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Abstract We give a criterion for a linearly ordered topological semilattice to be
H -closed. We also prove that any linearly ordered H -closed topological semilattice
is absolutely H -closed and we show that every linearly ordered semilattice is a dense
subsemilattice of an H -closed topological semilattice.

Keywords Topological semilattice · Linearly ordered semilattice · H -closed
topological semilattice · Absolutely H -closed topological semilattice · Complete
linearly ordered semilattice

In this paper all topological spaces will be assumed to be Hausdorff. We shall follow
the terminology of [2–6]. If A is a subset of a topological space X, then we shall
denote the closure of the set A in X by clX(A). We shall denote the first infinite
cardinal by ω.

A semilattice is a semigroup with a commutative idempotent semigroup operation.
If S is a topological space equipped with a continuous semigroup operation, then S is
called a topological semigroup. A topological semilattice is a topological semigroup
which is algebraically a semilattice.
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If E is a semilattice, then the semilattice operation on E determines the partial
order ≤ on E:

e ≤ f if and only if ef = f e = e.

This order is called natural. An element e of a semilattice E is called minimal (maxi-
mal) if f ≤ e (e ≤ f ) implies f = e for f ∈ E. For elements e and f of a semilattice
E we write e < f if e ≤ f and e �= f . A semilattice E is said to be linearly ordered
or a chain if the natural order on E is linear.

Let S be a semilattice and e ∈ S. We denote ↓e = {f ∈ S | f ≤ e} and ↑e =
{f ∈ S | e ≤ f }. If S is a topological semilattice then Propositions VI.1.6(ii) and
VI.1.14 of [6] imply that ↑e and ↓e are closed subsets in S for any e ∈ S.

Let E be a linearly ordered topological semilattice. Since ↓e and ↑e are closed
for each e ∈ E, it follows that the topology of E refines the order topology. Thus
the principal objects whick we shall consider can be alternatively viewed as linearly
ordered sets equipped with the semilattice operation of taking minimum and equipped
with a topology refining the order topology for which the semilattice operation is
continuous.

Let S be some class of topological semigroups. A semigroup S ∈ S is called H -
closed in S, if S is a closed subsemigroup of any topological semigroup T ∈ S which
contains S both as a subsemigroup and as a topological space [8]. If S coincides with
the class of all topological semigroups, then the semigroup S is called H -closed. The
H -closed topological semigroups were introduced by Stepp [9], they were called
maximal semigroups. A topological semigroup S ∈ S is called absolutely H -closed
in the class S, if any continuous homomorphic image of S into T ∈ S is H -closed
in S [7]. If S coincides with the class of all topological semigroups, then the semi-
group S is called absolutely H -closed.

An algebraic semigroup S is called algebraically h-closed in S, if S equipped with
discrete topology d is absolutely H -closed in S and (S,d) ∈ S [8]. If S coincides with
the class of all topological semigroups, then the semigroup S is called algebraically
h-closed. Absolutely H -closed topological semigroups and algebraically h-closed
semigroups were introduced by Stepp in [10], they were called absolutely maximal
and algebraic maximal, respectively. Gutik and Pavlyk [7] observed that a topological
semilattice is (absolutely) H -closed if and only if it is (absolutely) H -closed in the
class of topological semilattices.

Stepp [10] proved that a semilattice E is algebraically h-closed if and only if any
maximal chain in E is finite and he asked the following question: Is every H -closed
topological semilattice absolutely H -closed? In the present paper we give a criterium
when a linearly ordered topological semilattice is H -closed. We also prove that every
linearly ordered H -closed topological semilattice is absolutely H -closed, we show
that every linearly ordered semilattice is a dense subsemilattice of an H -closed topo-
logical semilattice, and we give an example of a linearly ordered H -closed locally
compact topological semilattice which does not embed into a compact topological
semilattice.

Let C be a maximal chain of a topological semilattice E. Then C = ⋂
e∈C(↓e ∪

↑e), and hence C is a closed subsemilattice of E. Therefore we obtain the following:
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Lemma 1 Let L be a linearly ordered subsemilattice of a topological semilattice E.
Then clE(L) is a linearly ordered subsemilattice of E.

A linearly ordered topological semilattice E is called complete if every non-empty
subset of S has inf and sup.

Theorem 2 A linearly ordered topological semilattice E is H -closed if and only if
the following conditions hold:

(i) E is complete;
(ii) x = supA for A = ↓A \ {x} implies x ∈ clE(A), whenever A �= ∅; and

(iii) x = infB for B = ↑B \ {x} implies x ∈ clE(B), whenever B �= ∅.

Proof (⇐) Suppose to the contrary that there exists a linearly ordered non-H -closed
topological semilattice E which satisfies the conditions (i), (ii), and (iii). Then by
Lemma 1 there exists a linearly ordered topological semilattice T such that E is a
dense proper subsemilattice of T . Let x ∈ T \E. Condition (i) implies that x �= supE

and x �= infE, otherwise E is not complete. Therefore we have infE < x < supE.
Let A(x) = (T \ ↑x) ∩ E and B(x) = (T \ ↓x) ∩ E. Since E is complete, we have
supA(x) ∈ E and infB(x) ∈ E. Let s = supA(x) and i = infB(x). We observe that
s < x < i, otherwise, if x < s, then A = ↓x ∩ E = (↓s \ {s})E is a closed subset in
E, which contradicts the condition (ii), and if i < x, then B = ↑x ∩ E = (↑i \ {i})E
is a closed subset of E, which contradicts the condition (iii). Then ↑i and ↓s are
closed subsets of T and T = ↓s ∪ ↑i ∪ {x}. Therefore x is an isolated point of T .
This contradicts the assumption that x ∈ T \ E and E is a dense subspace of T . This
contradiction implies that E is an H -closed topological semilattice.

(⇒) At first we shall show that supA ∈ E for every infinite subset S of E. Suppose
to the contrary, that there exists an infinite subset A in E such that A has no sup in E.
Since S is a linearly ordered semilattice, we have that the set ↓A also has no sup in
E. We consider two cases:

(a) E \ ↓A �= ∅; and
(b) E \ ↓A = ∅.

In case (a) the set B = E \↓A has no inf, since E is a linearly ordered semilattice,
otherwise infB = supA ∈ E.

Let x /∈ E. We put E∗ = E ∪{x}. We extend the semilattice operation from E onto
E∗ as follows:

x · y = y · x =
⎧
⎨

⎩

x, if y ∈ E \ ↓A;
x, if y = x;
y, if y ∈ ↓A.

Obviously, the semilattice operation on E∗ determines a linear order on E∗.
We define a topology τ ∗ on E∗ as follows. Let τ be the topology on E. At any

point a ∈ E = E∗ \ {x} bases of topologies τ ∗ and τ coincide. We put

B∗(x) = {
V a

b (x) = E \ (↓b ∪ ↑a) | a ∈ E \ ↓A,b ∈ ↓A
}
.
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Since the set E \ ↓A has no inf and the set ↓A has no sup, the conditions (BP1)–
(BP3) of [5] hold for the family B∗(x) and B∗(x) is a base of a Hausdorff topology
τ ∗ at the point x ∈ E∗.

Let c ∈ E \ ↓A and d ∈ ↓A. Then there exist a ∈ E \ ↓A and b ∈ ↓A such that
d < b < x < a < c. Then for any open neighbourhoods V (c) and V (d) of the points c

and d , respectively, such that V (c) ⊆ E \↓a = E∗ \↓a and V (d) ⊆ E \↑b = E∗ \↑b

we have

V a
b (x) · V (d) ⊆ V (d) and V a

b (x) · V (c) ⊆ V a
b (x).

We also have V a
b (x) · V a

b (x) ⊆ V a
b (x) for all a ∈ E \ ↓A and b ∈ ↓A. Therefore

(E∗, τ ∗) is a Hausdorff topological semilattice which contains E as a dense non-
closed subsemilattice. This contradicts the assumption that E is an H -closed topo-
logical semilattice.

Consider case (b). Let y /∈ E. We put E� = E ∪ {y} and extend the semilattice
operation from E onto E� as follows:

y · s = s · y =
{

y, if s = y;
s, if s �= y.

Obviously, the semilattice operation on E� determines a linear order on E�.
We define a topology τ � on E� as follows. Let τ be the topology on E. At any

point a ∈ E = E� \ {x} bases of topologies τ � and τ coincide. We put

B�(x) = {Vb(x) = E \ ↓b | b ∈ ↓A = E} .

Since the set E = ↓E has no sup, the conditions (BP1)–(BP3) of [5] hold for the
family B�(x) and B�(x) is a base of a Hausdorff topology τ ∗ at the point x ∈ E∗.

Let c ∈ E. Then there exists b ∈ E such that c < b < y and for any open neigh-
bourhood Vb(y) of y and any open neighbourhood V (c) such that V (c) ⊆ E \ ↑b we
have Vb(y) · V (c) ⊆ V (c). We also have Vb(y) · Vb(y) ⊆ Vb(y) for all b ∈ ↓A = E.
Therefore (E�, τ �) is a Hausdorff topological semilattice which contains E as a dense
non-closed subsemilattice. This contradicts the assumption that E is an H -closed
topological semilattice. The obtained contradictions imply that every subset of the
semilattice E has sup. The proof of the fact that every subset of E has an inf is
similar.

Next we show that for every H -closed linearly ordered topological semilattice E

condition (ii) holds. Suppose that there exists x ∈ E such that x = sup(↓x \ {x}) and
x /∈ clE(↓x \ {x}). Since the topological semilattice E is linearly ordered, L◦(x) =
↓x \ {x} is a clopen subset of E.

Let g /∈ E. We extend the semilattice operation from E onto E◦ = E ∪ {g} as
follows:

g · s = s · g =
{

g, if s ∈ ↑x;
s, if s ∈ L◦(x).

Obviously, the semilattice operation on E◦ determines a linear order on E◦.
We define a topology τ ◦ on E◦ as follows. Let τ be the topology on E. At any

point a ∈ E = E◦ \ {g} bases of topologies τ ◦ and τ coincide. We put

B◦(g) = {
Us(g) = {g} ∪ L◦(x) \ ↓s | s ∈ L◦(x)

}
.
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Since supL◦(x) = x, the set Us(g) is non-singleton for any s ∈ L◦(x). Therefore
the conditions (BP1)–(BP3) of [5] hold for the family B◦(g) and B◦(g) is a base of
the topology τ ◦ at the point g ∈ E◦. Also since the set ↑x is closed in (S◦, τ ◦) and
supL◦(x) = x, we have that the topology τ ◦ is Hausdorff. The proof of the continuity
of the semilattice operation in (S◦, τ ◦) is similar as for (S∗, τ ∗) and (S�, τ �). Thus
condition (ii) holds.

The proof of the assertion that if E is a linearly ordered H -closed topological
semilattice, then the condition (iii) holds, is similar. Therefore the proof of the theo-
rem is complete. �

Since the conditions (i)–(iii) of Theorem 2 are preserved by continuous homomor-
phisms, we have the following:

Theorem 3 Every linearly ordered H -closed topological semilattice is absolutely
H -closed.

Theorem 2 also implies the following:

Corollary 4 Every linearly ordered H -closed topological semilattice contains max-
imal and minimal idempotents.

Theorems 2 and 3 imply the following:

Corollary 5 Let E be a linearly ordered H -closed topological semilattice and e ∈ E.
Then ↑e and ↓e are (absolutely) H -closed topological semilattices.

Theorem 6 Every linearly ordered topological semilattice is a dense subsemilattice
of an H -closed linearly ordered topological semilattice.

Proof Let E be a linearly ordered topological semilattice and let Ea be an algebraic
copy of E. Then Ea with operation inf and sup is a lattice. It is well known that every
lattice embeds into a complete lattice (cf. [2, Theorem V.2.1]). In our construction we
shall use the idea of proofs of Theorem V.2.1 and Lemma V.2.1 in [2]. We denote the
lattice of all ideals of Ea by Ẽa . Then pointwise operations inf and sup on Ẽa coin-
cide with

⋂
and

⋃
on Ẽa , respectively. Since Ea is a linearly ordered semilattice,

we can identify Ea with the subsemilattice of all principal ideals of Ea in Ẽa .
For an ideal I ∈ Ẽa and a principal ideal Ie ∈ Ẽa generated by an idempotent e we

put IeρI if and only if every open neighbourhood of e intersects I . Since Ea and Ẽa

are linearly ordered semilattices, for principal ideals Ie and If generated by idempo-
tents e and f from Ea , respectively, we have IeρIf if and only if Ie = If , i.e. e = f .
We put α = � ∩ ρ ∪ ρ−1. Obviously the relation α is an equivalence on Ẽa . Since
Ẽa is a linearly ordered semilattice, α is a congruence on Ẽa and hence Ẽ = Ẽa/α is
also a linearly ordered semilattice. We observe that Ea is a subsemilattice of Ẽ.

We define a topology τ̃ on Ẽ as follows. Let τ be the topology on E. At any point
a ∈ Ea ⊂ Ẽ bases of topologies τ̃ and τ coincide. For x ∈ Ẽ \ Ea we put

B̃(x) = {Vb(x) = ↓x \ ↓b | b ∈ ↓x ∩ Ea} .
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Then conditions (BP1)–(BP3) of [5] hold for the family B̃(x) and B̃(x) is a base of
a topology τ̃ at the point x and since τ is Hausdorff, so is τ̃ . We also observe that
the definition of τ̃ implies that ↓e and ↑e are closed subset of the topological space
(Ẽ, τ̃ ). Obviously the semilattice operation on (Ẽ, τ̃ ) is continuous, (Ẽ, τ̃ ) satisfies
the conditions (i) and (ii) of Theorem 2 and E is a dense subsemilattice of (Ẽ, τ̃ ).

We denote the lattice of all filters of Ẽ by F (E). Then pointwise operations inf
and sup on F (E) coincide with

⋃
and

⋂
on F (E), respectively. Since Ẽ is a lin-

early ordered semilattice, we can identify Ẽ with the subsemilattice in F (E) of all
principal filters of Ẽ. By the dual theorem to Theorem V.2.1 of [2] the lattice F (E)

is complete, and since Ẽ is linearly ordered, so is F (E).
For a filter F ∈ Ẽa and a principal filter Fe ∈ F (E) generated by an idempotent

e ∈ Ẽ we put Feρ̃F if and only if every open neighbourhood of e intersects F . Since
Ẽ and F (E) are linearly ordered semilattices, for principal filters Fe and Ff gen-
erated by idempotents e and f from Ẽ, respectively, we have Feρ̃Ff if and only if
Fe = Ff , i.e. e = f . We put α̃ = � ∩ ρ̃ ∪ ρ̃−1. Obviously α̃ is an equivalence on
F (E). Since F (E) is a linearly ordered semilattice, α̃ is a congruence on F (E) and
hence F̃ (E) = F (E)/α̃ is a linearly ordered semilattice.

We define a topology τF on F̃ (E) as follows. At any point a ∈ Ẽ ⊆ F̃ (E) bases
of topologies τF and τ̃ coincide. For x ∈ F̃ (E) \ Ẽ we put

B̃F (x) = {Wb(x) = ↑x \ ↑b | b ∈ ↑x ∩ Ẽ}.
Then conditions (BP1)–(BP3) of [5] hold for the family B̃F (x) and B̃F (x) is a
base of a topology τF at the point x and since τ̃ is Hausdorff, so is τF . Also we
observe that the definition of τF implies that ↓e and ↑e are closed subsets of the
topological space (F̃ (E), τF ), and hence the semilattice operation on (F̃ (E), τF ) is
continuous, (Ẽ, τ̃ ) satisfies the conditions (i) and (iii) of Theorem 2 and E is a dense
subsemilattice of (F̃ (E), τF ).

Further we shall show that the condition (ii) of Theorem 2 holds for the topological
semilattice (F̃ (E), τF ). Suppose to the contrary that there exists a lower subset A

of F (E) such that supA = x /∈ A and x /∈ clF (E) A. Then A = F (E) \ ↑x and A

are clopen subsets of the topological space (F (E), τF ). Since x = supA /∈ A, there
exists an increasing family of ideals I = {Iα | α ∈ A} of the semilattice Ea such that
Iα ⊂ Iβ whenever α < β , α,β ∈ A, sup

⋃
I = x, and

⋃
I ⊂ A. The existence of

the family I follows from the fact that the semilattice Ẽ is a dense subsemilattice of
(F̃ (E), τF ). However,

⋃
I is an ideal in Ea and hence sup

⋃
I ∈ A, a contradiction.

The obtained contradiction implies that statement (ii) of Theorem 2 holds for the
topological semilattice (F̃ (E), τF ). �

Example 7 Let N be the set of positive integers. Let {xn} be an increasing sequence
in N. Put N

∗ = {0} ∪ { 1
n

| n ∈ N}. We define the semilattice operation on N
∗ as fol-

lows ab = min{a, b}, for a, b ∈ N
∗. Obviously, 0 is the zero element of N

∗. We put
Un(0) = {0} ∪ { 1

xk
| k ≥ n}, n ∈ N. A topology τ on N

∗ is defined as follows: all
nonzero elements of N

∗ are isolated points in N
∗ and B(0) = {Un(0) | n ∈ N} is the

base of the topology τ at the point 0 ∈ N
∗. It is easy to see that (N∗, τ ) is a countable

linearly ordered σ -compact 0-dimensional scattered locally compact metrizable topo-
logical semilattice and if xk+1 > xk +1 for every k ∈ N, then (N∗, τ ) is a non-compact
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semilattice. We also observe that the family Hom(E, {0,1}) of all homomorphisms
from a topological semilattice E into the discrete semilattice ({0,1},min) separates
points for the topological semilattice E.

Theorem 2 implies the following:

Proposition 8 (N∗, τ ) is an H -closed topological semilattice.

Remark 9 Example 7 implies negative answers to the following questions:

(1) Is every closed subsemilattice of an H -closed topological semilattice H -closed?
(2) (I. Guran) Does every locally compact topological semilattice embed into a com-

pact semilattice?
(3) (Cf. [1]) Does every globally bounded topological inverse Clifford semigroup

embed into a compact semigroup?
(4) Does every locally compact topological semilattice have a base with open order

convex subsets?

Remark 10 Theorem 3 and Example 7 imply that a closed subsemilattice of an ab-
solutely H -closed topological semilattice is not H -closed.

Example 11 implies that there exist topologically isomorphic linearly ordered
topological semilattices E1 and E2 which is dense subsemilattice of linearly ordered
topological semilattices S1 and S2, respectively, such that S1 and S2 are not alge-
braically isomorphic.

Example 11 Let N be the set of positive integers. Let S1 = {− 1
n

| n ∈ N} ∪ {0} ∪ { 1
n

|
n ∈ N} and S2 = {−1 − 1

n
| n ∈ N} ∪ {−1} ∪ {0} ∪ { 1

n
| n ∈ N} with usual topology

and operation min. Then E1 = {− 1
n

| n ∈ N} ∪ { 1
n

| n ∈ N} and E2 = {−1 − 1
n

| n ∈
N} ∪ { 1

n
| n ∈ N} is discrete isomorphic semilattice, but the semilattices S1 and S2 are

not algebraically isomorphic.

Theorem 12 gives a method of constructing new H -closed and absolutely H -
closed topological semilattices from old.

Theorem 12 Let S = ⋃
α∈A Sα be a topological semilattice such that:

(i) Sα is an (absolutely) H -closed topological semilattice for any α ∈ A; and
(ii) there exists an (absolutely) H -closed topological semilattice T such that T ⊆ S

and SαSβ ⊆ T for all α �= β , α,β ∈ A.

Then S is an (absolutely) H -closed topological semilattice.

Proof We shall consider only the case when S is an absolutely H -closed topological
semilattice. The proof in the other case is similar. Let h:S → G be a continuous
homomorphism from S into a topological semilattice G. Without loss of generality
we may assume that clG(h(S)) = G.
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Suppose that G\h(S) �= ∅. We fix x ∈ G\h(S). The absolute H -closedness of the
topological semilattice T implies that there exists an open neighbourhood U(x) of the
point x in G such that U(x) ∩ h(T ) = ∅. Since G is a topological semilattice, there
exists an open neighbourhood V (x) of x in G such that V (x)V (x) ⊆ U(x). Since the
topological semilattice Sα is absolutely H -closed, the neighbourhood V (x) intersects
infinitely many semilattices h(Sβ), β ∈ A. Therefore V (x)V (x) ∩ h(T ) �= ∅. This
is in disagreement with the choice of the neighbourhood U(x). This contradiction
implies the assertion of the theorem. �
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