On Chains in H-Closed Topological Pospaces

Oleg Gutik · Dušan Pagon · Dušan Repovš

Received: 16 August 2009 / Accepted: 29 October 2009 / Published online: 23 January 2010 © Springer Science+Business Media B.V. 2010

Abstract We study chains in an H-closed topological partially ordered space. We give sufficient conditions for a maximal chain L in an H-closed topological partially ordered space (H-closed topological semilattice) under which L contains a maximal (minimal) element. We also give sufficient conditions for a linearly ordered topological partially ordered space to be H-closed. We prove that a linearly ordered H-closed topological semilattice is an H-closed topological pospace and show that in general, this is not true. We construct an example of an H-closed topological pospace with a non-H-closed maximal chain and give sufficient conditions under which a maximal chain of an H-closed topological pospace is an H-closed topological pospace.

Keywords *H*-closed topological partially ordered space \cdot Chain \cdot Maximal chain \cdot Topological semilattice \cdot Regularly ordered pospace \cdot MCC-chain \cdot Scattered space

Mathematics Subject Classifications (2000) Primary 06B30 • 54F05; Secondary 06F30 • 22A26 • 54G12 • 54H12

O. Gutik

Department of Mechanics and Mathematics, Ivan Franko Lviv National University, Universytetska 1, Lviv, 79000, Ukraine e-mail: o_gutik@franko.lviv.ua, ovgutik@yahoo.com

D. Pagon Institute of Mathematics, Physics and Mechanics, Jadranska 19, Ljubljana, 1000, Slovenia e-mail: dusan.pagon@uni-mb.si

D. Repovš (⊠) Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, Ljubljana 1000, Slovenia e-mail: dusan.repovs@guest.arnes.si

1 Introduction

In this paper all topological spaces will be assumed to be Hausdorff. We shall follow the terminology of [3, 4, 7–10, 14, 17]. If A is a subset of a topological space X, then we denote the *closure* of the set A in X by $cl_X(A)$. By a *partial order* on a set X we mean a reflexive, transitive and anti-symmetric binary relation \leq on X. If the partial order \leq on a set X satisfies the following linearity law

if $x, y \in X$, then $x \leq y$ or $y \leq x$,

then it is said to be a *linear order*. We write x < y if $x \le y$ and $x \ne y$, $x \ge y$ if $y \le x$, and $x \le y$ if the relation $x \le y$ is false. Obviously, if \le is a partial order or a linear order on a set X then so is \ge . A set endowed with a partial order (resp. linear order) is called a *partially ordered* (resp. *linearly ordered*) set. If \le is a partial order on X and A is a subset of X then we denote

 $\downarrow A = \{ y \in X \mid y \leq x \text{ for some } x \in A \} \text{ and}$ $\uparrow A = \{ y \in X \mid x \leq y \text{ for some } x \in A \}.$

For any elements a, b of a partially ordered set X such that $a \leq b$ we denote $\uparrow a = \uparrow \{a\}, \downarrow a = \downarrow \{a\}, [a, b] = \uparrow a \cap \downarrow b$ and $[a, b) = [a, b] \setminus \{b\}$. A subset A of a partially ordered set X is called *increasing* (resp. *decreasing*) if $A = \uparrow A$ (resp. $A = \downarrow A$).

A partial order \leq on a topological space X is said to be *lower* (resp. *upper*) semicontinuous provided that whenever $x \leq y$ (resp. $y \leq x$) in X, then there exists an open set $U \ni x$ such that if $a \in U$ then $a \leq y$ (resp. $y \leq a$). A partial order is called *semicontinuous* if it is both upper and lower semicontinuous. Next, it is said to be *continuous* or *closed* provided that whenever $x \leq y$ in X, there exist open sets $U \ni x$ and $V \ni y$ such that if $a \in U$ and $b \in V$ then $a \leq b$. Clearly, the statement that the partial order \leq on X is semicontinuous is equivalent to the assertion that $\uparrow a$ and $\downarrow a$ are closed subsets of X for each $a \in X$. A topological space equipped with a continuous partial order is called a *topological partially ordered space* or shortly *topological pospace*. A partial order \leq on a topological space X is continuous if and only if the graph of \leq is a closed subset in $X \times X$ [17, Lemma 1]. Also, a semicontinuous linear order on a topological space is continuous [17, Lemma 3].

A *chain* of a partially ordered set X is a subset of X which is linearly ordered with respect to the partial order. A *maximal chain* is a chain which is properly contained in no other chain. The Axiom of Choice implies the existence of maximal chains in any partially ordered set. Every maximal chain in a topological pospace is a closed set [17, Lemma 4].

An element y of a partially ordered set X is called *minimal* (resp. *maximal*) in X whenever $x \leq y$ (resp. $y \leq x$) in X implies $y \leq x$ (resp. $x \leq y$). Let X and Y be partially ordered sets. A map $f: X \to Y$ is called *monotone* (or *partial order preserving*) if $x \leq y$ implies $f(x) \leq f(y)$ for every $x, y \in X$.

A Hausdorff topological space X is called *H*-closed if X is a closed subspace of every Hausdorff space in which it is contained [1, 2]. A Hausdorff pospace X is called *H*-closed if X is a closed subspace of every Hausdorff pospace in which it is contained. It is obvious that the notion of *H*-closedness is a generalization of compactness. For any element x of a compact topological pospace X there exists a minimal element $y \in X$ and a maximal element $z \in X$ such that $y \leq x \leq z$ (cf. [10]). Every maximal chain in a compact topological pospace is a compact subset and hence it contains minimal and maximal elements. Also, for any point x of a compact topological pospace X there exists a base at x which consists of open order-convex subsets [14]. (A non-empty set A of a partially ordered set is called *order-convex* if A is an intersection of increasing and decreasing subsets.) We are interested in the following question: Under which conditions does an H-closed topological pospace have properties similar to those of a compact topological pospace?

In this paper we study chains in an arbitrary H-closed topological partially ordered space. We give sufficient conditions for a maximal chain L in an H-closed topological partially ordered space (H-closed topological semilattice) under which L contains a maximal (minimal) element. Also, we give sufficient conditions for a linearly ordered topological partially ordered space to be H-closed. We prove that a linearly ordered H-closed topological semilattice is an H-closed topological pospace and show that in general, this is not true. We construct an example of an H-closed topological pospace with a non-H-closed maximal chain and give sufficient conditions under which a maximal chain of an H-closed topological pospace is an H-closed topological pospace.

2 On Maximal and Minimal Elements of Maximal Chains in *H*-Closed Topological Pospaces

A subset A of a partially ordered set X is called *down-directed* (resp. *up-directed*) if and only if $\uparrow A = X$ (resp. $\downarrow A = X$). A topological pospace X is called *upper point separated* (resp. *lower point separated*) if for every $x \in X$ such that $\uparrow x \neq X$ (resp. $\downarrow x \neq X$) there exist an open non-empty decreasing (resp. increasing) subset V in X and a neighbourhood U(x) of x such that $a \notin b$ (resp. $b \notin a$) for each $a \in U(x)$ and $b \in V$.

Theorem 2.1 If an upper (lower) point separated H-closed topological pospace X contains a down-directed (up-directed) chain, then X has a minimum (maximum) element.

Proof Suppose to the contrary, that X does not contain a minimum element. Let $x \notin X$. We put $X^* = X \cup \{x\}$ and extend the partial order \leq from X onto X^* as follows:

$$x \leqslant y$$
 for all $y \in X^*$.

Let τ be the topology on X and \mathcal{D} the set of all non-empty decreasing open subsets of X. The Hausdorff topology τ^* on X^* is generated by the base $\tau \cup \{\{x\} \cup U \mid U \in \mathcal{D}\}$. Since X does not contain a minimum element the definition of the family τ implies that x is not an isolated point in X^* . Also, since X is an upper point separated topological pospace, \leq is a closed partial order on X^* . Therefore X is a dense subspace of X^* , a contradiction. This implies the assertion of the theorem. \Box Theorem 2.1 implies the following:

Corollary 2.2 Every down-directed (up-directed) chain of an upper (lower) point separated H-closed topological pospace X contains a minimum (maximum) element.

Proposition 2.3 Every locally compact topological pospace is upper (lower) point separated.

Proof Let *X* be a locally compact topological pospace and $x \in X$ a point such that $\uparrow x \neq X$. Fix any $y \in X \setminus \uparrow x$. Local compactness of *X* implies that there exists an open neighbourhood U(y) of *y* such that $U(y) \subseteq cl_X(U(y)) \subseteq X \setminus \uparrow x$ and the set $cl_X(U(y))$ is compact. Proposition VI-1.6(*ii*) of [10] implies that $\uparrow cl_X(U(y))$ is a closed subset of *X*. Hence $V = X \setminus \uparrow cl_X(U(y))$ is an open decreasing subset of *X* and $a \notin b$ for each $a \in U(y)$ and $b \in V$. This completes the proof of the proposition.

Theorem 2.1 and Proposition 2.3 imply the following:

Corollary 2.4 If a locally compact H-closed topological pospace X contains a downdirected (up-directed) chain, then X has a minimum (maximum) element.

Also, Corollary 2.2 and Proposition 2.3 imply the following:

Corollary 2.5 *Every down-directed (up-directed) chain of a locally compact H-closed topological pospace X contains a minimum (maximum) element.*

A subset *F* of topological pospace *X* is said to be *upper* (resp. *lower*) *separated* if and only if for each $a \in X \setminus \uparrow F$ (resp. $a \in X \setminus \downarrow F$) there exist disjoint open neighbourhoods *U* of *a* and *V* of *F* such that *U* is decreasing (resp. increasing) and *V* is increasing (resp. decreasing) in *X*. We shall say that a subset *A* of a topological pospace *X* has the *DS*-property (resp. *US*-property) if for any $x \in X$ such that $A \setminus \uparrow x \neq \emptyset$ (resp. $A \setminus \downarrow x \neq \emptyset$) there exist a neighbourhood U(x) of *x* and an open decreasing (resp. increasing) set *V* such that $V \cap U(x) = \emptyset$ and $V \cap A \neq \emptyset$.

Theorem 2.6 Every upper (lower) separated maximal chain with the DS-property (resp. US-property) of an H-closed topological pospace contains a minimum (resp. maximum) element.

Proof Suppose to the contrary, that there exists an *H*-closed topological pospace X with the *DS*-property and a maximal upper separated chain L in X such that L does not contain a minimum element.

Let $x \notin X$. We extend the partial order \leq from X onto $X^* = X \cup \{x\}$ as follows:

 $x \leq x$ and $x \leq y$ if $y \in \uparrow L$.

Let \mathscr{U}_L be the set of all open increasing subsets in X which contain the chain L. We denote the set of all open decreasing subsets which intersect L by \mathscr{D}_L . If τ is the topology on X then we define the Hausdorff topology τ^* as the one which is generated by the pseudobase $\tau \cup \{\{x\} \cup U \mid U \in \mathscr{D}_L \cup \mathscr{U}_L\}$. Since L is an upper

separated maximal chain with the *DS*-property, we conclude that the partial order \leq is continuous on *X*^{*}. Therefore *X* is a dense subspace of *X*^{*}, a contradiction. This implies the assertion of the theorem.

Proposition 2.7 Every subset of a locally compact topological pospace has the DSand the US-properties.

Proof Let *X* be a locally compact topological pospace. Let $A \subset X$ and $x \in X$ be such that $A \setminus \uparrow x \neq \emptyset$. Fix any $y \in A \setminus \uparrow x$. Since $x \notin y$ there exist neighbourhoods U(x) and U(y) of *x* and *y*, respectively, such that $a \notin b$ for all $a \in U(x)$ and $b \in U(y)$. Local compactness of *X* implies that there exists an open neighbourhood V(x) of *x* such that $V(x) \subseteq cl_X(V(x)) \subseteq U(x)$ and the set $cl_X(V(x))$ is compact. Proposition VI-1.6(*ii*) of [10] implies that $\uparrow cl_X(V(x))$ is a closed subset of *X*. Hence $V = X \setminus \uparrow cl_X(V(x))$ is an open decreasing subset of *X* such that $V \cap A \neq \emptyset$. This completes the proof of the proposition.

Theorem 2.6 and Proposition 2.7 imply the following:

Corollary 2.8 *Every upper (lower) separated maximal chain of an H-closed locally compact topological pospace contains a minimum (maximum) element.*

Similarly to [13, 15] we shall say that a topological pospace X is a C_i -space (resp. C_d -space) if whenever a subset F of X is closed, the set $\uparrow F$ (resp. $\downarrow F$) is closed in X. A maximal chain L of a topological pospace X is called an MCC_i -chain (resp. an MCC_d -chain) in X if $\uparrow L$ (resp. $\downarrow L$) is a closed subset in X. Obviously, if a topological pospace X is a C_i -space (resp. C_d -space) then any maximal chain in X is an MCC_i -chain (resp. MCC_d -chain) in X. A topological pospace X is said to be upper (resp. lower) regularly ordered if and only if for each closed increasing (resp. decreasing) subset F in X and each element $a \notin F$, there exist disjoint open neighbourhoods U of a and V of F such that U is decreasing (resp. increasing) and V is increasing (resp. decreasing) in X [5, 11]. A topological pospace X is regularly ordered if it is upper and lower regularly ordered.

Theorem 2.6 implies Corollaries 2.9 and 2.10:

Corollary 2.9 Every maximal MCC_i -chain with the US-property of an H-closed upper regularly ordered topological pospace X contains the least element which is a minimal element of X. Consequently, if in an H-closed upper regularly ordered C_i -space X every maximal chain has the US-property, then X contains a collection M of minimal elements such that $\uparrow M = X$.

Corollary 2.10 Every maximal MCC_d -chain with the DS-property of an H-closed lower regularly ordered topological pospace X contains the greatest element which is a maximal element of X. Consequently, if in an H-closed lower regularly ordered C_d -space X every maximal chain has the DS-property, then X contains a collection M of maximal elements such that $\downarrow M = X$.

3 On H-Closed Topological Semilattices

A topological space *S* which is algebraically a semigroup with a continuous semigroup operation is called a *topological semigroup*. A *semilattice* is a semigroup with a commutative idempotent semigroup operation. A *topological semilattice* is a topological semigroup which is algebraically a semilattice. If *E* is a semilattice, then the semilattice operation on *E* determines the partial order \leq on *E*:

 $e \leq f$ if and only if ef = fe = e.

This order is called *natural*. A semilattice *E* is called *linearly ordered* if the semilattice operation admits a linear natural order on *E*. The natural order on a Hausdorff topological semilattice *E* admits the structure of topological pospace on *E* (cf. [10, Proposition VI-1.14]). Obviously, if *S* is a topological semilattice then $\uparrow e$ and $\downarrow e$ are closed subsets in *S* for every $e \in S$.

A topological semilattice S is called *H*-closed if it is a closed subset in any topological semilattice which contains S as a subsemilattice. Properties of *H*-closed topological semilattices were established in [6, 12, 16].

Theorem 3.1 Every upper point separated H-closed topological semilattice contains the smallest idempotent.

Proof Suppose to the contrary, that there exists an upper point separated *H*-closed topological semilattice *E* which does not contain the smallest idempotent. Let $x \notin E$. We put $E^* = E \cup \{x\}$ and extend semilattice operation from *E* onto E^* as follows:

$$xx = xe = ex = x$$
 for all $e \in E$.

Let τ be the topology on E and \mathscr{D} the set of all non-empty decreasing open subsets of E. The Hausdorff topology τ^* on E^* is generated by the base $\tau \cup \{\{x\} \cup U \mid U \in \mathscr{D}\}$. The continuity of the semilattice operation at x follows from the definition of the topology τ^* . Since E is upper point separated we conclude that (E^*, τ^*) is a Hausdorff topological space. Therefore E is a dense subspace of E^* , a contradiction. This implies the assertion of the theorem.

Theorem 3.2 Let *S* be a topological semilattice which is an *H*-closed topological pospace. Then every maximal chain of *S* has a maximum element. Consequently, every topological semilattice *S* which is an *H*-closed topological pospace has a collection *M* of maximal elements such that $\downarrow M = S$.

Proof Let *L* be a maximal chain of *S*. Fix any $x \in L$. If *x* is a maximum element of *L*, the proof is complete. If *x* is not a maximum element of *L*, then there exists $y \in L$ such that x < y. Let U(x) and U(y) be open neighbourhoods of *x* and *y*, respectively, such that $a \notin b$ for all $b \in U(x)$ and $a \in U(y)$. The continuity of the semilattice

operation and Hausdorffness of S imply that there exist open neighbourhoods V(x) and V(y) of x and y, respectively, such that

$$V(x) \cdot V(y) = V(y) \cdot V(x) \subseteq U(x), \quad V(x) \subseteq U(x), \quad V(y) \subseteq U(y) \text{ and}$$

 $V(x) \cap V(y) = \emptyset.$

Therefore $\uparrow V(y) \cap V(x) = \emptyset$. By Proposition VI-1.13 of [10], $\uparrow V(y)$ is an open subset of *S* and hence the chain *L* has the *US*-property. Therefore by Theorem 2.6, the chain *L* contains a maximum element.

We observe that every Hausdorff topological semilattice which is an H-closed topological pospace is obviously an H-closed topological semilattice. However, there exists an H-closed Hausdorff topological semilattice which is not an H-closed topological pospace (cf. Example 3.6). Simple verifications establish the following:

Proposition 3.3 Every linearly ordered topological pospace admits a structure of a topological semilattice.

Since the closure of a chain in a topological pospace is again a chain, Proposition 3.3 implies the following:

Proposition 3.4 A linearly ordered topological semilattice is H-closed if and only if it is H-closed as a topological pospace.

A linearly ordered set E is called *complete* if every non-empty subset of S has an inf and a sup. Propositions 3.3 and 3.4, and Theorem 2 of [12] imply the following:

Corollary 3.5 *A linearly ordered topological pospace X is H-closed if and only if the following conditions hold:*

- (i) *X* is a complete set with respect to the partial order on *X*;
- (ii) $x = \sup A$ for $A = \downarrow A \setminus \{x\}$ implies $x \in cl_X A$, whenever $A \neq \emptyset$; and
- (iii) $x = \inf B$ for $B = \uparrow B \setminus \{x\}$ implies $x \in cl_X B$, whenever $B \neq \emptyset$.

A semilattice *S* is called *algebraically closed* (or *absolutely maximal*) if *S* is a closed subsemilattice in any topological semilattice which contains *S* as a subsemilattice [16]. Stepp [16] proved that a semilattice *S* is algebraically closed if and only if every chain in *S* is finite. Therefore an algebraically closed semilattice *S* is an *H*-closed topological semilattice with any Hausdorff topology τ such that (S, τ) is a topological semilattice.

A partially ordered set A is called a *tree* if $\downarrow a$ is a chain for any $a \in A$. Example 3.6 shows that there exists an algebraically closed (and hence H-closed) topological semilattice X which is a tree but X is not an H-closed topological pospace.

Example 3.6 Let *X* be a discrete infinite space of cardinality τ and let $\mathscr{A}(\tau)$ be the one-point Alexandroff compactification of *X*. We put $\{\alpha\} = \mathscr{A}(\tau) \setminus X$ and fix $\beta \in X$. On $\mathscr{A}(\tau)$ we define a partial order \leq as follows:

 $x \leq x, \quad \beta \leq x \quad \text{and} \quad x \leq \alpha \quad \text{for all} \quad x \in \mathscr{A}(\tau).$

The partial order \leq induces a semilattice operation '*' on $\mathscr{A}(\tau)$:

- (1) $x * x = x, \beta * x = x * \beta = \beta$ and $\alpha * x = x * \alpha = x$ for all $x \in \mathscr{A}(\tau)$; and
- (2) $x * y = y * x = \beta$ for all distinct $x, y \in X$.

Since X is a discrete subspace of $\mathscr{A}(\tau)$, X with the semilattice operation induced from $\mathscr{A}(\tau)$ is a topological semilattice. By [16, Theorem 9], X is an algebraically closed semilattice, and hence it is an *H*-closed topological semilattice. Simple verifications show that for every $a, b \in \mathscr{A}(\tau)$ such that $a \notin b$ there exist an open increasing neighbourhood V(a) of a and an open decreasing neighbourhood V(b)of b such that $V(a) \cap V(b) = \varnothing$. Therefore $\mathscr{A}(\tau)$ is a compact (and hence normally orderable) topological pospace. However, X is a dense subspace of $\mathscr{A}(\tau)$ and hence X is not an H-closed topological pospace.

4 Linearly Ordered H-Closed Topological Pospaces

Let *C* be a maximal chain of a topological pospace *X*. Then $C = \bigcap_{x \in C} (\downarrow x \cup \uparrow x)$, and hence *C* is a closed subspace of *X*. Therefore we get the following:

Lemma 4.1 Let K be a linearly ordered subspace of a topological pospace X. Then $cl_X(K)$ is a linearly ordered subspace of X.

Since the conditions (i)–(iii) of Corollary 3.5 are preserved by continuous monotone maps, we have the following:

Theorem 4.2 Any continuous monotone image of a linearly ordered H-closed topological pospace into a topological pospace is an H-closed topological pospace.

Also, Proposition 4.3 follows from Corollary 3.5.

Proposition 4.3 Let (X, τ_X) be a non-empty H-closed sub-pospace of a linearly ordered topological pospace (T, τ_T) . Then the set $\uparrow x \cap X$ ($\downarrow x \cap X$) contains a minimal (maximal) element for any $x \in T$.

Let *L* be a subset of a linearly ordered set *X*. A subset *A* of *X* is called an *L*-chain in *X* if $A \subseteq L$ and *A* is order convex (i. e., $\uparrow x \cap \downarrow y \subseteq L$ for any $x, y \in A, x \leq y$).

Theorem 4.4 Let X be a linearly ordered topological pospace and L a subspace of X such that L is an H-closed topological pospace and any maximal $X \setminus L$ -chain in X is an H-closed topological pospace. Then X is an H-closed topological pospace.

Proof Suppose to the contrary, that the topological pospace X is not H-closed. Then by Lemma 4.1, there exists a linearly ordered topological pospace Y which contains X as a non-closed subspace. Without loss of generality we may assume that X is a dense subspace of a linearly ordered topological pospace Y.

Let $x \in Y \setminus X$. The assumptions of the theorem imply that the set $X \setminus L$ is a disjoint union of maximal $X \setminus L$ -chains $L_{\alpha}, \alpha \in \mathcal{A}$, which are *H*-closed topological

pospaces. Therefore any open neighbourhood of the point x intersects infinitely many sets L_{α} , $\alpha \in \mathcal{A}$.

Since any maximal $X \setminus L$ -chain in X is an H-closed topological pospace, one of the following conditions holds:

$$\uparrow x \cap L \neq \emptyset$$
 or $\downarrow x \cap L \neq \emptyset$.

We consider the case when the sets $\uparrow x \cap L$ and $\downarrow x \cap L$ are nonempty. The proofs in the other cases are similar.

By Proposition 4.3, the set $\uparrow x \cap L$ contains a minimal element x_m and the set $\downarrow x \cap L$ contains a maximal element x_M . Then the sets $\uparrow x_m$ and $\downarrow x_M$ are closed in Y and, obviously, $L \subset \downarrow x_M \cup \uparrow x_m$. Let U(x) be an open neighbourhood of the point x in Y. We put

$$V(x) = U(x) \setminus (\downarrow x_M \cup \uparrow x_m) \,.$$

Then V(x) is an open neighbourhood of the point x in Y which intersects at most one maximal $S \setminus L$ -chain L_{α} , a contradiction. Therefore X is an H-closed topological pospace.

Corollary 4.5 Let X be a linearly ordered topological pospace and L a subspace of X such that L is a compact topological pospace and any maximal $X \ L$ -chain in X is a compact topological pospace. Then X is an H-closed topological pospace.

Example 4.6 Let \mathbb{N} be the set of all positive integers. Let $\{x_n\}$ be an increasing sequence in \mathbb{N} . Put $\mathbb{N}^* = \{0\} \cup \{\frac{1}{n} \mid n \in \mathbb{N}\}$ and let \leq be the usual order on \mathbb{N}^* . We put $U_n(0) = \{0\} \cup \{\frac{1}{\tau_n} \mid k \ge n\}, n \in \mathbb{N}$. A topology τ on \mathbb{N}^* is defined as follows:

- a) any point $x \in \mathbb{N}^* \setminus \{0\}$ is isolated in \mathbb{N}^* ; and
- b) $\mathscr{B}(0) = \{U_n(0) \mid n \in \mathbb{N}\}\$ is the base of the topology τ at the point $0 \in \mathbb{N}^*$.

It is easy to see that $(\mathbb{N}^*, \leq, \tau)$ is a countable linearly ordered σ -compact locally compact metrizable topological pospace and if $x_{k+1} > x_k + 1$ for every $k \in \mathbb{N}$, then $(\mathbb{N}^*, \leq, \tau)$ is a non-compact topological pospace.

By Corollary 4.5, $(\mathbb{N}^*, \leq, \tau)$ is an *H*-closed topological pospace. Also, $(\mathbb{N}^*, \leq, \tau)$ is a normally ordered (or monotone normal) topological pospace, i.e. for any closed subset $A = \downarrow A$ and $B = \uparrow B$ in X such that $A \cap B = \emptyset$, there exist open subsets $U = \downarrow U$ and $V = \uparrow V$ in X such that $A \subseteq U, B \subseteq V$, and $U \cap V = \emptyset$ [14]. Therefore for any disjoint closed subsets $A = \downarrow A$ and $B = \uparrow B$ in X, there exists a continuous monotone function $f: X \to [0, 1]$ such that f(A) = 0 and f(B) = 1 (cf. [14]).

Example 4.6 implies negative answers to the following questions:

- (i) Is every closed subspace of an *H*-closed topological pospace *H*-closed?
- (ii) Has every locally compact topological pospace a subbasis of open decreasing and open increasing subsets?

Example 4.7 shows that there exists a countably compact topological pospace, whose space is *H*-closed. This example also shows that there exists a countably compact totally disconnected scattered topological pospace which is not embeddable into any locally compact topological pospace.

Example 4.7 Let the set $X = [0, \omega_1)$ be equipped with the order topology (cf. [9, Example 3.10.16]), and let $Y = \{0\} \cup \{\frac{1}{n} \mid n = 1, 2, 3, ...\}$ have the natural topology. We consider $S = X \times Y$ equipped with the product topology τ_p and the partial order \preccurlyeq :

$$(x_1, y_1) \preccurlyeq (x_2, y_2)$$
 if and only if $x_2 \leqslant_X x_1$ and $y_2 \leqslant_Y y_1$,

where \leq_X and \leq_Y are the usual linear orders on *X* and *Y*, respectively. We extend the partial order \preccurlyeq onto $S^* = S \cup \{\alpha\}$, where $\alpha \notin S$, as follows: $\alpha \preccurlyeq \alpha$ and $\alpha \preccurlyeq x$ for all $x \in S$, and define a topology τ on S^* as follows. The bases of topologies τ and τ_p at the point $x \in S$ coincide and the family $\mathscr{B}(\alpha) = \{U_\beta(\alpha) \mid \beta \in \omega_1\}$ is the base of the topology τ at the point $\alpha \in S^*$, where

$$U_{\beta}(\alpha) = \{\alpha\} \cup ([\beta, \omega_1) \times \{1/n \mid n = 1, 2, 3, \ldots\}).$$

Since $cl_{S^*}(U_\beta(\alpha)) \notin U_\gamma(\alpha)$ for any $\beta, \gamma \in \omega_1$, Propositions 1.5.2 and 1.5.5 of [9] imply that $(S^*, \preccurlyeq, \tau)$ is a Hausdorff non-regular topological pospace. Therefore by Theorem 2.1.6 [9], the topological space $(S^*, \preccurlyeq, \tau)$ does not embed into any regular topological space, and hence by Theorem 3.3.1 [9] neither into any locally compact space. Proposition 3.12.5 of [9] implies that (S^*, τ) is an *H*-closed topological space. By Corollary 3.10.14 of [9] and Theorem 3.10.8 of [9], the topological space (S^*, τ) is countably compact. Since every point of (S^*, τ) has a singleton component, the topological space (S^*, τ) is totally disconnected.

Let A be a closed subset of $(S^*, \preccurlyeq, \tau)$ such that $A \neq \{\alpha\}$. Then there exists $x \in [0, \omega_1)$ such that $\tilde{A} = A \cap ([0, x] \times Y) \neq \emptyset$. Since $[0, x] \times Y$ is a compactum, \tilde{A} is a compact topological pospace and hence \tilde{A} contains a maximal element of \tilde{A} . Let x_m be a maximal element of \tilde{A} . The definition of the topology τ on S^* implies that $\uparrow x_m$ is an open subset in (S^*, τ) . Then $\uparrow x_m \cap \tilde{A} = x_m$ and hence x_m is an isolated point of the space \tilde{A} with the induced topology from (S^*, τ) . Therefore every closed subset of (S^*, τ) contains an isolated point and hence (S^*, τ) is a scattered topological space.

Remark 4.8 The topological pospace (\mathbb{N}^* , \leq , τ) from Example 4.6 admits the structure of a topological semilattice:

$$ab = \min\{a, b\}, \text{ for } a, b \in \mathbb{N}^*.$$

Also, the topological pospace $(S^*, \preccurlyeq, \tau)$ from Example 4.7 admits the continuous semilattice operation

$$(x_1, y_1) \cdot (x_2, y_2) = (\max\{x_1, x_2\}, \max\{y_1, y_2\})$$
 and $(x_1, y_1) \cdot \alpha = \alpha \cdot (x_1, y_1) = \alpha$,

for $x_1, x_2 \in X$ and $y_1, y_2 \in Y$.

The following example shows that there exists a countable *H*-closed scattered totally disconnected topological pospace which has a non-*H*-closed maximal chain.

Example 4.9 Let \mathbb{N} be the set of all positive integers with the discrete topology, and consider $Y = \{0\} \cup \{\frac{1}{n} \mid n = 1, 2, 3, ...\}$ equipped with the natural topology. We define $T = \mathbb{N} \times Y$ with the product topology τ_T and the partial order \preccurlyeq :

$$(x_1, y_1) \preccurlyeq (x_2, y_2)$$
 if and only if $x_2 \leqslant x_1$ and $y_2 \leqslant y_1$,

where \leq is the usual linear order induced from \mathbb{R} on \mathbb{N} and Y, respectively. We extend the partial order \leq to $T^* = T \cup \{\alpha\}$, where $\alpha \notin T$, as follows: $\alpha \leq \alpha$ and $\alpha \leq x$ for all $x \in T$. We define a topology τ^* on T^* as follows: the bases of topologies τ^* and τ_T at the point $x \in T$ coincide and the family $\mathscr{B}(\alpha) = \{U_k(\alpha) \mid k \in \{1, 2, 3, \ldots\}\}$ is the base of the topology τ^* at the point $\alpha \in T^*$, where

$$U_k(\alpha) = \{\alpha\} \cup \left(\{k, k+1, k+2, \dots\} \times \left\{\frac{1}{n} \mid n = 1, 2, 3, \dots\right\}\right).$$

It is obvious that $(T^*, \preccurlyeq, \tau^*)$ is a Hausdorff non-regular topological pospace. Proposition 3.12.5 of [9] implies that (T^*, τ^*) is an *H*-closed topological space. Since every point of (T^*, τ^*) has a singleton component, the topological space (T^*, τ^*) is totally disconnected. The proof that (T^*, τ^*) is a scattered topological pospace is similar to the proof of the scatteredness of the topological pospace $(S^*, \preccurlyeq, \tau)$ in Example 4.7.

We observe that the set $L = (\mathbb{N} \times \{0\}) \cup \{\alpha\}$ with the induced partial order from the topological pospace $(T^*, \preccurlyeq, \tau^*)$ is a maximal chain in T^* . The topology τ^* induces the discrete topology on *L*. Corollary 3.5 implies that *L* is not an *H*-closed topological pospace.

Theorem 4.10 gives sufficient conditions for a maximal chain of an *H*-closed topological pospace to be *H*-closed. We shall say that a chain *L* of a partially ordered set *P* has the $\downarrow \cdot$ max-*property* (resp. $\uparrow \cdot$ min-*property*) in *P* if for every $a \in P$ such that $\downarrow a \cap L \neq \emptyset$ (resp. $\uparrow a \cap L \neq \emptyset$) the chain $\downarrow a \cap L$ ($\uparrow a \cap L$) has a maximal (resp. minimal) element. If the chain of a partially ordered set *P* has the $\downarrow \cdot$ max- and the $\uparrow \cdot$ min-properties, then we shall say that *L* has the $\updownarrow \cdot$ m-*property*.

Similarly to [13, 15] we shall say that a topological pospace X is a CC_i -space (resp. CC_d -space) if whenever a chain F of X is closed, $\uparrow F$ (resp. $\downarrow F$) is a closed subset in X.

Theorem 4.10 Let X be an H-closed topological pospace. If X satisfies the following properties:

- (i) *X* is regularly ordered;
- (ii) X is a CC_i -space; and
- (iii) X is a CC_d -space,

then every maximal chain in X with the rmproperty is an H-closed topological pospace.

Proof Suppose to the contrary, that there is a non-*H*-closed maximal chain *L* with the \diamondsuit ·m-property in *X*. Then by Corollary 3.5, at least one of the following conditions holds:

- (I) the set L is not a complete semilattice with the induced partial order from X;
- (II) there exists a non-empty subset A in L with $x = \inf A$ such that $A = \uparrow A \setminus \{x\}$ and $x \notin cl_L(A)$;
- (III) there exists a non-empty subset B in L with $y = \sup B$ such that $B = \downarrow B \setminus \{y\}$ and $y \notin cl_L(B)$.

Suppose that condition (I) holds. Since a topological space X with the order dual to \leq is a topological pospace, we can assume without loss generality that there exists

a subset *S* of *L* which does not have a sup in *L*. Then the set $\downarrow S \cap L$ does not have a sup in *L* either. Hence the set $I = L \setminus \downarrow S$ does not have an inf in *L*. We observe that the maximality of *L* implies that there exist no lower bound *b* of *I* and no upper bound *a* of *S* such that $a \leq b$. Also, we observe that properties (ii)–(iii) of *X* and Corollaries 2.9 and 2.10 imply that $I \neq \emptyset$. Otherwise, if $I = \emptyset$ then by Corollary 2.10 the chain *S* has a sup in *X*, which contradicts the maximality of the chain *L*. We observe that the dual argument shows that $S \neq \emptyset$, when there exists a subset *I* in *L* which does not have an inf in *L*. Therefore we can assume without loss of generality that $S = \downarrow S \cap L$, $I = \uparrow I \cap L$ and *L* is the disjoint union of *S* and *I*.

Since the set *S* does not have a sup in *L* we conclude that $\bigcap_{x \in S} \uparrow x$ is a closed subset of *X* and $\bigcap_{x \in S} \uparrow x \cap S = \emptyset$. Hence *S* is an open subset in *L*. A dual argument shows that *I* is an open subset in *L*. Therefore *S* and *I* are clopen subsets of *L*.

Let $x \notin X$. We extend the partial order \leq from X onto $X^* = X \cup \{x\}$ by setting $a \leq b$ in X^* if and only if one of the following conditions holds:

- 1) $a, b \in X$ and $a \leq b$ in X;
- 2) a = x and $b \in \uparrow_X I$;
- 3) $a \in \bigcup_X S$ and b = x.

Let \mathscr{U}_S be the set of all increasing open subsets of X which intersect S and let \mathscr{D}_I be the set of all decreasing open subsets of X which intersect I. Let τ be the topology of X and let τ^* be the topology generated by the pseudobase

$$\tau \cup \{\{x\} \cup U \mid U \in \mathscr{U}_S\} \cup \{\{x\} \cup U \mid U \in \mathscr{D}_I\}.$$

Since the chain L has the \Rightarrow m-property and conditions (i)–(iii) hold we conclude that X^* is a topological pospace which contains X as a dense subspace, a contradiction.

Suppose that the statement (II) holds, i. e. that there exists an open neighbourhood O(x) of $x = \inf A$ such that $O(x) \cap A = \emptyset$. We can assume without loss of generality that $\uparrow A = L \cap A$. By Corollary 2.9, the chain L has a minimum element and hence $B = L \setminus A \neq \emptyset$ and $x \in B$. Since $\bigcap_{y \in B} \downarrow y$ is a closed subset in X we conclude that A is an open subset of L. Since for any $y \in B \setminus \{x\}$ we have that $X \setminus \uparrow x$ is an open neighbourhood of y and there exists an open neighbourhood O(x) of x such that $O(x) \cap A = \emptyset$, we obtain that A is a closed subset of L. The maximality of L implies that A is a closed subset of X.

Let $p \notin X$. We extend the partial order \leq from X onto $X^{\dagger} = X \cup \{p\}$ by setting $a \leq b$ in X^{\dagger} if and only if one of the following conditions holds:

- 1) $a, b \in X$ and $a \leq b$ in X;
- 2) a = p and $b \in \uparrow_X A$;
- 3) $a \in \downarrow_X B$ and b = p.

Let \mathscr{U}_A be the set of all increasing open subsets of X which contain A and let \mathscr{D}_A be the set of all decreasing open subsets of X which intersect A. Let τ be the topology of X and let τ^{\dagger} be the topology generated by the pseudobase

$$\tau \cup \{\{p\} \cup U \mid U \in \mathscr{U}_A\} \cup \{\{p\} \cup U \mid U \in \mathscr{D}_A\}.$$

Since the chain L has the $\uparrow \cdot$ m-property and conditions (i)–(iii) hold we conclude that X^{\dagger} is a topological pospace. Therefore we get that $(X^{\dagger}, \tau^{\dagger}, \leq)$ is a topological pospace and X is a dense subspace of $(X^{\dagger}, \tau^{\dagger}, \leq)$. This contradicts the assumption that X is an H-closed pospace. In case (III) we get a similar contradiction as in (II). These contradictions imply the assertion of the theorem. $\hfill \Box$

Remark 4.11 We observe that the topological pospace $(T^*, \preccurlyeq, \tau^*)$ from Example 4.9 is not regularly ordered and is not a CC_i -space. Also, the topological pospace $(T^*, \preccurlyeq, \tau^*)$ admits the continuous semilattice operation

 $(x_1, y_1) \cdot (x_2, y_2) = (\max\{x_1, x_2\}, \max\{y_1, y_2\})$ and $(x_1, y_1) \cdot \alpha = \alpha \cdot (x_1, y_1) = \alpha$,

for $x_1, x_2 \in X$ and $y_1, y_2 \in Y$. Therefore a maximal chain of an *H*-closed topological semilattice is not necessarily an *H*-closed topological semilattice.

Acknowledgements This research was supported by the Slovenian Research Agency grants P1-0292-0101-04, J1-9643-0101 and BI-UA/07-08/001. We thank the referees for several comments and suggestions.

References

- Alexandroff, P., Urysohn, P.: Sur les espaces topologiques compacts. Bull. Intern. Acad. Pol. Sci. Sér. A, 5–8 (1923)
- Alexandroff, P., Urysohn, P.: Mémoire sur les espaces topologiques compacts. Vehr. Akad. Wetensch. Amsterdam 14, 1–96 (1929)
- Carruth, J.H., Hildebrant, J.A., Koch, R.J.: The Theory of Topological Semigroups, vol. I. Marcel Dekker, New York (1983)
- Carruth, J.H., Hildebrant, J.A., Koch, R.J.: The Theory of Topological Semigroups, vol. II. Marcel Dekker, New York (1986)
- Choe, T.H., Park, Y.S.: Embedding ordered topological spaces into topological semilattices. Semigroup Forum 17, 189–199 (1979)
- Chuchman, I., Gutik, O.: On *H*-closed topological semigroups and semilattices. Algebra Discrete Math. 1, 13–23 (2007)
- Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. I. Amer. Math. Soc. Surveys 7. American Mathematical Society, Providence (1961)
- Clifford, A.H., Preston, G.B.: The Algebraic Theory of Semigroups, vol. II. Amer. Math. Soc., Surveys 7. American Mathematical Society, Providence (1967)
- 9. Engelking, R.: General Topology, 2nd edn. Heldermann, Berlin (1989)
- Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M.W., Scott, D.S.: Continuous Lattices and Domains. Cambridge Univ. Press, Cambridge (2003)
- Green, M.D.: A locally convex topology on a preordered space. Pac. J. Math. 26(3), 487–491 (1968)
- Gutik, O., Repovš, D.: On linearly ordered *H*-closed topological semilattices. Semigroup Forum 77(3), 474–481 (2008)
- 13. McCartan, S.D.: Bicontinuous preordered topological spaces. Pac. J. Math. 38(2), 523-529 (1971)
- 14. Nachbin, L.: Topology and Order. van Nostrand Company, Princeton (1965)
- Priestley, H.A.: Ordered topological spaces and the representation of distributive lattices. Proc. Lond. Math. Soc. 24(3), 507–520 (1972)
- 16. Stepp, J.W.: Algebraic maximal semilattices. Pac. J. Math. 58(1), 243-248 (1975)
- 17. Ward, L.E. Jr.: Partially ordered topological spaces. Proc. Am. Math. Soc. 5(1), 144–161 (1954)