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AN EXTENSION OF THE BOLSINOV-FOMENKO
THEOREM ON ORBITAL CLASSIFICATION
OF INTEGRABLE HAMILTONIAN SYSTEMS

A. CAVICCHIOLI, D. REPOVŠ AND A.B. SKOPENKOV

ABSTRACT. The main result of the paper is an extension
of the Bolsinov-Fomenko theorem on topological orbital classi-
fication of nondegenerate integrable Hamiltonian systems with
two degrees of freedom on three-dimensional constant energy
manifolds (1994). Namely, it is shown that their restriction
that the integral has no critical circles with nonorientable sep-
aratrix diagrams can be omitted. Our proof is based on an
analogue of obstruction theory for certain types of Seifert fi-
brations.

1. Introduction. In 1994 Bolsinov and Fomenko [3] proved a the-
orem on topological orbital classification of nondegenerate integrable
Hamiltonian systems with two degrees of freedom on three-dimensional
constant energy manifolds. For motivation and a short survey see [5,
Section 1], [3, Section 1]. They showed that two such systems are equiv-
alent if certain invariants are. The invariant is a graph with a number
of additional labels associated to its vertices and edges, Section 2. One
of the restrictions they had to impose was that the Hamiltonian sys-
tems do not have unstable isolated periodic orbits with a nonorientable
separatrix. Since the existence of such orbits is, in some sense, a generic
property which appears in many classical integrable cases, e.g., in the
Kovalevskaya top, it is desirable to remove this restriction. In this pa-
per we show that the Bolsinov-Fomenko theorem is also true without
this restriction.

Theorem 1.1 (cf. [3, Theorem 4.1]). Let X be the set of nonde-
generate integrable Hamiltonian systems with two degrees of freedom
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on constant energy oriented three-manifolds, up to topological orbital
equivalence preserving orientation. Then there is an injection from X
to the set of t-labeled graphs W up to t-equivalence, see definitions in
Section 3.

The definition of t-equivalence of invariants is dispersed all over the
long paper [3]. So for the reader’s convenience we give in Section 2
a precise and self-contained formulation of the (extended) theorem of
Bolsinov-Fomenko. In fact, the more general situation does not require
any additions and changes with respect to [3] except that P -labels
can be atoms with stars, see below (the change in the definition of
the Ξ-invariant is only a technical improvement and has nothing to do
with the new situation, and the definition of coloring was implicitly
contained in [3]).

Observe that in [3, Sections 12.3 and 13.5] there is a description of
the image of the injection from Theorem 1.1 and the dependence of
t-labels upon the orientation of the constant energy 3-manifold. Also
constructed in [3, Section 13] was in a certain sense simpler frame on
W , called a t-molecule. Again, all these are the same in our more
general situation, except that P -labels can be atoms with stars. But
we will not recite the definitions of the image of the injection and of
the t-molecule from [3] in order to avoid very extensive and technical
notation.

To extend the Bolsinov-Fomenko theorem, we prove, in fact, a purely
topological result on Seifert fibrations, classification theorem 1.5 below,
which is also interesting in itself and could perhaps be applied to
some other problems. To state this result and explain its relation to
Hamiltonian systems, recall some general observations. A bifurcation
of Liouville tori in an integrable, with a Bott integral, Hamiltonian
system can be described by a neighborhood of F−1(c), where F is an
additional integral and c is its critical value. If the critical submanifold
of F , corresponding to c, is a circle, then this neighborhood is a Seifert
fibration Q over a 2-surface P with boundary [6]. More precisely, we
have the following:

Definition 1.2. Of a double. A double P ∗ is an orientable 2-
surface with boundary with an involution χ on P ∗ having only finitely
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many, possibly zero, fixed points called stars. Let P = P ∗/χ, P ∗ is
called the double of P . Denote by p : P ∗ → P the projection. Denote
by N the p-image of the set of fixed points of χ, i.e., stars. Denote by
P̃ a closed surface obtained by attaching disks to the boundary circles
of P .

While reading this paper it is helpful to keep in mind the following
examples:

1) P has no stars, i.e., χ is fixed points free. For this case the results
of Section 3, for a double P �P of P , are contained in [3], in a slightly
simpler formulation.

2) P = A∗, i.e., P is the regular neighborhood of a circle K in the
plane with the only star lying on it. In this case there are two doubles
P ∗, both homeomorphic to the regular neighborhood of the figure eight
K∗ in the plane. The doubles are not homeomorphic over p, which is
especially evident if one colors annuli of P\K and P ∗\K∗ black and
white, respectively.

Definition 1.3. Of a 3-atom (cf. [5, Definition 2.2]). A 3-atom is
a fiber bundle over S1 with the fiber P ∗ and the sewing map χ, i.e.,

Q(P ∗) ∼= P ∗ × I/{(a, 0) ∼ (χa, 1)}
[9, p. 33]. By [8], [5, Definition 2.2], Q(P ∗) depends only on P , hence
not also on P ∗. So in the sequel we shall denote Q(P ∗) by Q(P ) or even
by Q. Define a map π : Q → P by π[(a, t)] = p(a) (a Seifert fibration
having singular fibers only over the stars and only of type (2,1)).

To study the bifurcation of Liouville tori, we construct a Poincaré
section of the flow on Q [3]. If the critical circle has an orientable
separatrix diagram, or equivalently if P has no stars, then Q ∼= P ×S1

and the Poincaré section can be chosen to be a cross-section. Therefore
Poicaré sections are classified by methods of the classical obstruction
theory. If the critical circle has a nonorientable separatrix diagram, or
equivalently P has stars, then the Seifert fibration is not a locally trivial
fibration. Nevertheless, the Poincaré section is a Seifert analogue of a
cross-section.

Definition 1.4. Of a Seifert section. An embedding f : P ∗ → Q
is called a Seifert section if π ◦ f = p.
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In a smooth category we shall assume additionally that f is transver-
sal to the fibers of π. In [3] Seifert sections were called transversal
2-surface elements. They were assumed to be transversal to the Hamil-
tonian flow. But every section, transversal to the fibers of π, is isotopic
to the one transversal to the Hamiltonian flow. So the difference be-
tween the two transversality conditions does not affect our results.

Every singular fiber of π intersects f(P ∗) in one point, and every
nonsingular fiber of π intersects f(P ∗) in two points. If P ∗ = P � P
is a double (with the involution exchanging corresponding points from
the two copies of P ), then P has no stars, Q ∼= P ×S1 and π is trivial,
but a Seifert section is not a cross-section. But, since a Seifert section
f : P � P → Q is an embedding, it follows that the restrictions of f to
the copies of P are equivalent cross-sections. Thus there is a one-to-one
correspondence between Seifert sections and cross-sections of the trivial
bundle P × S1 → P . In the case when P has stars, Seifert section
is a Seifert analogue of a cross-section. Just as cross-sections define
representations of a bundle space as a direct product of a base and a
fiber, Seifert sections define representations of Q as a skew product of
P ∗ and S1.

The heart (and the only significantly new point) of our proof is a clas-
sification of Seifert sections of the Seifert fibration, Theorem 1.5 below.
In this chapter we omit Z-coefficients from the notation of cohomol-
ogy groups. For a space with involution the symmetric (co)homology
groups are denoted by adding index S to the usual notation.

Classification theorem 1.5. For a fixed double P ∗, the set X of
Seifert sections up to isotopy over π is in one-to-one correspondence
with H1(P ). In fact, there is a difference map d : X × X → H1(P ),
i.e., a map such that d(f, ·) is a one-to-one correspondence and d(f, g)+
d(g, h) = d(f, h).

Proof. (See Figure 1.) The idea is to reduce classification of Seifert
sections to that of classical sections. Define a map

q : P ∗×S1 ∼= P ∗×I/{(a, 0) ∼ (a, 1)} −→ P ∗×I/{(a, 0) ∼ (χa, 1)} ∼= Q

as

q[(a, t)] =
{
[(a, 2t)] 0 ≤ t ≤ 1/2
[(χa, 2t− 1)] (1/2) ≤ t ≤ 1,
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cf. [9, p. 33]. Since χ is an involution, it follows that q is well defined
and continuous.

Let f : P ∗ → Q be a Seifert section. For each x ∈ P ∗\N there
is a unique point f ′(x) ∈ P ∗ × S1 such that qf ′(x) = f(x) and
p1f

′(x) = x. For each x ∈ N there are two points s, t ∈ S1 such that
q(x, s) = q(x, t) = f(x). Since the small deleted disk neighborhood of
x in P ∗ is connected, we can choose f ′(x) to be either (x, s) or (x, t)
so that the map f ′ : P ∗ → P ∗ × S1 will be continuous. This map f ′

is a classical section of the trivial bundle P ∗ × S1 → P ∗. Since f is
an embedding, it follows that p2f

′(x) and p2f
′(χx) are not antipodes

for each point x ∈ P ∗. Here p2 : P ∗ × S1 → S1 is the projection.
Therefore f ′ can be canonically homotoped to a symmetric section f ′′,
i.e., a section f ′′ such that p2f

′′(x) = p2f
′′(χx) for each x ∈ P ∗.

Also, for each symmetric section F : P ∗ → P ∗×S1, the map q◦F is a
Seifert section and (q ◦F )′′ = F . Evidently, Seifert sections f and g are
isotopic over π if and only if the corresponding symmetric sections f ′′

and g′′ are symmetrically homotopic, or equivalently, isotopic. Then X
is in one-to-one correspondence with the set X ′′ of symmetric sections
of the trivial bundle P ∗ × S1 → P ∗ up to symmetric homotopy.

The latter in turn is in one-to-one correspondence with H1
S(P

∗);
moreover, there exists a difference map d : X ′′ × X ′′ → H1

S(P
∗). By

Lemma 3.9, H1
S(P

∗) ∼= H1(P ). Or, alternatively, we can construct
from f ′′ a section f ′′′ of the trivial bundle P × S1 → P and check that
the correspondence f ′′ → f ′′′ induces a one-to-one correspondence on
the sets of sections up to equivalence.

Corollary 1.6. For the fixed double P ∗ and f |∂P ∗ the set X∂ of
Seifert sections up to isotopy over π is in one-to-one correspondence
with H1(P̃ ) ∼= H1(P, ∂P ). In fact, there exists a difference map
d : X∂ ×X∂ → H1(P̃ ).

The proof of Theorem 1.1 modulo Theorem 1.5 is essentially the same
as in [3]. Nevertheless, in Section 3 we sketch the proof in some detail
in order to make clear all the points where the proof of our extension is
not the same but only analogous to [3] and to provide a well-structured
guideline through the very long proof in [3]. Of course the reader who
wants to go into details of the proof should consult [3]. But since that
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paper does not contain the idea and the plan of the entire proof, it
would be easier first to learn them from Section 3 of the present paper.

In Section 4, which is elementary and independent of Sections 2 and
3, we present several results and conjectures related to Theorem 1.5
and Construction 3.2. In particular, we show that although the proof
of Theorem 1.5 is very short, it is nontrivial: we use essentially all
the hypotheses, and neither the proof nor the formulation can be
generalized to similar problems.

Conjecture 1.7. The main result of [2] is valid without the restric-
tion that the integral has no critical circles with nonorientable separatrix
diagrams.

2. Formulation of Theorem 1.1. Let (M4, ω) be a symplectic
4-manifold. Let H : M → R be Hamiltonian and v = sgradH a
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Hamiltonian vector field on M4. Let Mh = H−1(h) be a regular
constant energy 3-manifold. Suppose that the Hamiltonian system on
Mh is Liouville integrable, in the sequel we shall call it shortly integrable,
i.e., there is a smooth additional integral F : OMMh → R, independent
almost everywhere on H. By the classical Liouville theorem, every
connected component of a compact regular surface (H × F )−1(h, a) is
a two-dimensional, Liouville, torus.

Definition 2.1. Of a Liouville foliation [3, Section 3]. A partition
of a compact constant energy 3-manifold Mh into Liouville tori and
connected components of singular fibers (H × F )−1(h, a) is called a
Liouville foliation.

Definition 2.2. Of a Liouville equivalence [3, Section 3]. Two
integrable Hamiltonian vector fields v and v′ on compact constant
energy manifolds Mh and M ′

h are said to be Liouville equivalent if
there exists a diffeomorphism g : Mh → M ′

h carrying the leaves of the
Liouville foliation of v to those of the Liouville foliation of v′.

Definition 2.3. Of a topological orbital equivalence [3, Section
3]. Two vector fields v and v′ on manifolds M and M ′ are said
to be topologically orbitally (trajectory) equivalent if there exists a
homeomorphism g : M → M ′ carrying the oriented trajectories of
v to those of v′.

Definition 2.4. Of a nondegenerate system (cf. [3, Section 1].
An integrable Hamiltonian system on MH is said to be nondegenerate
if:

(1) Mh is a smooth closed connected orientable 3-manifold;

(2)Mh is Liouville stable, i.e., the system remains Liouville equivalent
to that on Mh under small variations of h;

(3) The additional integral is a Bott function F . Moreover, every one
of its critical manifolds in Mh is nondegenerate and is a circle;

(4) Every saddle critical circle of F is a hyperbolic orbit of v, i.e., for
each periodic orbit of v, which is a critical circle of F , the differential
of the Poincaré map is neither the identity nor ‘minus the identity’;
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(5) The system v is nonresonant, i.e., the irrational Liouville tori are
everywhere dense in Mh;

(6) For every regular family T (t) of Liouville tori, the rotation
function

ρ : (0, 1) −→ RP 1,

see below, has only a finite number of return points (cusps). Although
ρ(t) depends on the choice of λ(t) and µ(t), this property does not [3,
important remark in Section 6].

Definition 2.5. Of a rotation function (cf. [3, Section 5.2].
Suppose that T (t), t ∈ (0, 1) is an arbitrary regular family of Liouville
tori in Mh. Suppose that (λ(t), µ(t)) is a smooth family of bases
in H1(T (t),Z). On each rational torus T (t) the orbits are closed
and isotopic to each other. Therefore any orbit γ on T (t) uniquely
defines the integers p(t) and q(t) such that γ = p(t)λ(t) + q(t)µ(t).
Let ρ(t) = (p(t) : q(t)) ∈ RP 1. Since our system is nonresonant,
it follows that almost all Liouville tori are irrational, but rational
tori are everywhere dense among T (t). Hence our mapping ρ can be
continuously extended to a mapping ρ : (0, 1)→ RP 1 [3, Lemma 5.1],
which is called the rotation function.

Definition 2.6. Of an atom [5, Definition 2.1]. Let K be a
connected graph whose vertices have degrees 2 or 4. We call the
vertices of degree 2 stars. Let P be an oriented 2-surface with boundary
containing K; note that in general P is not uniquely defined by K. We
call the pair (P,K) an atom, and denote it by P , if P\K is a union of
annuli S1 × [0, 1) and these annuli can be colored in black and white
so that each edge of K is in the boundary of one black and one white
annulus. We call (P,K) = (D2, its center) an atom A.

Definition 2.7. Of t-labels (cf. [3, Definition 11.1]. t-labels P , Λ,
∆, Ξ, s, C and R on a graph W are defined as follows. Each vertex
c is labelled with an atom Pc; we shall say shortly that a vertex is
an atom Pc. Moreover, c is labelled with a one-to-one correspondence
αc between the boundary circles of Pc and the edges of W incident
to c. Following the tradition, and to shorten the notation, we shall
omit αc from the notation of the t-frame. Let S(P ) be the set of
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vectors with real positive components corresponding to vertices of P
up to proportionality, i.e., up to a common positive scalar factor. Each
vertex c is also labelled with elements Λc ∈ S(Pc), ∆c ∈ B0(Pc,R),
Ξc ∈ H1(P̃c, S1). Each edge i is labelled with an orientation si, a
(2 × 2)-matrix Ci =

(
αi βi
γi δi

)
of integers such that detCi = −1 and a

vector Ri of an arbitrary length with components from R∪{±∞}. The
vector Ri is such that:

1) All but the boundary infinities can be split into successive pairs;

2) No three successive components of Ri are monotonous;

3) If the end, respectively the beginning, of the edge i is not A, then
the last, respectively the first, component of R is ±∞, respectively
−(δi/γi).
We should remark that |S(A)| = |B0(A,R)| = |H1(Ã, S1)| = 1, and

hence there are actually no Λ,∆,Ξ-labels on vertices A.

Definition 2.8. Of a t-equivalence. Two graphs W and W ′

with assigned t-labels, P,Λ,∆,Ξ, s, C,R and P ′,Λ′,∆′,Ξ′, s′, C ′, R′,
respectively, are said to be t-equivalent if:

1) There is an isomorphism W ′ ∼= W (in the sequel, W and W ′

are identified via this isomorphism) such that for each vertex c of W ,
P ′
c
∼= Pc, Λ′

c = Λc and α′
c = αc. The last equality means that the

homeomorphism P ′
c
∼= Pc carries every circle of ∂P ′

c corresponding to
an edge i of W , i is adjacent to c, to the circle of ∂Pc corresponding to
the same edge i of W ;

2) ∆′,Ξ′, s′, C ′, R′-labels can be obtained from ∆,Ξ, s, C,R-labels by
applying (several times) operations l, (k+, k−), see below.

Definition 2.9. Of the operation l (cf. [3, Section 13.5]. Let W
be a t-labelled graph, and let l ∈ C1(W,Z2) be a cochain. For each
edge j of W , make the following modification of the s, C,R-labels:

(s′j , C
′
j , R

′
j)=




(sj , Cj , Rj) lj=0
(opposite to sj , C−1

j , the vector
obtained from CjRj (see below) by
rewriting its components in the reverse order) lj=1.
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Definition 2.10. Of CR. Suppose that R is a vector of an arbitrary
length with components fromR∪{±∞} satisfying properties 1, 2 and 3
from the definition of t-labels. To each such vector R there corresponds
a function ρ : (0, 1)→ R ∪ {±∞} having only a finite number of local
minima, maxima and poles [3, Section 6]. Set ρ′ = (αρ+ β)/(γρ+ δ).
Let

(
α β

γ δ

)
R be the vector obtained by varying t from 0 to 1 and writing

out successively the limit of ρ′ at 0, the values of ρ′ at all poles, local
maxima and minima, and the limit of ρ′ at 1. Since R is actually a
class of ρ up to conjugation [3, Section 6], it follows that CR is well
defined.

Definition 2.11. Of an admissible pair. Suppose that W
is a t-framed graph, and let c be a vertex of it. Consider the cell
decomposition of P̃ generated by the graph K. The 2-cells of P̃c can
be identified with the circles of ∂Pc and hence with edges ofW adjacent
to c. For a pair k+, k− ∈ C1(W,Z) define a class kc ∈ C2(P̃c,Z) by

kc(i) =
{
k+
i if the edge i goes in c
k−i if the edge i goes out of c.

Note that the pair (k+, k−) is uniquely defined by the collection {kc}.
A pair (k+, k−) is called admissible if, for each vertex c of W such that
Pc �= A, the sum of k+

i over edges going out of c equals the sum of k−i
over edges going in c, or equivalently, if kc ∈ B2(P̃c,Z) for each c such
that Pc �= A.

Definition 2.12. Of a coloring corresponding to P, α,C,R, s.
Let i be an oriented edge of W , and let b, e be its beginning and end,
respectively. If the last component of Ri is +∞ (respectively −∞),
then color the annulus of Pe\Ke corresponding to the edge i in white
(respectively black). If the first component of CiRi is +∞ (respectively
−∞), then color the annulus of Pb\Kb corresponding to the edge i in
white (respectively black).

It follows from property 3 of the vector Ri that the coloring is well
defined. We assume that P, α,C,R, s are such that for each vertex
c, each edge of K is in the boundary of one black and one white
annulus. This will be used in the definition of operations (k+, k−), and
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it is easy to see that the labels constructed from Hamiltonian systems,
Section 3, satisfy this condition (so our assumption does not restrict the
class of nondegenerate integrable Hamiltonian systems). Note that this
restriction on the t-labels is not present in the definition of admissible
labels in [3].

Definition 2.13. Of the operation (k+, k−) (cf. [5, Section 3.2].
Let W be a t-framed graph and

k+, k− ∈ C1(W,Z)

an admissible pair. Let A±
j =

(
1 0

k±
j

1

)
. Take a coloring corresponding

to P, α,C,R, s. For each vertex c such that Pc �= A and for each edge
j of W , make the following modification of the ∆,Ξ, C,R-labels:

∆′
c = ∆c + ϕ(kc), Ξ′

c = Ξc + ψ(kc),
C ′
j = (A

+
j )

−1CjA
−
j , R′

j = Rj + k+
j = ATj Rj .

Here ϕ : B2(P̃ ,Z)→ B0(P,R) and ψ : B2(P̃ ,Z)→ H1(P̃ , S1) are the
linear operators defined below. They depend on Pc,Λc and the coloring
of Pc, and hence on α,C,R, s. But we omit this from the notation of
ϕ and ψ.

Definition 2.14. Of the linear maps ϕ and ψ. Suppose that P
is a colored atom, P �= A and Λ ∈ S(P ). Let a be a vertex of P . Let 1,
2, 3, 4 be the four faces of P̃ containing a in their boundary; they are
not necessarily distinct. If a is a star, then there are two faces of P̃ ,
containing a, and we assume 1 = 3, 2 = 4. Suppose that 1 and 3 are
white, while 2 and 4 are black. Let Λ1 be the sum of Λb over vertices
b of P , contained in the face 1. Analogously, Λ2,Λ3,Λ4 are defined, up
to proportionality. Define a linear operator ϕ : B2(P̃ ,Z) → B0(P,R)
by

ϕ(k)(a) = Λa

(
k(1)
Λ1

− k(2)
Λ2

+
k(3)
Λ3

− k(4)
Λ4

)
.

To define a linear operator ψ : B2(P̃ ,Z)→ H1(P̃ , S1), we begin with
the definition of a linear operator L : C1(P̃ ,R)→ C1(P̃ ,R). Take any
edge ofK. It suffices to define the L-image of the characteristic cochain
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that is 1 on this edge and 0 elsewhere. Denote the white and the black
annulus adjacent to this edge by G+ and G−, respectively (Figure 2).
The orientation on P and the coloring define the direction on the annuli
G+ and G−, so that a vector v1 looking from black to white and a
vector v2 defining the direction on either G+ or G− constitute a basis
defining the orientation on P . Denote the vertices of G+ (respectively
G−) in their order along the direction by 1+, . . . , s+ (respectively
1−, . . . , t−), so that 1+ = 1− and 2+ = 2− (Figure 2). Note that
1+, . . . , s+ and 1−, . . . , t− are not necessarily distinct. Denote by e±i
the edge of K joining i± and (i+ 1)± and going along the direction of
G±((s + 1)+ = 1+ = (t + 1)− = 1−). Let the L-image of the above
characteristic cochain be the chain l defined by

le =
∑
e+i =e

Λ2+ + · · ·+ Λi+
Λ1+ + · · ·+ Λs+

−
∑
e−i =e

Λ2− + · · ·+ Λi−
Λ1− + · · ·+ Λt−

.

Take a nondegenerate scalar product on C1(P̃ ,R) with an orthogonal
basis formed by chains 1 × e where e is an edge of K. Denote
by pr : C1(P̃ ,R) → Z1(P̃ ,R) the orthogonal projection. Let ξ :
H1(P̃ ,R) → H1(P̃ , S1) be the projection. In [3, Sections 9, 10]
it was proved that the linear operator ψ is well defined under the
condition that the two paths on the following diagram from C1(P̃ ,Z)
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to H1(P̃ , S1) yield the same composite homomorphism:

C
1
(P̃ , R) C

1
(P̃ , Z)u

⊃
C

1
(P̃ , Z)

u

δ

Z
1
(P̃ , Z)u

⊃
Z

1
(P̃ , Z)

u

C
1
(P̃ , R) w

∂

u

L

B0(P̃ , R) B
2
(P̃ , Z)u ϕ w

ψ
H1(P̃ , S

1
) H

1
(P̃ , Z)

u

D

C1(P̃ , R) wpr Z1(P̃ , R) w H1(P̃ , R) H1(P̃ , R)

u

ξ

H1(P̃ , Z)u ⊃ .

Note that it was proved in [3, Sections 9, 10] that the linear operators
ϕ (respectively D) are well defined under the conditions that the two
paths on the diagram from C1(P̃ ,Z) to C0(P̃ , S1) (respectively from
Z1(P̃ ,Z) to H1(P̃ , S1)), yield the same composite homomorphism.
Moreover D is the Poincaré duality and ϕ coincides with the operator
defined directly in the beginning of this definition.

Problem 2.15. Find a direct definition of ψ (begin with the case
when Λi = 1).

For fixed W the above operations l and (k+, k−) define an action
on the set of t-frames by the product of C1(W,Z2) and the subgroup
of admissible pairs in C1(W,Z) × C1(W,Z). Thus the Hamiltonian
systems are classified by the orbits of this action.

3. Proof of Theorem 1.1. The structure of the proof of The-
orem 1.1 is as follows. The heart of the proof is the construction of
a t-framed graph corresponding to a given nondegenerate integrable
Hamiltonian system with two degrees of freedom on three-dimensional
constant energy manifolds (in the sequel we shall refer to them simply as
Hamiltonian system). First we define the graph W and the P, α-labels
on its vertices. For each vertex c we construct the double P ∗

c of Pc as in
Construction 3.2, taking each arc on Pc in the white annulus (any other
double also will do, but the image of X in the set of t-labelled graphs
W depends on this choice of double). Note that we define them directly
from the Hamiltonian system. However, to define Λ,∆,Ξ, C,R-labels
we need an additional structure on that system. Namely, for each ver-
tex c we fix an admissible collection of bases on every boundary torus
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of every 3-atom Qc, see the definition below. Then we can define Λ,∆
and Ξ-labels. If we additionally fix orientations on edges of W , then
we can define C- and R-labels. Let us sketch the definition of Λ,∆
and Ξ-labels in some details. We additionally fix a Seifert section for
every vertex c agreeing with the given admissible collection of bases, or
roughly, we fix an element of H1(P̃c,Z), cf. Corollary 1.6.

Using the classical Poincaré section idea we define a Hamiltonian
system on a double P ∗

c from that on Qc and a Seifert section. Then
we define Λ,∆, Z-invariant which classify Hamiltonian systems on the
neighborhood of K∗

c in P ∗
c up to conjugation near K∗. We observe

how this triple of invariants depends on the choice of a Seifert section
for fixed admissible collection of bases, in fact, Λ- and ∆-invariants
do not depend. Based on these observations we define Λ,∆,Ξ-labels
which depend only on the choice of admissible collection of bases,
not of Seifert sections. Thus a t-labelled graph corresponding to
a Hamiltonian system, orientations on edges of W and a family of
admissible collections of bases are constructed.

Now Hamiltonian systems on Mh are orbitally topologically equiva-
lent regarding the orientation of Mh if and only if the corresponding
t-labeled graphs W and W ′ are the same for some choice of orienta-
tions and collections of admissible cycles. In conclusion we verify that:
1) t-labeled graphs corresponding to the same Hamiltonian system and
constructed from different orientations and the same collections of ad-
missible cycles, are t-equivalent by operation l; 2) t-labelled graphs
constructed from different collections of admissible cycles and the same
orientations are t-equivalent by operation (k+, k−).

Note that the choices of the additional structures, admissible collec-
tions of bases and orientations, appear in the definitions of t-labels and
t-equivalence quite differently. The transformation of t-labels corre-
sponding to a change of admissible cycles depends on the choice of the
orientations. That is why orientations appear as labels and why we
cannot introduce t-labels independent of the choice of orientations. In
contrast, the transformation of t-labels corresponding to a change of
the orientation does not depend on the choice of the admissible cycles.
That is why admissible cycles do not appear as labels. In fact, we can
introduce a t-frame independent of the choice of admissible cycles (it
was constructed and called a t-molecule in [3]). We will not do this
to avoid technicalities and because a t-molecule is not so natural an
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object as t-labels.

Now we are going to realize the above plan in detail. We use
definitions and notation from Sections 1 and 2. Before Definition 3.7
we denote by F the restriction of the second integral to Mh. In this
section we omit R-coefficients from the notation of chain and homology
groups.

Definition 3.1. Of W,P, α (cf. [5]). We may assume that for each
critical value c of F the set of critical points of F corresponding to c
is connected. Then vertices of W are critical values c of F . For each
c and sufficiently small ε > 0 there is a unique atom Pc such that
F−1[c − ε, c + ε] ∼= Q(Pc) = Qc and F−1(c) = π−1

c Kc [6], [5, Lemma
2.1]. For Pc �= A the map π is uniquely defined, while for Pc = A it is
not. Orientation on the fibers of π is given by the flow. The annuli of
Pc\Kc for π-preimages for which F > c (respectively F < c) are colored
in white (respectively black). Since Pc is oriented and at each point
of Pc there is a vector from black to white, there exists a χ-symmetric
orientation on edges ofK∗ which defines directions on annuli of P ∗\K∗.

Then ∂Qc is a union of tori. Two vertices b and e of W are joined by
an edge if there is a family of Liouville tori T × I ⊂ Q such that T × 0
and T × 1 are boundary tori of Qb and Qe, respectively. A bijection αc
is given by the one-to-one correspondence between edges ofW adjacent
to c and boundary tori of Qc, or equivalently, boundary circles of Pc.

In the sequel if index c is fixed, we shall omit it.

Construction 3.2. Of a double. For each star on an atom P ,
take an arc joining the star to ∂P , transverse to K and going through
the white annulus (Figure 3). Cut P along all such arcs. Take another
copy of such a cut-off atom. For each star glue together different edges
of the cut from different copies of P to get the surface P ∗. There is
an involution χ on P ∗, exchanging corresponding points from different
copies of P . Evidently, the resulting surface P ∗ is a double of P .

The construct double contains a χ-invariant spine K∗, i.e., a graph
such that P ∗\K∗ is a union of annuli, with vertices of degree 4 and
such that each star is a vertex of K∗ and the annuli of P ∗\K∗ can be
colored in black and white so that each edge of K∗ is in the boundary
of one black and one white annulus. This K∗ is the graph obtained



462 A. CAVICCHIOLI, D. REPOVŠ AND A.B. SKOPENKOV
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from two copies of K by the gluings described above. Analogously to
Definition 3.1, there exists a χ-symmetric orientation on edges of K∗

that define directions on annuli of P ∗\K∗.

Definition 3.3. Of an admissible collection of bases (cf. [5,
Section 3]. Denote by Tj tori of ∂Q. Recall that we have an orientation
on the fibers of π and a direction on the annuli of P ∗\K∗. For P = A
let λj ∈ H1(Tj ,Z) be the cycle that is null-homotopic in Q ∼= D2 × S1

and oriented along the annulus P\A. Let µj ∈ H1(Tj ,Z) be any cycle
such that (λj , µ) is a basis. For P �= A let λj ∈ H1(Tj ,Z) be the cycle
defined by the oriented fiber of π. Suppose that we are given a Seifert
section f : P ∗ → Q. For a torus Tj of ∂Q, if f(P ∗)∩ Tj is the union of
two circles, then let µj = ∂fj ∈ H1(Tj ,Z) be the oriented cycle defined
by any of them (since the circles are disjoint, it follows that they are
homologous). If f(P ∗)∩Tj is one circle, then denote by Sj the oriented
cycle defined by that circle. Set µj = ∂fj = (Sj − λj)/2 ∈ H1(Tj ,Z)
(since Sj is connected and intersects λj at two points, it follows that
Sj − λj is divisible by 2). We call the collection obtained {(λj , µj)}j
an admissible collection of bases (corresponding to the given Seifert
section f , when P �= A).

Note that the first element λj of a basis from an admissible collection
is the same for distinct collections, but the second element µj is not.
Also ∂fj is not the cycle in H1(Tj ,Z) represented by f−1Tj ⊂ ∂P ∗.

Lemma 3.4. (cf. [5, Section 3], [3, Section 11.1]). Suppose that
{(λj , µj)}j is an admissible collection of bases. Then we have:

1) (λj , µj) is a basis in H1(Tj ,Z);
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2) For P �= A the formula ∂fj = ∂f ′
j+kjλj holds. Here kj is the value

of δd(f, f ′) ∈ B2(P̃ ,Z) on the face of P̃ corresponding to Tj. Since
δ(B1(P̃ ,Z)) = 0, it follows that δ : H1(P,Z) = C1(P̃ ,Z)/B1(P̃ ,Z) →
B2(P̃ ,Z) is well defined.

3) For each admissible collection of bases {(λ′
j , µ

′
j)}j, there exists a

homeomorphism h : Q → Q over π such that h∗(λj , µj) = (λ′
j , µ

′
j), for

each j, if and only if λ′
j = λj and there exists an element k ∈ Z for

P = A and k ∈ B2(P̃ ,Z) for P �= A such that µ′
j = µj + kjλj, for

each j. Here for P = A, kj = k and for P �= A, kj is the value of
k ∈ B2(P̃ ,Z) on the face of P̃ corresponding to Tj.

The proof is analogous to [5, Section 3.1]. Note that our construction
is different from [5, Section 3.1]. Nevertheless, in the sequel we shall
use only properties 1, 2, 3 of admissible collection of bases, instead of
its definition.

Definition 3.5. Of gluing matrices C and rotation vectors
R (cf. [5], [3, Sections 5, 6]. Fix orientations s on edges of W and a
family of admissible collection of bases {(λj , µj)}j . Take any edge j
of W with beginning b and end e, possibly b = e. There is a family
Tj × I of Liouville tori such that Tj ×0 and Tj ×1 are boundary tori of
the 3-atoms Qb and Qe, respectively. Let (λ−

j , µ
−
j ) ∈ H1(Tj × 0,Z)

and (λ+
j , µ

+
j ) ∈ H1(Tj × 1,Z) be the bases from the above family

of admissible collections. We may assume that the basis (λ−
j , µ

−
j ) is

extended smoothly to all tori Tj × t, t ∈ I. Let Cj be the matrix
consisting of the coordinates of (λ+

j , µ
+
j ) in the basis (λ

−
j (1), µ

−
j (1)).

Take a rotation function ρj : (0, 1) → R ∪ {±∞} corresponding to
the basis (λ−

j (t), µ
−
j (t)), defined similarly to the definition in Section 1.

Let Rj be a vector obtained by varying t from 0 to 1 and writing out
successively the limit of ρj at 0, the values of ρj at all poles, local
maxima and minima, and the limit of ρj at 1 (the limits at 0 and 1
exist by [3, Sections 5, 6]). Note that our Rj is R+

j of [3].

Reduction theorem 3.6. a) (cf. [3, Proposition 7.3]). If P �= A,
then to each flow on Q and Seifert section f : P ∗ → Q there corresponds
an integrable Hamiltonian system, ‘Poincaré flow,’ on P ∗. Moreover,
flows on Q and Q′ are topologically orbitally equivalent over π if and
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only if for each Seifert section f : P ∗ → Q there exists a Seifert section
f ′ : P ∗ → Q′ such that the Poincaré flows on P ∗ constructed from
f and f ′ are conjugate equivalent regarding the involution χ, i.e., for
the conjugation g we have χ ◦ g = g ◦ χ. Or, equivalently, there exist
Seifert sections f : P ∗ → Q and f ′ : P ∗ → Q′ such that the Poincaré
flows constructed from f and f ′ are conjugate equivalent regarding the
involution χ.

b) (cf. [3, Proposition 7.2]). If P = A, then to each flow on
Q ∼= D2 × S1 and admissible basis (λ, µ) in H1(∂D2 × S1,Z) there
corresponds an integrable Hamiltonian system, ‘Poincaré flow,’ on P .
Moreover, flows on Q and Q′ are topologically orbitally equivalent over
π if and only if for each admissible basis (λ, µ) there exists an admissible
basis (λ′, µ′) such that the Poincaré flows on P constructed from (λ, µ)
and (λ′, µ′) are conjugate equivalent regarding the involution χ. Or,
equivalently, there exist admissible bases (λ, µ) and (λ′, µ′) such that
the Poincaré flows constructed from (λ, µ) and (λ′, µ′) are conjugate
equivalent regarding the involution χ.

Note that the hypothesis P �= A is used and the conclusion ‘over
π’ is actually proved and used in the sequel in [3, Proposition 7.3].
The proof of Theorem 3.6 for the case P �= A differs from [3, Proof
of Proposition 7.3] only formally, since when P has no stars, Seifert
sections are not exactly cross-sections. Case P = A was actually proved
in [3, Proposition 7.2].

Definition 3.7. Of Λ,∆, Z-invariants (cf. [3, Sections 8.1 8.2]).
Suppose that P �= A and there is a symplectic 2-form ω on P ∗. Let
F be a smooth Morse function on P ∗ such that F−1(0) = K∗ and the
Hamiltonian vector field v = sgradF on P ∗ is χ-invariant.

For a vertex i of K∗ take a linear operator that is the linearization of
v in the neighborhood of i. The eigenvalues of this linearization have
the same module and the opposite signs. Let Λi be the inverse of the
positive eigenvalue. Define Λ-invariant Λ ∈ S(P ∗) to be the collection
{Λi} up to proportionality. Since v is χ-invariant, it follows that in fact
Λ ∈ SZ2(P ∗) ∼= S(P ).

LetG be a white annulus that is the closure of a connected component
of P ∗\K∗. Let K1, . . . ,Ks be the oriented edges ofK∗, contained in G.
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Let N1 be an arc, transverse to v, equivalently to the fibers of F , and

joining a point x+
1 ∈

◦
K1 to ∂P ∗. Then N1 defines uniquely an ‘angle’

function ϑ : G\K∗ → S1 = R mod 2π such that N1 = ϑ−1(0). For
each i = 2, . . . , s, let Ni = Cl (ϑ−1(2π(Λ1+ · · ·+Λi)/(Λ1 + · · ·+Λp)))
and x+

i = Ni ∩ Ki; Ni is an arc joining x+
i to ∂P ∗ [3, Lemma

8.13]. Analogously, construct points x−i on the boundary of every
black annulus. If the annulus G is χ-invariant, then s is even and
Ni = N(s/2)+i. If the annulus G is χ-symmetric to another annulus
G′, then we take the ‘initial’ arcs N ′

1 = χN1. Thus the points x+
i and

x+
χ(i), x

−
i and x

−
χ(i) are χ-symmetric.

Let li be the time in which the point x−i goes to x
+
i under the flow σt of

v. These li define a chain l ∈ C1(K∗). Actually, l ∈ CZ2
1 (K∗) ∼= C1(K).

Note that the chain l is constructed uniquely up to the choice of the
arc N1 on each annulus G, i.e., up to elements from B1(K) [3, Section
8]. Let ∆ = ∂l ∈ B0(K) be the ∆-invariant. Take a nondegenerate
scalar product on C1(K) with an orthogonal basis formed by chains
1×Ki. Define the Z-invariant to be the class of pr l in H1(P̃ ), where
pr : C1(K) = Z1(K)→ Z1(P̃ ) is the orthogonal projection.

Theorem 3.8 (cf. [3, Theorem 8.1]). Suppose that P �= A and P ∗

and (P ∗)′ are smooth symplectic doubles. Suppose that v and v′ are
symmetric Hamiltonian vector fields, with Morse Hamiltonians F and
F ′ such that K∗ = F−1(0) and (K∗)′ = (F ′)−1(0), on P ∗ and (P ∗)′,
respectively. Let (Λ,∆, Z) and (Λ′,∆′, Z ′) be the corresponding triples
of invariants. Let g : P ∗ → (P ∗)′ be a homeomorphism preserving
the orientation, colorings, involutions and graphs. Then there exist χ-
invariant and invariant under the flow regular neighborhoods U and U ′

of K and K ′ and an isotopic to g conjugation of Hamiltonian systems
on U and U ′, preserving χ, K and colorings, if and only if g carries
the first triple to the second one.

Note that the conditions that the conjugation be between U and U ′,
not between P ∗ and (P ∗)′, and that it is isotopic to g are assumed,
actually proved and used in the sequel in [3, Theorem 8.1]. Proof of
the sufficient condition (respectively, the necessary condition) part of
Theorem 3.6 is the same as (respectively, analogous to) [3, Proof of
Theorem 8.1]. In the necessary condition we apply the first isomor-
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phism from Lemma 3.9 below. For an involution χ we denote the set
of its fixed points by fixχ. Denote by P̃ ∗ a closed surface obtained
by attaching disks to the boundary circles of P ∗. The involution χ on
P ∗ obviously extends to an involution on P̃ ∗ which we will denote by
χ̃. Then there is a unique ‘new fixed point,’ i.e., a point of fix χ̃\fixχ
in the interior of each disk from P̃ ∗\P ∗ having χ-invariant boundary
circle. Moreover, these are the only ‘new fixed points.’ Also P̃ ∗/χ̃ ∼= P̃ .

Lemma 3.9. HS1 (P̃
∗) ∼= H1(P̃ ), H1

S(P
∗) ∼= H1(P ) for each

coefficient group.

Proof. The second isomorphism is analogous to the first one. Let
E = fix χ̃. The first isomorphism follows since dimE = 0 and therefore
E does not affect one-dimensional homologies, so we have HS1 (P̃

∗) ∼=
H1(P̃ ) as if E = ∅. More precisely, since fix χ̃|P̃ ∗\E = ∅, it follows that
p∗ : HS1 (P̃

∗\E)→ H1(P̃\pE) is an isomorphism. Denote by a1, . . . , ak
the elements of HS1 (P̃

∗\E) represented by, arbitrarily oriented, small
χ-invariant circles going around points of E. Since HS1 (P̃ ∗) =
HS1 (P̃ ∗\E)/〈a1, . . . , ak〉 and HS1 (P̃ ) ∼= H1(P\pE)/〈pa1, . . . , pak〉, the
map p : HS1 (P̃

∗)→ H1(P ) is an isomorphism; here p : P̃ ∗ → P̃ ∼= P̃ ∗/χ̃
is the projection.

Lemma 3.10 (cf. [3, Propositions 11.2 and 9.1 and corollary of the
proof of Proposition 10.4]). For P �= A and symmetric Hamiltonian
systems on P ∗, induced from that on Q by the Seifert sections f, f ′ :
P ∗ → Q with homologous boundary, we have Λ′ = Λ, ∆′ = ∆,
Z ′ = Z +D(d(f, f ′)). Here D : H1(P̃ ,Z)→ H1(P̃ ,Z) is the Poincaré
duality.

The proof of Lemma 3.10 is analogous to [3, Section 9]. It is based
on the notion of pasting-gluing operation Φd, d ∈ H1(P ) [3, Section 9].
The Hamiltonian system induced by f ′ is obtained from that induced
by f by means of applying the operation Φd(f ′,f). In the proof of
∆′ = ∆ an equivalent definition of ∆ [3, Lemma 8.4] is used.

Definition 3.11. Of Λ,∆,Ξ-labels. (P �= A). Take any collection
{fc} of Seifert sections. By reduction theorem 3.6 there corresponds
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to fc a Hamiltonian system on P ∗
c . Let Λc = Λ(fc), ∆c = ∆(fc),

Ξc = ξ(Z(fc)). Here the homomorphism

ξ : H1(P̃ ,R) −→ H1(P̃ , S1)

is the projection.

Proposition 3.12 (cf. [3, Proposition 11.1]). Two nondegenerate
integrable Hamiltonian systems v and v′ on oriented constant energy
3-manifolds Mh and M ′

h are orbitally topologically equivalent regarding
the orientations of Mh and M ′

h if and only if the corresponding graphs
W and W ′ are isomorphic (we fix an isomorphism and identify W and
W ′), and there exist orientations on edges of W and two families of
admissible collections of bases on boundary tori of 3-atoms of W such
that the corresponding t-labels coincide.

Proof of Proposition 3.12 for the case P �= A is analogous to [3, Proof
of Proposition 11.1]. Case P = A was not actually proved in [3], but it
follows easily from Theorem 3.6b and, since the system on Q ∼= D2×S1

is uniquely defined by the limit of R-vector on the ‘hanging’ edge
of W , corresponding to this atom A. In the proof we also use the
fact that, from the long coefficient exact sequence, corresponding to
the short exact sequence 0 → Z → R → S1, one can obtain that
H1(P,R)/H1(P,Z) ∼= H1(P, S1).

Lemma 3.13. a) (cf. [3, Theorem 11.1]). Let {(λcj , µcj)}, {(λcj , µ′
cj}

be two families of admissible collections of bases. Let s be orientations
of edges of the graph W . Let kc = δd(f ′

c, fc) for P �= A and kc ∈ Z
be such that µ′

c = µc + kcλc for P = A. Construct k+, k− ∈ C1(W,Z)
from {kc} as in the definition of admissible pairs. Then the t-labels
corresponding to s, {(λcj , µcj)} are obtained from those corresponding
to s, {(λcj , µ′

cj)} by the operation (k+, k−).

b) (cf. [3, Section 13.5]). Let µ be a family of admissible collection of
bases. Let l ∈ C1(W,Z2) and s, s′ be orientations of edges of W such
that s′j = sj, respectively opposite to sj if lj = 0, respectively lj = 1.
Then the t-labels corresponding to s′ and µ are obtained from those
corresponding to s and µ by operation l.
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Proof of Lemma 3.13 is analogous to [3, Proof of Theorem 11.1,
Section 13.5].

The proof that every admissible t-labeled graph [3, Definition 12.1]
can be represented by some Hamiltonian system is analogous to [3,
Proofs of Propositions 12.1 and 15.1]. The only alterations are that
we take a symmetric integrable Hamiltonian system realizing the given
triple of invariants not on P but on (no matter which) double P ∗ of P .
We define M̃ = P ∗ × [0, 2π]× (−1, 1), Ω = ω + dHΛ dϕ and the point
(p,H, ϕ) is identified to the point (χp,H, ϕ+ 2π).

4. Epilogue: Obstruction theory for certain Seifert fibra-
tions.

Problem 4.1. Find analogues of Theorem 1.5 for more general
Seifert fibrations [8]; in particular, one-dimensional analogues.

Note that the Euler class of a Seifert fibration [5] is an obstruction to
existence of a classical cross-section outside neighborhoods of singular
fibers.

In most parts of this section we sketch new proofs of Theorem 1.5.
Although the proof from Section 1 is shorter, the new ones, they are in
fact original, better clarify the matter. Conjecture 4.3 and Theorem 4.8
are of independent interest, and so are steps towards Problem 4.1 and
the third proof of Theorem 1.5. We also consider a generalization of
Construction 3.2, when the arcs along which to cut go in arbitrary (not
necessarily white) annuli. Note that not every double can be obtained
by this construction, for example, P has no stars. In Lemma 4.10 we
show how P ∗ depends on the choices in this construction (the answer
is in terms of regluing operation, cf. Definition 4.4).

We use definitions and notation of Section 1 and Construction 3.2.
We assume that a double P ∗ contains a χ-invariant spine K∗, i.e., a
graph such that P ∗\K∗ is a union of annuli, with vertices of degree 4
and such that each star is a vertex of K∗ and the annuli of P ∗\K∗ can
be colored in black an white so that each edge of K∗ is in the boundary
of one black and one white annulus (but P ∗ is not necessarily obtained

by Construction 3.2). By
◦
A we denote the interior of A.
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Problem 4.2. a) Prove that each double P ∗ contains a χ-invariant
spine K∗ with vertices of degree 4 and such that each star is a vertex of
K∗ and the annuli of P ∗\K∗ can be colored in black and white so that
each edge of K∗ is in the boundary of one black and one white annulus.

b) Find conditions on a triple (P ∗,K∗, N) of a surface P ∗, its spine
K∗ and a finite subset N of K under which there exists an involution
χ : P ∗ → P ∗, preserving K∗ and whose set of fixed points is N .

Observe that triples (P ∗,K∗, χ) and ((P ∗)′, (K∗)′, χ′) are homeomor-
phic if and only if triples (P ∗,K∗, fixχ) and ((P ∗)′, (K∗)′, fixχ′) are
(the homeomorphism between the first two triples can be deformed to
that between the second two first on χ-invariant regular neighborhood
of stars in P ∗ then on the union of this neighborhood with K∗, and at
last on P ∗). This is interesting with respect to Theorem 3.8; it shows
that a homeomorphism g in Theorem 3.8 may be assumed to involve
not involutions but merely fixed points.

Sketch of the second proof of Theorem 1.5. The idea is to make
an isotopy of Seifert sections f, g so that f and g will coincide on
neighborhoods of all vertices of K, including stars, and then to define
d(f, g) directly.

Fix an orientation on the fibers of π. Note that the correspondence
d in Theorem 1.5 and in Corollary 1.6 depends on this choice.

Suppose that f, g : P ∗ → Q are Seifert sections. By isotoping them
over π we can obtain new Seifert sections, which we still denote by
f, g, coinciding on the union p−1U of small disk neighborhoods in P ∗

of vertices of K∗. In fact, for neighborhoods of vertices of K∗ which
are not stars, this is obvious. For neighborhoods of stars, this is not so
obvious and even cannot generally be done for graphs (Figure 4.).

But for each star in P ∗, π is a trivial bundle over p∂D2 for some
small disk neighborhood D2 of this star. Therefore we can make an
isotopy so that f = g on ∂D2. Since the set of homotopy classes
(D2, ∂D2)→ (S1, a point) is trivial, it follows that the Seifert section
f |∂D2 can be uniquely up to isotopy extended to a Seifert section on
D2. Accurate proof of this fact would of course involve ideas from
the first proof, Section 1, for the partial case, (P ∗, χ) ∼= (the unit
disk in R2, central symmetry). Since the set of homotopy classes
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(D1, ∂D1) → (S1, a point) is nontrivial, it follows that the Seifert
section f |∂D1 can be nonuniquely up to isotopy extended to a Seifert
section on D1 (for example, Figure 5a). Note that there are Seifert
sections f : ∂D2 → Q nonextendable to Seifert sections f : D2 → Q
(Figure 5b).

For each edge k of K, π1(k\
◦
U) is an annulus (Figure 5). Note that

π−1(k) is not always an annulus, as claimed in [3, Section 11.2]. Let
λ be the unit cycle on this annulus, whose orientation is defined by
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�
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FIGURE 5.
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the fibers of π. Since f = g on p−1U and f, g are embeddings, it
follows that the cases of Figure 5b,c are impossible. Therefore the

oriented cycle ‘fp1(k\
◦
U) − gp−1(k\

◦
U)’ equals 2mλ for some m ∈ Z.

Let m(f, g) ∈ C1(K) be the cochain constituted by the above m’s. The
cochain m(f, g) depends on the choice of the isotopy from the previous
paragraph up to coboundaries from B1(K). Let d(f, g) ∈ H1(K) be
the class of m(f, g). It is now easy to verify that d is a difference map.
Hence X is in one-to-one correspondence with H1(K) ∼= H1(P ).

Let

H1
N

(
K,
1
2
Z

)
= Z1

N

(
K,
1
2
Z

)
/δC0

N

(
K,
1
2
Z

)

and

H1
N (K,Z2) = Z1

N (K,Z2)/δC0
N (K,Z2),

where index N means that 1/2 and 1 appear only on stars or edges,
adjacent to stars. Actually, H1

N (K, (Z/2)) = H1(K, {π1(π−1x)}), and
the same for Z2-coefficients. From the long coefficient exact sequence,
corresponding to the short exact sequence 0→ Z → (Z/2)→ Z2 → 0,
we can obtain the short exact sequence

0 −→ H1(K,Z) = H1
N (K,Z)

ϕ−→ H1
N

(
K,
1
2
Z

)
ψ−→ H1

N (K,Z2) −→ 0.

Sketch of the third proof of Theorem 1.5. Fix an orientation on the
fibers of π. For Seifert sections f, g : P ∗ → Q make an isotopy so
that they will coincide on vertices of K∗. Define d(f |K∗ , g|K∗) as in
the sketch of the second proof of Theorem 1.5 (Figure 5). Since g|K∗

extends to P ∗, by Conjecture 4.3a it follows that the case from Figure 5c
is still impossible. But the case from Figure 5b is now possible for
edges k adjacent to stars. Therefore, d(f |K∗ , g|K∗) ∈ H1

N (K, (Z/2)). It
actually follows from Conjecture 4.3b that ψd(f |K∗ , g|K∗) = 0. Hence,
by exactness, d(f, g) ∈ Imϕ ∼= H1(K). It is now easy to verify that
d is a difference map. Hence X is in one-to-one correspondence with
H1(K) ∼= H1(P ).
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Hereafter, until the end of Section 4, we omit the graph K and Z2-
coefficients from the notation of (co)chain and (co)homology groups,
and we indicate Z-coefficients. Note that

H1
N = C1

N/B
1
N = C1

N/(C
1
N ∩B1) ∼= (C1

N +B1)/B1 ⊂ H1.

Extension conjecture 4.3. Let f : P ∗ → Q be a Seifert section.

a) The Seifert section g′ : K∗ → π−1K extends to a Seifert section
g : V ∗ → Q for some double V ∗ of P ∗/χ if and only if d(f |K∗ , g′) ∈
H1
N , that is, the case of Figure 5c is impossible for each edge k ⊂ K.

b) The Seifert section g′ : K∗ → π−1K, K∗ ⊂ P ∗, extends to a
Seifert section g : P ∗ → Q if and only if ψd(f |K∗ , g′) = 0 ∈ H1

N .

On Figure 5a there is an example of a Seifert section f : K∗ →
π−1(K) ⊂ Q(P ) nonextendable to a Seifert section f : P ∗ → Q(P ) for
any double P ∗ of P . The informal formulation of Conjecture 4.3a is
that all examples are of such type.

Conjecture 4.3b follows from Conjecture 4.3a, Lemma 4.5 and The-
orem 4.6 below. Lemma 4.5 is proved analogously to [3, Proposition
11.2].

Definition 4.4. Of the regluing operation Ψd (cf. [3, Section
9]). Let P ∗ be a double of P . Suppose that we are given a cochain
c ∈ C1, i.e., edges of K are framed with zeros and units so that an
edge k is framed with zero whenever no vertex of k is a star. For each
pair of χ-symmetric edges k and χk of a given graph K∗ such that
c(pk) = 1 make the following operation, Figure 6. Cut the surface P ∗

along χ-symmetric arcs, transverse to k and χk and going to ∂P ∗. Glue
edges of different cuts that are not χ-symmetric so that the resulting
surface is orientable. The operation Ψc obviously change involution χ,
graph K and projection p. Evidently, Ψc(K∗) is a double of K and
Ψb ◦ Ψc = Ψb+c. Also Ψc = id for c ∈ B1; it suffices to check this for
characteristic coboundaries for which this is obvious. So for [c] ∈ H1,
let Ψ[c] be the operation Ψc.

Note that not all doubles of a given P can be obtained from one
double by regluings Ψd, d ∈ H1

N , for example, P has no stars. All
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!

FIGURE 6.

doubles can be obtained by regluings Ψd, d ∈ H1. This fact, Lemma 4.5
and Conjecture 4.8 imply that Q(P ∗) depends only on P not on P ∗

[9], [5, Definition 2.2].

Lemma 4.5. Let P ∗, V ∗ be doubles of P and f : P ∗ → Q,
g : V ∗ → Q Seifert sections. Then V ∗ = Ψψd(g,f)(P ∗).

Theorem 4.6. Let P ∗ be a double of P . Then d → Ψd(P ∗) is a
one-to-one correspondence between H1 and the set of doubles of P up
to homeomorphism over p. In particular, Ψd(P ∗) ∼= P ∗ over p if and
only if d = 0 ∈ H1.

Proof. Let us prove the injectivity of the above map. For each vertex
of P ∗ take the four edges ofK∗, adjacent to this vertex. Cut the surface
P ∗ along two pairs of arcs, transverse to these edges and going to ∂P ∗;
if the edges are χ-symmetric, then the arcs are χ-symmetric. Make the
same operation for Ψd(P ). It is easy to define a homeomorphism h,
over p, between the corresponding connected components of such cut
doubles. Once h is fixed, there is an element c ∈ C1

N that is zero if
and only if h can be extended to a homeomorphism, over p, of doubles.
This c depends on the choice of h up to coboundaries from B1

N . So the
class of c in H1

N is the complete obstruction to Ψd(P ∗) ∼= P ∗ over p.
The surjectivity is proved by the same ideas.

Observe that Ψd(K∗) ∼= K∗ over p if and only if d ∈ H1
N .
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Definition 4.7. Suppose that we have two doubles P ∗, V ∗ of P .
Two Seifert sections f : P ∗ → Q and g : V ∗ → Q are equivalent if
there exists a homeomorphism h : P ∗ → V ∗ over the projection to P
such that the Seifert section g ◦ h is isotopic to f over π.

Second classification theorem 4.8. The set XP of Seifert sec-
tions f : P ∗ → Q with fixed P , up to equivalence, is in one-to-one
correspondence with H1(P, (Z/2)). In fact, there is a difference map
d : XP ×XP → H1(P, (Z/2)).

Theorem 4.8 follows from Theorems 1.5 and 4.6.

Sketch of another proof of Theorem 4.8. Analogously to the third
proof of Theorem 1.5, the only alteration is that we can make an isotopy
of Seifert sections f : P ∗ → Q and g : V ∗ → Q so that for the new
maps, denote them also by f, g, we obtain f(p−1

1 a) = g(p−1
2 a) for each

vertex a ∈ K. So the case from Figure 5b is now possible for each edge
k ⊂ K. Since g|K∗ extends to P ∗, by Conjecture 4.3a it follows that
the case from Figure 5c is still impossible. Also we need to remark that
every double P ∗ has the only nontrivial autohomeomorphism over p,
that is, χ, and f ◦ χ is isotopic to f over π for each Seifert section f .

Definition 4.9. Of the regluing operation Ψα. Let P ∗ be a
double of P constructed as in Construction 3.2, only the arcs along
which to cut are arbitrary, not necessarily white, annuli. For a chain
α ∈ C0(N), let Ψα(P ∗) be a new double of P ∗ which is constructed
by making cuts from any star a in the same direction (as in the
construction of P ∗) if α(a) = 0 and in the opposite direction if α(a) = 1.
Operation Ψα obviously changes involution χ, graph K and projection
p. Evidently, Ψα ◦Ψβ = Ψα+β .

Lemma 4.10 a) Suppose that α ∈ C0(N). For each Aj ∈ N
take any edge k(Aj) with vertex Aj. For each edge k of K, let
d(k) =

∑
k(Aj)=k

α(Aj). Then Ψα = Ψ[d].

b) Suppose that d ∈ C1
N . For each edge k of K adjacent to a star take
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any star a(k) ∈ k ∩ N . For each Aj ∈ N let α(Aj) =
∑
a(k)=Aj

d(k).
Then Ψ[d] = Ψα.

Sketch of the proof. It suffices to prove only a) and only for the case
of a characteristic chain α (see Figure 7).

Lemma 4.11. The subgroup of chains α ∈ C0(N) for which
Ψα(P ∗) ∼= P ∗ over p is generated by

{∂BχB | B is the closure of a connected component of K\N}.

Here χB ∈ C1(B) is the characteristic chain of B and ∂B is the
composition C1(B)

∂→ C0(B) ⊃ C0(N ∩ B) i→ C0(N), Im ∂ ∈ C0(N ∩
B).

Sketch of the proof. Follows by Theorem 4.6 and Lemma 4.10.
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