroup
and the following conditions hold:

(i) the inversion inv : H(S) → H(S) is continuous;
(ii) the projection π : H(S) → E(S) is continuous; and
(iii) for each idempotent e ∈ E(S) the maximal subgroup H(e) is a totally

bounded topological group.
Proof. By Theorem 1.3 from [1], for any topological semigroup S with

the pseudocompact square S ×S the semigroup operation µ : S ×S → S ex-
tends to a continuous semigroup operation βµ : βS × βS → βS, so S is a
subsemigroup of the compact topological semigroup βS.

(i) Let
Grinv

(
H(βS)

)
=

{
(x, y) ∈ S × S | y = x−1

}

be the graph of the inversion in H(βS). Since βS is a topological semigroup
and

Grinv

(
H(βS)

)
=

{
(x, y) ∈ S × S | xyx = x, yxy = y and xy = yx

}
,

the graph Grinv

(
H(βS)

)
is a compact subset of βS × βS.

Consider the natural projections pr1 : βS × βS → βS and pr2 : βS × βS
→ βS onto the �rst and the second coordinates, respectively. It follows
from the compactness of Grinv

(
H(βS)

)
that pr1 : Grinv

(
H(βS)

) → H(βS)
and pr2 : Grinv

(
H(βS)

) → H(βS) are homeomorphisms. Consequently,
the inversion inv |H(βS) = pr2 ◦(pr1)

−1 : H(βS) → H(βS) is continuous, be-
ing a composition of homeomorphisms. Therefore the inversion inv : H(S)
→ H(S) is continuous as a restriction of a continuous map.

(ii) The projection π : H(S) → E(S) is continuous as a composition of
two continuous maps.

(iii) Given an idempotent e ∈ E(S), consider the maximal subgroup Hβ(e)
in βS containing e. Then by Theorems 1.11 and 1.13 from [7, Vol. 1], Hβ(e)
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is a compact topological group and since H(e) is a subgroup of Hβ(e) the
inversion inv : H(e) → H(e) is continuous, and H(e) is a totally bounded
topological group, see [28]. ¤

Theorem 1 implies the following:
Corollary 2. If S is a Tychono� Cli�ord topological semigroup with

the pseudocompact square S × S then the inversion in S is continuous.
An element x of a topological semigroup S is called topologically periodic

if for any open neighbourhood U(x) of x there exists an integer n = 2 such
that xn ∈ U(x). A topological semigroup S is called topologically periodic if
any element of S is topologically periodic.

Remark 3. The following observation implies that an element of any
(not necessarily Hausdor�) topological semigroup S is topologically periodic
if and only if for any integer n = 2 and for any open neighbourhood U(x)
of x there exists an integer m = n such that xm ∈ U(x). Let k = 2 be an
integer such that xk ∈ U(x). Then the continuity of the semigroup opera-
tion implies that there exists an open neighbourhood V (x) of x such that(
V (x)

)k j U(x). Since x is topologically periodic there exists an integer
m = 2 such that xm ∈ V (x). Hence we have xkm ∈ (

V (x)
)k j U(x) and km

= 4 = 22. Proceeding by induction, we can �nd an integer p = 2n > n such
that xp ∈ U(x).

Theorem 4. Let S be a Hausdor� topological semigroup with the count-
ably compact square S × S. Then:

(i) each maximal subgroup H(e) of S is a countably compact topological
group; and

(ii) the subset H(S) is countably compact.
Proof. (i) Let H(e) be any maximal subgroup of S. Since the semigroup

operation in S is continuous the subset

G =
{

(x, y) ∈ S × S | xy = yx = e, xe = ex = x, ye = ey = y
}

is closed in S×S and Theorem 3.10.4 from [11] implies that G is a countably
compact subset in S × S. Consider the natural projection pr1 : S × S → S
onto the �rst coordinate. Since pr1(G) = H(e) and the projection pr1 : S × S
→ S is a continuous map, Theorem 3.10.5 from [11] implies that H(e) is a
countably compact subspace of S.

Next, we show that H(e) is a topologically periodic paratopological group.
Let x be an arbitrary element of the subgroup H(e) and U(x) be any
open neighbourhood of x. We consider the sequence

{
(xn+1, x−n)

}∞
n=1

in
H(e)×H(e) j S × S. The countable compactness of S × S guarantees that
this sequence has an accumulation point (a, b) ∈ S × S. Since xn+1 · x−n

= x, the continuity of the semigroup operation on S guarantees that ab = x.
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Then for any open neighbourhood U(x) of x in S there exist open neigh-
bourhoods U(a) and U(b) of the point a and b in S, respectively, such
that U(a)U(b) j U(x). Since (a, b) is an accumulation point of the sequence{

(xn+1, x−n)
}∞

n=1
in S × S, there exist positive integers m and n such that

xm ∈ U(a), x−n ∈ U(b) and m = n + 2. Hence we get that xm · x−n = xm−n

∈ U(a) ·U(b) j U(x) and m− n = 2. Therefore H(e) is a topologically peri-
odic paratopological group. By Bokalo�Guran Theorem (see [5, Theorem 3])
any countably compact paratopological group is a topological group. Conse-
quently, H(e) is a countably compact topological group.

(ii) Since the semigroup operation in S is continuous,

H =
{

(x, y) ∈ S × S | xyx = x, yxy = y, xy = yx ∈ E(S)
}

is a closed subset in S × S and Theorem 3.10.4 from [11] implies that H is
a countably compact subset in S × S. Consider the natural projection pr1 :
S × S → S onto the �rst coordinate. Since pr1(H) = H(S) and the projection
pr1 : S × S → S is a continuous map, Theorem 3.10.5 from [11] implies that
H(S) is a countably compact subspace of S. ¤

Proposition 5. Let x be a topologically periodic element of a maximal
subgroup H(e) with the unity e in a topological semigroup S. Then the inver-
sion inv : H(S) → H(S) is continuous at x if and only if it is continuous at
the idempotent e.

Proof. We follow the argument of [4]. Let U(x−1) be any open neigh-
bourhood of the inverse element x−1 of x in S. Since the semigroup operation
in S is continuous there exist open neighbourhoods V (x−1) and V (e) of x−1

and e in H(S), respectively, such that V (x−1) · V (e) j U(x−1). Since the in-
version is continuous at idempotent e, there exists an open neighbourhood
W (e) of e in H(S) such that

(
W (e)

)−1 j V (e).
Also, the continuity of the semigroup operation implies that there ex-

ists an open neighbourhood N(x) of x in H(S) such that x−1 ·N(x) · x−1

j V (x−1) and N(x) · x−1 j W (e). The topological periodicity of x implies
that there exists a positive integer n such that xn+2 ∈ N(x). Then we have
that

xn+1 = xn+2 · x−1 ∈ N(x) · x−1 j W (e)

and
xn = x−1 · xn+2 · x−1 ∈ x−1 ·N(x) · x−1 j V (x−1).

Since S is a topological semigroup there exists an open neighbourhood P (x) of
x in S such that

(
H(S)∩P (x)

)n+1 j W (e) and
(
H(S)∩P (x)

)n j V (x−1).
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Therefore we get
(
H(S) ∩ P (x)

)−1 j
(
H(S) ∩ P (x)

)n · (
(
H(S) ∩ P (x)

)n+1)
−1

j V (x−1) · (W (e)
)−1 j V (x−1) · V (e) j U(x−1),

and hence the inversion is continuous at the point x. ¤
Proposition 5 implies the following:
Corollary 6. The inversion in a topologically periodic Cli�ord topologi-

cal semigroup S is continuous if and only if it is continuous at any idempotent
of the semigroup S.

Theorem 7. Let S be a regular topological semigroup with the countably
compact square S × S. Then:

(i) the inversion inv : H(S) → H(S) is continuous; and
(ii) the projection π : H(S) → E(S) is continuous.
Proof. (i) By Proposition 5 it is su�cient to show that the inversion

inv : H(S) → H(S) is continuous at any point of the set E(S).
Fix any e ∈ E(S). Let U(e) be any open neighbourhood of e in S. Since

the topological space of the semigroup S is regular, the continuity of the
semigroup operation of S implies that there exists a sequence of open neigh-
bourhoods

{
Ui(e)

}∞
i=1

of the idempotent e in S such that U1(e) j U(e) and(
Un(e)

)m j Un−1(e) for any positive integer n and all m = 1, . . . , n. Let

F =
∞⋂

n=1

Un(e).

We shall show that
(
F ∩H(S)

)−1 j F . Let x be any element of the set
F ∩H(S). Since the set F is closed, to prove that x−1 ∈ F it su�cient to
show that V (x−1) ∩ F 6= ∅ for any open neighbourhood V (x−1) of the point
x−1. The continuity of the semigroup operation in S and the equality x−1 =
x−1 · x · x−1 imply that there exists an open neighbourhood V (x) of the point
x in S such that x−1 · V (x) · x−1 j V (x−1). By Theorem 4 (i) the element x
of S is topologically periodic, and hence there exists a positive integer n = 2
such that xn ∈ V (x). Then we have

xn−2 = x−1 · xn · x−1 ∈ x−1 · V (x) · x−1 j V (x−1)

and

xn−2 ∈ Fn−2 j
∞⋂

i=n−2

(
Ui(e)

)n−2 j
∞⋂

i=n−2

Ui−1(e) j F.
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Hence V (x−1) ∩ F 6= ∅ and since F is a closed subset in S we have that
x−1 ∈ F . This implies that the inclusion

(
F ∩H(S)

)−1 j F holds.
Later we shall show that

(
Un(e)∩H(S)

)−1 j U(e)∩H(S) for some posi-
tive integer n. Suppose to the contrary that

(
Un(e)∩H(S)

)−1 * U(e)∩H(S)
for any positive integer n. Then there exists a sequence {xn}∞n=1 in H(S) such
that xn ∈ Un(e) \ (

U(e)
)−1 for all positive integers n.

The countable compactness of the square S×S implies that the sequence{
(xn, x−1

n )
}∞

n=1
has a cluster point (a, b) in S × S. The continuity of the

semigroup operation in S implies that

a · b = b · a = f, a · b · a = a, b · a · b = b,

and hence a, b ∈ H(f) for some idempotent f in S. Therefore b = a−1 ∈ F−1

∩H(S) j F . Then (a, b) ∈ F × F j U(e)× U(e). Since (a, b) is a cluster
point of the sequence

{
(xn, x−1

n )
}∞

n=1
, there exists a positive integer n such

that (xn, x−1
n ) ∈ U(e)× U(e). Therefore we have that xn ∈

(
U(e)

)−1 which
contradicts the choice of the sequence {xn}∞n=1. The obtained contradiction
implies that

(
Un(e) ∩H(S)

)−1 j U(e) ∩H(S) for some positive integer n,
and hence the inversion inv : H(S) → H(S) is continuous.

(ii) The projection π : H(S) → E(S) is continuous as a composition of
two continuous maps. ¤

Theorem 7 implies the following corollary generalizing a result of [4].
Corollary 8. The inversion in a regular Cli�ord topological semigroup

with the countably compact square is continuous.
Let S be a topological semigroup and e ∈ E(S). We shall say that the

semigroup S is inversely regular at e if for any open neighbourhood U(e) of
e there exists an open neighbourhood W (e) of e such that

(
W (e) ∩H(S)

)−1

j
(
U(e) ∩H(S)

)−1. A topological semigroup S with non-empty subsets of
idempotents is called inversely regular if it is inversely regular at each idem-
potent of S [4].

Theorem 9. Let S be a topologically periodic Hausdor� topological semi-
group. If S is inversely regular and countably compact, then:

(i) the inversion inv : H(S) → H(S) is continuous;
(ii) the projection π : H(S) → E(S) is continuous.
Proof. (i) Fix any idempotent e in S. Let U(e) be any open neigh-

bourhood of e in S. Since the semigroup operation in S is continuous and S

is inversely regular we construct inductively two sequences
{

Un(e)
}∞

i=1
and{

Wn(e)
}∞

i=1
of open neighbourhoods of the idempotent e such that

(
Un(e)

) i
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j Wn−1(e) and
(
Wn(e) ∩H(S)

)−1 j
(
Un(e) ∩H(S)

)−1 for all positive in-
tegers n and i = 1, 2, . . . , n.

Let F =
∞⋂

n=1

(
Wn(e) ∩H(S)

)−1. Then we have that

F =
∞⋂

n=1

(
Wn(e) ∩H(S)

)−1 j
∞⋂

n=2

(
Un(e) ∩H(S)

)−1

j
∞⋂

n=2

(
Wn−1(e) ∩H(S)

)−1 j F.

We shall show that F−1 = F . Let x be an arbitrary element of F . Since the
set F is closed it su�cient to prove that V (x−1)∩ F 6= ∅ for any open neigh-
bourhood V (x−1) of the point x−1. Since the semigroup S is topologically
periodic there exists a positive integer n = 2 such that xn−2 ∈ V (x−1) (see
the proof of Theorem 7). Then we have

xn−2 ∈ Fn−2 j
∞⋂

k=n−2

(
(
Uk(e) ∩H(S)

)−1)
n−2

j
∞⋂

k=n−2

(
(
Uk(e) ∩H(S)

)n−2)
−1 j

∞⋂

k=n−2

(
Wk−1(e) ∩H(S)

)−1 j F.

Hence V (x−1) ∩ F 6= ∅ and since F is a closed subset in S we have that
x−1 ∈ F . This implies that the inclusion F−1 j F holds. Then after the
inversion we get that F j F−1. Therefore we get that

∞⋂

n=1

(
Wn(e) ∩H(S)

)−1 = F = F−1 =
∞⋂

n=1

(
(
Wn(e) ∩H(S)

)−1)
−1

j
∞⋂

n=1

(
Un(e) ∩H(S)

)
j U(e).

Since the space of the semigroup S is countably compact there exists a posi-
tive integer n such that

F j
(
Wn(e) ∩H(S)

)−1 j
(
Wn(e) ∩H(S)

)−1 j U(e).

This implies that the inversion is continuous at the idempotent e.
(ii) The projection π : H(S) → E(S) is continuous as a composition of

two continuous maps. ¤
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We recall that a map f : X → Y between topological spaces is called se-
quentially continuous if lim

n→∞f(xn) = f
(

lim
n→∞xn

)
for any convergent sequence

{xn}∞n=1 in X. Obviously a composition of two sequentially continuous maps
is a continuous map. A subset F of a topological space X is called sequentially
closed if no sequence in F converges to a point not in F [12].

Theorem 10. Let S be a Hausdor� countably compact topological semi-
group. Then the following conditions hold:

(i) each maximal subgroup H(e), e ∈ E(S), is sequentially closed in S;
(ii) the subset H(S) is sequentially closed in S;
(iii) the inversion inv : H(S) → H(S) is sequentially continuous; and
(iv) the projection π : H(S) → E(S) is sequentially continuous.

Proof. (i) Suppose to the contrary that there exists a maximal subgroup
H(e) in S which is not a sequentially closed subset in S. Then there exists a
sequence {xn}∞n=1 ⊂ H(e) which converges to x 6∈ H(e). We put A = {xn}∞n=1

∪ {x}. Since the sequence {xn}∞n=1 ⊂ H(e) converges to x the set A with the
topology induced from S is a compact space. Then by Corollary 3.10.14
from [11], A× S is a countably compact space.

The countable compactness of A× S implies that the sequence{
(xn, x−1

n )
}∞

n=1
has a cluster point (a, b) in A× S. The continuity of the

semigroup operation in S implies that ab = e, aba = a, bab = b and hence
a = b−1 and a, b ∈ H(e). The Hausdor� property of S implies that x = a and
hence x ∈ H(e). The obtained contradiction implies assertion (i).

(ii) We argue exactly as in the previous case. Suppose the contrary: H(S)
is not a sequentially closed subset in S. Then there exists a sequence {xn}∞n=1

⊂ H(S) which converges to x 6∈ H(S). We put A = {xn}∞n=1 ∪ {x}. Since
the sequence {xn}∞n=1 ⊂ H(S) converges to x, the set A with the topology
induced from S is a compact space. Then by Corollary 3.10.14 from [11],
A× S is a countably compact space.

The countable compactness of A× S implies that the sequence{
(xn, x−1

n )
}∞

n=1
has a cluster point (a, b) in A× S. The continuity of the

semigroup operation in S implies that ab = e, aba = a, bab = b for some idem-
potent e ∈ E(S) and hence a = b−1 and a, b ∈ H(e). The Hausdor� property
of S implies that x = a and hence x ∈ H(e) j H(S). The obtained contra-
diction implies assertion (ii).

(iii) The sequential continuity of the inversion inv : H(S) → H(S) will fol-
low as soon as we prove that for any countable compactum C ⊂ H(S) the
restriction inv |C is continuous. Let

Grinv(S) =
{

(x, y) ∈ S × S | y = x−1
}
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be the graph of the inversion. Since S is a topological semigroup and

Grinv(S) =
{

(x, y) ∈ S × S | xyx = x, yxy = y and xy = yx
}

,

the graph Grinv(S) is a closed subset of S × S.
Since C is a metrizable compactum we can apply Corollary 3.10.14

from [11] to conclude that C × S is a countably compact space. Then the
closedness of Grinv(S) in the space S ×S implies that the space G = (C ×S)
∩Grinv(S) is countably compact and being countable, is compact.

Consider the natural projections pr1 : S × S → S and pr2 : S × S → S
onto the �rst and the second coordinates, respectively. It follows from the
compactness of G that pr1 : G→ C and pr2 : G→ C−1 are homeomorphisms.
Consequently, inv |C = pr2 ◦(pr1)

−1 : C → C−1 is continuous, being a com-
position of homeomorphisms.

(iv) The projection π : H(S) → E(S) is sequentially continuous as a com-
position of two sequentially continuous maps. ¤

Theorem 10 implies the following:
Corollary 11. Let S be a Hausdor� Cli�ord countably compact topo-

logical semigroup. Then the following conditions hold:
(i) each maximal subgroup H(e) is sequentially closed in S;
(ii) the inversion inv : S → S is sequentially continuous; and
(iii) the projection π : S → E(S) is sequentially continuous.
We observe that any sequentially compact (and hence any sequential

countably compact) topological semigroup contains an idempotent (see [2,
Theorem 8]). For a sequential countably compact semigroup Theorem 10
implies the following:

Corollary 12. Let S be a Hausdor� sequential, countably compact topo-
logical semigroup. Then the following conditions hold:

(i) each maximal subgroup H(e) is closed in S;
(ii) the subset H(S) is closed in S;
(iii) the inversion inv : H(S) → H(S) continuous; and
(iv) the projection π : H(S) → E(S) is continuous.
The following example shows that the closure of a subgroup of a count-

ably compact topological semigroup need not be a subgroup.
Example 13. AssumeMA countable holds. Let (R,+) be the additive topo-

logical group of the real numbers with the usual topology and Z the discrete
additive group of integers. Then T = R/Z is a topological group. Let G be
the group consisting of all y ∈ Tc such that there exists µ ∈ c such that y(µ)
is the identity of T for each α > µ.

There exists x ∈ Tc such that S = {nx+ y | n ∈ ω and y ∈ G} is the semi-
group with two-sided cancellation but S is not a group, see [23, 24]. Since G
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is a dense subgroup in Tc, G is dense in S. Tomita [24] showed that the exis-
tence of an element x in S is independent of ZFC. Also Madariaga-Garcia and
Tomita [18] show that the semigroup S can be constructed from c selective
ultra�lters.

A topological space X is called quasi-regular if for any non-empty open
subset U in X there exists a non-empty open set V j U in X such that
V j U . The following example shows that there exists a Hausdor� quasi-
regular Cli�ord inverse countably compact topological semigroup S with the
discontinuous inversion and discontinuous projection π : S → E(S).

Example 14 [4]. Let ω1 be the smallest uncountable ordinal and [0, ω1)
be the well-ordered sets of all countable ordinals, endowed with the natural
order topology. It is well-known that [0, ω1) is a sequentially compact topo-
logical space (see [11], Example 3.10.16) and simple veri�cation shows that
the semilattice operation min is continuous on [0, ω1).

Let T =
{

z ∈ C : |z| = 1
}

be the unit circle in the complex plane with
the usual topology and let T be endowed with the operation of multiplica-
tion of complex numbers. Then by Theorem 3.10.35 from [11] the product
A = [0, ω1)×T is a Hausdor� sequentially compact commutative topological
inverse semigroup, as the Cartesian product of a topological semilattice and
a commutative topological group.

Let x = (ω1,1) 6∈ A. Put S = A∪{x} and de�ne a topology τ on S letting
A be a subspace of S and U ⊂ S be a neighborhood of x if there are a positive
real ε > 0 and a countable ordinal α such that U ⊃ U(α, ε) where

U(α, ε) = {x} ∪ {
(β, eiϕ) | α < β < ω1, 0 < ϕ < ε

}
.

Extend the semigroup operation to S by letting x · x = x and x · a = a · x = a
for all a ∈ A. It is easy to see that S is a sequentially compact space and
the semigroup operation �·� is continuous and commutative on S. But the
inversion in S is not continuous since

(
U(α, ε)

)−1 " U(β, δ) for all α, β < ω1

and ε, δ ∈ (0, 1).
Observe also that the subsemigroup of idempotents of the semigroup S

can be identi�ed with the discrete sum of [0, ω1)
⊔{ω1} and hence is sequen-

tially compact, locally countable, and locally compact.
Also observe that the projective map π : S → E(S) is not continuous.
Remark 15. Example 14 shows that the requirement of regularity in

Theorem 7 and Corollary 2 is essential and cannot be replaced by the quasi-
regularity. This contrasts with the case of paratopological groups, see [22].
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