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GEOMETRIC TOPOLOGY OF GENERALIZED 3-MANIFOLDS

A. Cavicchioli, D. Repovš, and T. L. Thickstun UDC 515.162.3+515.163

Abstract. In this paper, we describe the history and the present status of one of the main classical
problems in low-dimensional geometric topology—the recognition of topological 3-manifolds in the class
of all generalized 3-manifolds (i.e., ANR homology 3-manifolds). This problem naturally splits into the
cell-like resolution problem for 3-manifolds by means of homology 3-manifolds and the general-position
problem for topological 3-manifolds. We have also included some open problems.

1. Introduction

We shall study the problem of finding geometric properties that are relatively easy to verify and
that distinguish topological 3-manifolds in the class of topological spaces. More generally, Cannon [9]
conjectured that manifolds can be characterized as generalized manifolds satisfying a minimal amount of
general position. The need for such geometric criteria arises, e.g., in decomposition theory when one must
decide whether a cell-like decomposition of a given topological manifold is again a manifold (necessarily
of the same dimension). Several results are already known (see, e.g., [14,15,24]). Although the focus will
rest on dimension 3, comparison with results obtained for dimensions ≥ 5 provide useful insight as well as
motivation. It is convenient to explain this now in terms of generalized n-manifolds Xn, namely, locally
compact, locally contractible, finite-dimensional metric spaces with the local relative homology of R

n, i.e.,
the group H∗(Xn, Xn \ {x}; Z) is isomorphic to H∗(Rn,Rn \ {0}; Z) for all x ∈ Xn.

In this paper, manifolds and generalized manifolds are assumed to have no boundary, unless otherwise
specified. For n ≤ 2, the n-manifolds coincide with the generalized n-manifolds, but for n > 2, the
situation is much more complex. Upon making the obvious observations that n-manifolds are generalized
n-manifolds and that the latter are defined in terms of elementary properties, one sees why the goal in
Cannon’s conjecture is to recognize genuine manifolds among generalized manifolds.

If f : M → X is a proper, cell-like, surjective map defined on an n-manifold and dimX < ∞, then
X is a generalized n-manifold, but examples like Bing’s famous dogbone space [1] reveal that X need
not be a topological manifold. Cell-like maps form the primary source for nonmanifold examples (for
the topology of cell-like maps and homology manifolds, we refer the reader, for example, to [12]). Thus,
a generalized n-manifold X is resolvable if there exists a proper, cell-like, surjective map f : M → X
defined on some n-manifold M , in which case the map f is called a (cell-like) resolution of X.

Except for certain 3-dimensional examples whose existence depends on the hypothetical failure of the
3-dimensional Poincaré conjecture, the generalized manifolds explicitly described in the literature are all
known to be resolvable. According to Quinn [22], the existence of a resolution for a given generalized
n-manifold X (n ≥ 5) reduces to an integer-valued, algebraic obstruction i(X) to a local surgery problem.
This obstruction has the intriguing feature of being locally defined and locally constant. Consequently, if
X is connected and the obstruction vanishes on some open subset of X (for instance, if some open subset
is a manifold), then X is resolvable.

Examples of generalized n-manifolds X (n ≥ 6) with nonvanishing Quinn’s obstruction i(X) �= 1 are
known to exist: they were constructed by Bryant, Ferry, Mio, and Weinberger [7]. Note that no such con-
nected example can have a manifold neighborhood at any point. Further constructions of 4k-dimensional
generalized manifolds (k > 1), which have no resolution, can be found in [11]. However, if the 3-dimen-
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sional Poincaré conjecture is false, then there is a nonresolvable generalized 3-manifold X3; moreover,
X3 contains a point x0 such that X3 \ {x0} is a 3-manifold (cf. [23]).

The central 3-dimensional resolution problem is as follows: Under the assumption that the Poincaŕe
conjecture is true, do all generalized 3-manifolds have resolutions? Thickstun has supplied an affirmative
answer for generalized 3-manifolds whose singular set has “general-position dimension one” (earlier, he
settled the 0-dimensional singular-set case in [26]).

2. General-Position Properties

In dimensions greater than four, the work of Edwards [18] provides means for detecting genuine mani-
folds among resolvable generalized manifolds in terms of the following simple general-position property.
A metric space X is said to have the disjoint disks property (briefly DDP) if any pair of maps from the
standard 2-disk I2 (I = [0, 1]) to X can be approximated, arbitrarily closely, by a pair of maps with
disjoint images. Recall that a near-homeomorphism is a map X → Y onto a metric space, which is the
uniform limit of surjective homeomorphisms.

Theorem 2.1 ([18]). Let p : M → X be a cell-like resolution of a generalized n-manifold X (n ≥ 5).
Then the map p is a near-homeomorphism if and only if X has the disjoint disks property.

The first recognition theorem is due to Bing—he considered a special, cellular, upper semicontinuous
decomposition X of R

3 called the dogbone space. In order to show that X is not a 3-manifold, he
demonstrated that X fails to possess a certain disjoint disks property which is true in R

3. His example is
very intriguing since it turns out to be a factor of a 4-manifold.

Theorem 2.2 ([1]).
(1) X is not a topological 3-manifold ;
(2) the product X × R is homeomorphic to R

4.

The first partially similar results of Edwards’ kind in dimension 3 are due to Lambert and Sher [20]
and, more than a decade later to Repovš and Lacher [24]. Finally, Daverman and Repovš proved in [14,15]
3-dimensional versions of Edwards’ theorem. Part of the difficulty has been to produce appropriate
general-position properties. The DDP is clearly inappropriate, being possessed by neither 3-manifolds
nor 4-manifolds, and so some alternative property must be set forth. They investigated several concepts,
chiefly described in terms of what we call simplicial approximation properties.

Definition 2.3. A space X is said to have the weak simplicial approximation property (WSAP) if for
each map μ : I2 → X and each ε > 0, there exists a map ψ : I2 → X such that distX(μ, ψ) < ε and ψ(I2)
is contained in a finite union of 2-cells Bi ⊂ X, each 1-LCC embedded in X.

Moreover, X is said to have the simplicial approximation property (SAP) if for each μ : I2 → X and
each ε > 0, there exist a map ψ : I2 → X and a finite topological 2-complex Kψ ⊂ X such that:

(1) distX(ψ, μ) < ε;
(2) ψ(I2) ⊂ Kψ;
(3) X \Kψ is 1-FLG in X.
Finally, X is said to have the spherical simplicial approximation property (SSAP) if the same holds

when I2 is replaced by S2 throughout.

The 1-FLG condition is known to characterize tamely embedded 2-complexes Kψ in 3-manifolds M3

(for many concepts of peripheral acyclicity and local homotopical properties, we refer the reader to [10,13]).
There are three elementary but significant observations to make. First, for a 2-complex Kψ ⊂ X

having no local cut points, X \Kψ is 1-FLG in X if and only if each 2-simplex in Kψ is 1-LCC embedded
in X. Second, SSAP implies SAP and, in turn, SAP implies WSAP. Third, manifolds of dimension n ≥ 3
have all of these approximation properties.
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Definition 2.4. A metric space (X, ρ) is said to have the light map separation property (LMSP) if for

every ε > 0, every k ∈ N, and every map f : B → X of a collection of k standard 2-cells B =
k∐

i=1
B2
i

into X such that
(1) Nf ⊂ IntB, where Nf = {y ∈ B | f−1(f(y)) �= y};
(2) dimNf ≤ 0;
(3) dimZf ≤ 0, where Zf = {x ∈ X | x ∈ f(B2

i ) ∩ f(B2
j ), for some i �= j},

there exists a map F : B → X such that
(1) ρ(F, f) < ε;
(2) F |∂B = f |∂B;
(3) for every i �= j, F (B2

i ) ∩ F (B2
j ) = ∅.

For a strengthening of the LMSP, see [2].
The main results proved in [14,15], were two recognition theorems for 3-manifolds, which depend on

these terms. The first of them is the following assertion.

Theorem 2.5 ([14]). A resolvable, generalized 3-manifold X is a topological 3-manifold if and only if X
possesses both the WSAP and LMSP.

The second result is as follows.

Theorem 2.6 ([15]). A resolvable, generalized 3-manifold is a topological 3-manifold if and only if it
possesses the SSAP.

As a corollary, a resolvable, generalized 3-manifold with nowhere dense nonmanifold set is a 3-manifold
if and only if it has the SAP.

Problem 2.7. Is every resolvable, generalized 3-manifold with the WSAP (SAP, LMSP) a 3-manifold?

Here are two natural properties for singular disks in resolvable, generalized 3-manifolds X that depend
on an explicit resolution f : M → X of X.

Definition 2.8. A space X is said to have the resolution disjoint disks property (RDDP) if for every
ε > 0, every k ∈ N, and every collection of k pairwise disjoint, tame embeddings fi : B2 →M , there exist
maps gi : B2 → X satisfying the following conditions:

(1) ρ(gi, πfi) < ε;
(2) for every i �= j, we have gi(B2) ∩ gj(B2) = ∅.
Next, X is said to have the resolution embedding disk property (REDP) if for every ε > 0 and every

tame embedding f : B2 →M , there exists an embedding g : B2 → X such that ρ(g, πf) < ε.

It is somewhat surprising that the following is still unsettled.

Problem 2.9. Is every cellular resolution of a generalized 3-manifold with RDDP (REDP) a near-homeo-
morphism?

Problem 2.10. Is every generalized 3-manifold with SSAP resolvable (hence a 3-manifold)?

3. Cell-Like Resolutions

The resolution conjecture in dimension three implies the Poincaré conjecture. The demonstration
(only sketched here) relies on the following construction: “replace” each of a null sequence of pairwise-dis-
joint polyhedral 3-balls in an arbitrary closed 3-manifold M by a compact, contractible 3-manifold. (We
call a space obtained in this way a 3-near manifold.) Of course, if the classical Poincaré conjecture is
valid, then every compact contractible 3-manifold is homeomorphic to the standard 3-ball and hence
the construction yields only M . However, if the Poincaré conjecture fails (and infinitely many of the
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replacements are made with fake 3-balls), then the resulting space is a nonresolvable, generalized 3-mani-
fold. More subtle examples of nonresolvable, generalized 3-manifolds (assuming failure of the Poincaré
conjecture) were constructed in [4,5]. These examples contain no fake 3-balls but admit so-called “near”
resolutions (defined below). In light of the above examples, the following conjecture is a more reasonable
reformulation of the resolution conjecture (in the sense that, given the Poincaré conjecture, it is equivalent
to the resolution conjecture but does not imply the Poincaré conjecture).

Near-Resolution Conjecture 3.1. Any generalized 3-manifold is the cell-like image of a 3-near mani-
fold.

Definition 3.2. We will call such a map a near resolution of the generalized 3-manifold. Furthermore, if
X is a generalized 3-manifold, then the singular set of X is defined as

S(X) = {p ∈ X | p has no Euclidean neighborhoods}.
The manifold set of X is defined as M(X) = X \ S(X).

Remarks. The construction of 3-near manifolds was generalized by Jakobsche to produce, given a coun-
terexample to the Poincarè conjecture, a counterexample to the Bing–Borsuk conjecture (which states
that any 3-dimensional, homogeneous ANR is a 3-manifold). An example is the (carefully controlled)
inverse limit of 3-manifolds containing progressively more fake 3-balls. These spaces are completely sin-
gular, generalized 3-manifolds but are cell-like images of 3-near manifolds [Thickstun, unpublished] and
hence compatible with the near-resolution conjecture.

The principal thrust of work on the resolution conjecture (and near-resolution conjecture) has pro-
duced a sequence of resolution theorems, each of which takes as an additional hypothesis (beyond those
of the resolution conjecture itself), some restriction on the “size” (and in some cases “complexity”) of
the singular set of the generalized 3-manifold considered. We state these theorems in their chronological
order (which is also roughly in the order of increasing generality; see the remarks below). In each of these
statements, X is a closed, generalized 3-manifold and any needed definitions are appended.

Theorem 3.3 ([8]). If S(X) is 0-dimensional and 1-LCC, then X is a closed 3-near manifold (and hence
the identity map is a near resolution).

Remark. The statement in [8] assumes that M(X) contains at most finitely many fake 3-balls and
concludes that X is a 3-manifold. The above statement is an easy generalization.

Theorem 3.4 ([4]). If S(X) is 0-dimensional and toral, then, modulo the Poincaré conjecture, X has
a resolution.

Definition 3.5. The singular set S(X) is toral if for any neighborhood U of S(X) in X, there exists
a compact neighborhood V of S(X) with V ⊂ U such that the frontier of V is the disjoint union of
finitely many tori.

Theorem 3.6 ([5]). If S(X) is 0-dimensional and has arbitrarily tight neighborhoods with torsion-free
fundamental groups, then, modulo the Poincaŕe conjecture, X has a resolution.

Definition 3.7. The singular set S(X) has arbitrarily tight neighborhoods with torsion-free fundamental
group if for any neighborhood U of S(X), there exists a neighborhood V of S(X) with V ⊂ U such that
each component of V has torsion-free fundamental group.

Theorem 3.8 ([25]). If S(X) is 0-dimensional, then X has a near resolution.

Theorem 3.9 ([27]). If S(X) has general-position dimension one in X, then X has a near resolution.

Definition 3.10. If X is a generalized 3-manifold and A is a compact subspace of X, we say that A
has general-position dimension one in X if any map f : B2 → X can be approximated (to within any
preassigned ε > 0) by a map g : B2 → X such that g(B2) ∩ A is 0-dimensional. (Caution: In the first
version of [27], this property was called “embedding dimension one.”)
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Remarks. Obviously, Theorem 3.9 implies Theorem 3.8 and Theorem 3.8 is stronger than each of The-
orems 3.3, 3.4, and 3.6. The relationships among Theorems 3.3, 3.4, and 3.6 is less clear-cut. Of course,
it follows from the conclusion of Theorem 3.3 that any generalized 3-manifold (as in the hypothesis) has
“spherical” singular set and, therefore, Theorem 3.4 can be applied, a posteriori, to a larger class of gen-
eralized 3-manifolds. It is unclear (and unknown to these authors) whether the hypothesis of Theorem 3.4
guarantees torsion-free neighborhoods of S(X) and hence whether or not Theorem 3.6 is stronger than
Theorem 3.4. On the other hand, there seems to exist no example X of a generalized 3-manifold such
that dimS(X) = 0 and X fails to satisfy the torsion-free hypothesis of Theorem 3.6.

Generalized 3-manifolds satisfying the hypothesis of Theorem 3.9 but not Theorem 3.8 are easily
constructed. To construct one especially transparent class of such examples proceed as follows. Let K
be a tame 1-polyhedron in a closed 3-manifold M and let {Ci}i∈N be a null sequence of pairwise-disjoint,

cell-like, noncellular compacta in M such that, for each i, Ci ∩K is a singleton and
∞⋃

i=1
(Ci ∩K) is dense

in K. The decomposition space arising from the decomposition of M consisting of {Ci}i∈N and singletons
is the desired example X.

4. The Virtual Loop Theorem

The principal tool in the proof of each of these theorems is either the loop theorem [19] of classical
3-manifold topology or some extension or version thereof (although the proof of Theorem 3.4 as found
in [4] must be considerably recast to conform to this mold). The significance of extensions of the loop
theorem and their role in proving the resolution conjecture (or at least special cases of it) was hinted at
by Brin in his doctoral thesis [3]. Subsequently, Brin proved a loop theorem (not stated here), taking for
its hypothesis a certain compact singular surface (rather than a disk). That loop theorem led directly to
Theorem 3.6 and the torsion-free hypothesis of Theorem 3.6 is inherited from Brin’s loop theorem. The
following loop theorem (the virtual loop theorem or VLT) is the main tool in the proof of Theorem 3.9.
First, we introduce one term and some notation. Given α : S1 → Y (where Y is connected), we denote
by [α] the union of the two conjugacy classes in π1(Y ) represented by α. A map g : B2 → X, where X
is a generalized 3-manifold, is called a pseudo-embedding if dim[g(B2) ∩ S(X)] ≤ 0 and the set {x ∈ X |
x ∈ g(B2) and g−1(x) is not a singleton} is contained in S(X) (so, roughly speaking, g is an embedding
“away from” S(X)).

Theorem 4.1 (virtual loop theorem). Assume that X is a generalized 3-manifold with boundary, R is
a connected surface in ∂X, G is a normal subgroup of π1(R), and f : (B2, ∂B2)→ (X,R) is a map such
that [f |∂B2] �⊂ G. If S(X) has general-position dimension one in X; then there exists a pseudo-embedding
g : (B2, ∂B2)→ (X,R) such that [g|∂B2] �⊂ G.

Remarks. For simplicity, we have stated this theorem in less than the full generality found in [27]. The
virtual loop theorem found in [25], similarly scaled down, would have the same statement but for the
single additional hypothesis that dimS(X) ≤ 0.

A very brief and oversimplified sketch of the proof of Theorem 3.9 (from the VLT), intended to
communicate the spirit of the proof, follows. Assume that f : B2 → X is a “generic,” “nontrivial” singular
disk in X (i.e., dim[f(B2) ∩ S(X)] = 0 and f cannot be ε-homotoped off of S(X)). By persistent use
of the VLT, one obtains a family {gi : B2 → X}ni=1 of pseudo-embeddings with pairwise-disjoint images
such that [f |∂B2] belongs to the normal closure of the union of the conjugacy classes in π1(U) determined
by {gi|∂B2}ni=1, where U is some “small” neighborhood of f(B2) minus S(X). Now, for each i, let Ni

be a regular neighborhood of gi(B2) \ S(X) in M(X). Note that, for each i, N̊i is homeomorphic to the
product of the open unit interval (0, 1) with B̊2 \ Zi, where Zi is some compact, 0-dimensional subspace
of B̊2. Attach B2 × (0, 1) to X \ [gi(B2) ∩ S(X)] by using this homeomorphism. Repeat this procedure
for each i to obtain a noncompact space, such that f |∂B2 is null-homotopic in M(V ) = V \ S(V ).
The end point compactification of V (denoted X2) is again a generalized 3-manifold whose singular
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set has general-position dimension one. Furthermore, if we denote X = X1, there is an easily defined
“projection” map p1 : X2 → X1, which is cell-like. Iterating this construction (using appropriately chosen
generic, nontrivial singular disks), we obtain the following inverse sequence of cell-like maps on generalized
3-manifolds:

X1
p1←− X2

p2←− X3
p3←− . . . .

The projection from X∞ = limXi to X1 is a cell-like map defined on a generalized 3-manifold and,
furthermore, any singular disk in X∞ can be approximated by one with image in M(X∞) (hence S(X∞)
is 1-LCC). By Theorem 3.3, X∞ is a 3-near manifold, and the proof is completed.

The long (close to 50 pages) proof of the VLT is impossible to even outline adequately in this survey,
but we briefly indicate some of the principal ideas (however, note that the distinction between the proofs
of the VLT stated above and the less general version found in [25] is too technical to touch upon here).
First, recall the proof of the classical loop theorem [19] (whose hypotheses are the same as the VLT stated
above except for the fact that the ambient space X is a 3-manifold and whose conclusion is the same
except for the fact that g is an embedding). The following commutative diagram (called a “tower”) is
constructed:

X ⊃ N1 ←−−−− Ñ1 ⊃ N2 ←−−−− Ñ2 ⊃ N3 ←−−−− · · · ←−−−− Ñn−1 ⊃ Nn

f1

�
⏐
⏐ f2

�
⏐
⏐ f3

�
⏐
⏐ fn

�
⏐
⏐

B2 B2 B2 . . . B2

.

Here f1 = f and N1 is a regular neighborhood of f(B2). For all i, Ni is a regular neighborhood
of fi(B2) in Ñi−1, where Ñi is a connected double covering of Ni−1 and fi is a lift of fi−1 to Ñi−1. It
can be shown that the tower must “terminate” (i.e., Nn has no connected double covering) from which
one concludes (using duality) that the genus of ∂Nn is zero. Then one easily extracts from fn(∂B2) an
embedded “subloop” which (when projected down to X) “avoids” the normal subgroup G. Of course,
this subloop bounds a disk in ∂Nn. This disk is “projected” step by step down the tower (“down” is to
the left in our diagram). However, if self-intersections have been introduced at a given level, Dehn cuts
are immediately performed to restore injectivity (since the projection maps are two to one such Dehn cuts
are easily effected). Finally, at the bottom of the tower (in X), one has the desired embedding.

In a more general setting of the VLT, Dehn cuts become problematic (even for maps whose self-inter-
sections in M(X) are simple double lines) and an alternate approach was devised. First, we illustrate the
use of it in the context of the classical loop theorem but only to conclude the existence of a map g such
that g|∂B2 is injective. As above, construct a tower but with these changes: the domain of the maps fi is,
instead of B2, the space Z obtained by identifying two points x and y in ∂B2 such that f(x) = f(y) (and
f restricted to one of the arcs ∂B2 \{x, y} is injective). The map f1 is chosen to be the obvious factor of f
having domain Z. Each covering Ñi is the “largest” covering to which f1 lifts (i.e., π1(Ñi) = (fi)�(π1(Z))).
Again, the tower terminates but one now concludes, since (fn)� is surjective (and using duality), that the
genus of ∂Nn is no greater than one. Denoting by e : ∂B2 → Z the identification map restricted to ∂B2

and taking into account the “homological” conditions on fn ◦ e : ∂B2 → ∂Nn (where we assume that ∂Nn

is a torus), one can conclude the existence of a disk in ∂Nn. This newly discovered disk is projected down
to X (with no Dehn cuts made). This map either satisfies the hypothesis of the loop theorem and has
fewer boundary self-intersections or can be used together with the original map to establish such (via “cut
and paste”). Repetition completes the proof.

The same approach is used to “eliminate” the singularities of f |∂B2 in the proof of the VLT. Instead
of regular neighborhoods (which, of course, will not exist in general), we use neighborhoods which are
regular with respect to some “large” compact polyhedral part of f(B2) \ S(X). In this way, one ob-
tains a map of a compact planar surface into M(X) extending arbitrarily far out toward f(B2) ∩ S(X).
One pieces these maps together (via a combinatorial argument originally used in [6], which is by now
a fundamental device in the study of noncompact 3-manifolds) to obtain the desired map (i.e., one with
fewer boundary self-intersections). It remains to “convert” the so-obtained “Dehn” singular disk (i.e., one
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with no boundary self-intersections) to a pseudo-embedding. This “desingularization” is carried out by
a transfinite induction which makes use of the above ideas to produce an exotic variant of the standard
compression procedure used in the study of noncompact 3-manifolds (and typically applied to exhaustions
of such 3-manifolds). Here this “virtual compression procedure” is applied to an exhaustion of a regular
neighborhood N of f(B2)∩M(X) in M(X) to obtain, ultimately, a new ambient 3-manifold N ′, in which
the boundary of the Dehn map (a simple loop) is null-homotopic and hence, by the classical Dehn’s lemma,
bounds an embedded disk. Restricting this embedded disk to N ∩ N ′, one obtains in N an embedded
compact planar surface reaching “arbitrarily far toward infinity” in N (where how “far” is determined by
the neighborhood of infinity in N to which the virtual compression procedure was confined). The same
combinatorial argument used before is now used to piece together such “planar embeddings” to obtain
the desired pseudo-embeddings.

Even the most general of the above resolution theorems requires that the singular set of the general-
ized 3-manifold be very “small,” and its proof relies on techniques coming from the study of noncompact
3-manifolds. This approach may have now run its course; further progress might require some fundamen-
tally new ideas.

However, further refinement of the techniques used in the proof of Theorem 3.9 might result in
a stronger resolution theorem taking as its hypothesis (instead of “S(X) has general-position dimension
one in X”) the following property (subsequently referred to as P ): any map of a 2-disk into X can be
approximated by a map such that the preimage of S(X) under the approximating map is 0-dimensional.
We leave it to the reader to verify that P is no more restrictive than the hypothesis of Theorem 3.9.

We are indebted to R. J. Daverman for the following example, which then demonstrates that P is,
in fact, less restrictive (so the example is a generalized 3-manifold X with P such that S(X) fails to
have general-position dimension less than or equal to one in X). The space X is the decomposition space
of a cell-like decomposition of S3. The nondegenerate elements of the decomposition are all subsets of
the subspace Z of S3 constructed as follows. Denoting the Cantor set and Whitehead compactum by
C and W , respectively, let C ×W ⊂ S3 be the embedding obtained by “ramifying” the defining sequence
for the standard embedding of W in S3. Choose a point x ∈ W and (“tamely”) embed the mapping
cylinder of a 2-to-1 surjective map f : C × {x} → L, where L is a tame arc in S3 disjoint from C ×W .
Then Z is the union of C×W with this mapping cylinder. Denoting by F : Z → L the obvious retraction,
each nondegenerate element of the decomposition is F−1(p), for some p ∈ L (note that for each p ∈ L,
F−1(p) is either a single component of C×W wedged with a tame arc or a pair of components connected
by a tame arc). Now let α be a simple loop in S3 which avoids Z and links T (the first solid torus in
a defining sequence for C ×W ). Let β be the image of α under the decomposition map. Clearly, S(X) is
the (homeomorphic) image of L under the decomposition map. If a null-homotopy of β intersected S(X)
in a 0-dimensional subspace, then ε-lifting would yield the existence of a null-homotopy of α missing at
least some nondegenerate elements of the decomposition. However, α (geometrically) links all of them.
On the other hand, since any singular disk in S3 can be approximated by one which intersects Z in
a 0-dimensional subspace, X has property P .

5. Conclusion

The following resolution theorem, recently proven by Daverman and Thickstun [17], takes as its
hypothesis not a restriction on the “size” of the singular set but rather a rich supply of polyhedral
subspaces. This theorem was inspired by the characterizations of 3-manifolds among resolvable generalized
3-manifolds found in [14] and, together with one of those theorems, yields a characterization, modulo the
Poincaré conjecture, of 3-manifolds among generalized 3-manifolds.

Theorem 5.1 ([17]). A generalized 3-manifold X has a near resolution if there exists a sequence
{fi : Ri → X}∞i=1 of maps of closed surfaces satisfying the following two conditions:

(1) for all k ∈ N,
k⋃

i=1
fi(Ri) is a polyhedron;
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(2) for distinct points p and q in X, there exists i ∈ N such that p and q are homologically separated
by fi.

Sketch of the proof. One constructs an inverse sequence

X = X0
ϕ1←− X1

ϕ2←− X2
ϕ3←− . . .

of generalized 3-manifolds and conservative, cell-like maps such that, for each k, all fi for which i ≤ k
ε-lift into M(Xk) (under ϕ1 ◦ ϕ2 ◦ · · · ◦ ϕk). This property implies that for every i, fi ε-lifts into X∞
(the inverse limit), which is easily seen to imply that dimS(X∞) = 0. Furthermore, the inverse limit
of generalized 3-manifolds under cell-like maps is a generalized 3-manifold (and the projection map is
cell-like). Hence X∞ is a generalized 3-manifold with 0-dimensional singular set and so by [25] has a near
resolution. The composition of that near resolution with the projection from X∞ to X is then the desired
near resolution of X.

Definition 5.2. A generalized 3-manifold has the relative simplicial approximation property (RSAP) if,
given any compact subpolyhedron K of B2 and map f : B2 → X such that f |K is simplicial, f can be
approximated by a simplicial map g : B2 → X such that f |K = g|K. (Note: By Nicholson’s theorem [21]
and classical relative simplicial approximation for maps with polyhedral domain and target, all 3-manifolds
have the RSAP.)

Corollary 5.3. Any generalized 3-manifold having the RSAP is near-resolvable.

Sketch of the proof. It is fairly straightforward to demonstrate that any generalized 3-manifold with the
RSAP satisfies the hypothesis of the above theorem.

Theorem 5.4. The Poincaŕe conjecture implies that a generalized 3-manifold is a 3-manifold if and only
if it satisfies the RSAP.

Proof. Combine Corollary 5.3 with [15, Theorem 3.1], noting that the RSAP is stronger than the SSAP.

Remarks. Note that although every generalized 3-manifold is conjecturally resolvable, the condition
(RSAP) used above to ensure resolvability (modulo the Poincaré conjecture) is a priori stronger than the
condition (SSAP) required for approximability of that resolution. This is an inherently unsatisfactory
situation which inevitably suggests the following two questions. Does the SSAP imply the RSAP? Failing
an affirmative answer to the first question, can it be shown that generalized 3-manifolds with the SSAP
are near resolvable?
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13. A. Cavicchioli and D. Repovš, “Peripheral acyclicity and homology manifolds,” Ann. Mat. Pura
Appl., 172, 5–24 (1997).
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