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On some variational algebraic problems

Giovanni Molica Bisci and Dušan Repovš

Abstract. In this paper by exploiting critical point theory, the existence of two distinct
nontrivial solutions for a nonlinear algebraic system with a parameter is established. Our
goal is achieved by requiring an appropriate behavior of the nonlinear term f at zero and
at infinity. Some applications to difference equations are also presented.
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1 Introduction

In this paper we deal with the following problem:

Au D �f .u/; (Sf
A;�

)

where u D .u1; : : : ; un/t 2 Rn is a column vector in Rn, A D .aij /n�n is a given
positive definite matrix, f .u/ WD .f1.u1/; : : : ; fn.un//t with fk W R! R a con-
tinuous function for every k 2 ZŒ1; n� WD ¹1; : : : ; nº, and � is a positive parameter.

Discrete problems involving functions with two or more discrete variables are
very relevant and have been deeply investigated. Such great interest is undoubtedly
due to the advance of modern digital computing devices.

Indeed, since these relations can be simulated in a relatively easy manner by
means of such devices and since such simulations often reveal important infor-
mation about the behavior of complex systems, a large number of recent inves-
tigations related to image processing, population models, neural networks, social
behaviors, digital control systems are described in terms of such functional rela-
tions.

Moreover, a large number of problems can be formulated as special cases of
the nonlinear algebraic system (Sf

A;�
). For a survey on these topics we cite the

recent paper [25]. A similar approach has also been used in others works (see for
instance, the papers [21–23] and [24, 26, 27]).
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128 G. Molica Bisci and D. Repovš

Here, motivated by the interest on the subject, by using variational methods in
finite dimensional setting, we prove the existence of two nontrivial solutions for
suitable values of the parameter �.

More precisely, in Theorem 3.1 we prove the existence of two nontrivial so-
lutions, for every � sufficiently large, by only requiring sublinear conditions at
infinity and an appropriate behaviour of the nonlinear terms at zero.

In Theorem 3.4 we determine an open interval of positive parameters such
that problem (Sf

A;�
) admits at least two nontrivial solutions which are uniformly

bounded in norm with respect to the parameter �.
Our main tool, in this case, is a useful abstract result obtained in [3, Theo-

rem 2.1] which ensures the existence of an open interval ƒ � .0;C1/ such that
for each � 2 ƒ the function J� associated to problem (Sf

A;�
) admits two critical

points which are uniformly bounded in norm with respect to � (see also [5, 6] for
related topics).

A direct application of our result to fourth-order difference equations yields the
following:

Proposition 1.1. Assume that

sup
t2R

nX
kD1

Z t

0

fk.s/ds > 0;

in addition to

lim
jsj!1

fk.s/

s
D lim
s!0

fk.s/

s
D 0;

for every k 2 ZŒ1; n�. Then there exist a nonempty open interval ƒ � .0;C1/
and a number  > 0 such that for every � 2 ƒ, problem8̂̂<̂

:̂
�4uk�2 D �fk.uk/; 8 k 2 ZŒ1; n�;

u�2 D u�1 D u0 D 0;

unC1 D unC2 D unC3 D 0;

(Df
�

)

has at least two distinct, nontrivial solutions u1
�
; u2
�
2 Rn, and

kui�k2 < ; i 2 ¹1; 2º:

Further, requiring a suitable growth of the primitive of f , we are able to estab-
lish suitable intervals of values of the parameter � for which the problem (Sf

A;�
) ad-

mits at least three weak solutions. More precisely, the main result ensures the exis-
tence of two real intervals of parametersƒ1,ƒ2 such that, for each � 2 ƒ1 [ƒ2,
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On some variational algebraic problems 129

the problem (Sf
A;�

) admits at least three weak solutions whose norms are uni-
formly bounded with respect to every � 2 ƒ2 (see Theorem 3.5 and Example 3.7).
Our method is mostly based on a useful critical point theorem given in [4, Theo-
rem 3.1].

In conclusion, we also emphasize that if the functions fk are nonnegative, for
every k 2 ZŒ1; n�, our results guarantee two positive solutions (see Remark 3.8 for
more details). For a complete and exhaustive overview of variational methods we
refer the reader to the monographs [1, 16, 19].

The plan of the paper is as follows. In Section 2 we introduce some basic no-
tations. In Section 3 we obtain our existence results (see Theorems 3.1 and 3.4).
Finally, in Section 4, some concrete examples of applications of the obtained re-
sults are presented.

2 Preliminaries

As the ambient space X , we consider the n-dimensional Banach space Rn en-
dowed by the norm

kuk2 WD

 
nX
kD1

u2k

!1=2
:

More generally, we set

kukr WD

 
nX
kD1

jukj
r

!1=r
.r � 1/

for every u 2 X .
Let Xn denote the class of all symmetric and positive definite matrices of order

n. Further, we denote by �1; : : : ; �n the eigenvalues of A ordered as follows:
0 < �1 � � � � � �n.

It is well known that if A 2 Xn, for every u 2 X , then one has

�1kuk
2
2 � u

tAu � �nkuk
2
2; (2.1)

and
kuk1 �

1
p
�1
.utAu/1=2; (2.2)

where kuk1 WD maxk2Œ1;n� jukj.
From now on we will assume that A 2 Xn. Set

ˆ.u/ WD
utAu

2
; ‰.u/ WD

nX
kD1

Fk.uk/ and J�.u/ WD ˆ.u/��‰.u/; (2.3)
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130 G. Molica Bisci and D. Repovš

for every u 2 X , where

Fk.t/ WD

Z t

0

fk.s/ds; for every .k; t/ 2 ZŒ1; n� �R:

Standard arguments show that J� 2 C 1.X;R/ as well as that the critical points
of J� are exactly the solutions of problem (Sf

A;�
).

Indeed, a column vector u D .u1; : : : ; un/t 2 X is a critical point of the func-
tional J� if the gradient of J� at u is zero, i.e.,

@J�.u/

@u1
juDu D 0;

@J�.u/

@u2
juDu D 0; : : : ;

@J�.u/

@un
juDu D 0:

Moreover, for every k 2 ZŒ1; n�, one has that

@utAu

@uk
D 2.Au/k;

where .Au/k WD
Pn
jD1 akjuj . Thus

@J�.u/

@uk
D .Au/k � �fk.uk/; for all k 2 ZŒ1; n�;

which yields our assertion.

3 Main results

Our first result is a multiplicity theorem obtained as a consequence of Tonelli’s ap-
proach together with a careful analysis of the meaningful Mountain Pass geometry
of the functional J�. More precisely, we consider the case when the continuous
functions fk W R! R fulfill the following hypotheses:

(h1) For every k 2 ZŒ1; n�,

lim
jsj!1

fk.s/

s
D 0:

(h2) There exists �0 > 1 such that

lim
jsj!0

fk.s/

jsj�0
D 0;

for every k 2 ZŒ1; n�.

Note that a typical example when (h1) holds is the following:

(h?1) There exist q 2 .0; 1/ and c > 0 such that jfk.s/j � cjsjq , for every s 2 R.
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With the above notations, we can prove the following multiplicity result.

Theorem 3.1. Assume that conditions (h1) and (h2) hold in addition to

sup
t2R

nX
kD1

Fk.t/ > 0:

Then:

(i) There exists a positive parameter �? given by

�? WD

�Tr.A/C 2
P
i<j aij

2

��
max
t¤0

Pn
kD1 Fk.t/

t2

��1
;

such that, for every � > �?, problem (Sf
A;�

) has at least two distinct, non-
trivial solutions u1

�
; u2
�
2 Rn, where u1

�
is the global minimum of the energy

functional J� associated to (Sf
A;�

).

(ii) If (h?1) holds, then

ku1�k2 D o.�
1=.1�r//; for every r 2 .q; 1/;

but
ku1�k2 ¤ O.�

1=.1��//; for every � > 1;

as �!1.

Proof. Due to conditions (h1) and (h1) the term Fk.t/=t
2 tends to zero as jt j ! 1

and t ! 0, respectively. Moreover, since

sup
t2R

nX
kD1

Fk.t/ > 0;

there exists t0 2 R such that
nX
kD1

Fk.t0/ > 0:

Thus, the value �? is well-defined. Hence, there exists a number t? 2 R n ¹0º such
that Pn

kD1 Fk.t?/

t2?
D max

t¤0

Pn
kD1 Fk.t/

t2
:

So

�? WD

�Tr.A/C 2
P
i<j aij

2

�
t2?Pn

kD1 Fk.t?/
:
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132 G. Molica Bisci and D. Repovš

At this point fix � > �? and let us first consider the vector u? 2 X of compo-
nents u?

k
D t?; for every k 2 ZŒ1; n�.

One has

J�.u
?/ D ˆ.u?/ � �‰.u?/ D

�Tr.A/C 2
P
i<j aij

2

�
t2? � �

nX
kD1

Fk.t?/

D .�? � �/

nX
kD1

Fk.t?/ < 0:

Thus infu2X J�.u/ � J�.u?/ < 0. Due to (h1), for an arbitrarily " < �1
�

there
exists c."/ > 0 such that

Fk.t/ � jFk.t/j �
"

2
t2 C c."/jt j;

for every t 2 R and k 2 ZŒ1; n�. Consequently, from the left-hand side of (2.1),
we have

J�.u/ �

�
�1 � �"

2

�
kuk22 � �c1c."/kuk2;

where c1 is a positive constant such that kuk1 � c1kuk2, for every u 2 X .
It follows from this that J� is bounded from below and coercive. Hence, since

our ambient space is finite dimensional, the functional J� satisfies the classical
compactness (PS)-condition.

Since J� verifies the (PS)-condition and it is bounded from below, by [16, Theo-
rem 1.7], one can fix u1

�
2 X such that J.u1

�
/ D infu2X J�.u/. Therefore, u1

�
2 X

is the first solution of (Sf
A;�

) and u1
�
¤ 0, since J�.0X / D 0.

Now, we prove that for every � > �? the functional J� has the standard Moun-
tain Pass geometry. Indeed, by (h1) and (h2), one can fix two constants � > 1 and
C > 0 such that

jFk.t/j � C jt j
�C1;

for every t 2 R and k 2 ZŒ1; n�. Moreover, bearing in mind condition (2.1), one
has

J�.u/ D ˆ.u/ � �‰.u/

�
�1

2
kuk22 � �Ckuk

�C1
�C1

�
�1

2
kuk22 � �c

�C1
�C1Ckuk

�C1
2 ; (3.1)

where c�C1 is a positive constant such that

kuk�C1 � c�C1kuk2; for all u 2 X:
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Let us take �� > 0 to be so small that

�� < min
²�

�1

2�c�C1�C1C

� 1
��1

;
p
njt?j

³
:

By (3.1), for every u 2 X complying with kuk2 D ��, we have

J�.u/ �

�
�1

2
� �c�C1�C1Ckuk

��1
2

�
kuk22

D

�
�1

2
� �c�C1�C1C�

��1
�

�
�2�

DW �.��/ > 0:

By construction, one has kuk2 D
p
njt?j > ��, and J.u?/ < 0 D J�.0X /.

Hence, we can apply the Mountain Pass Theorem (see [16, Theorem 1.13]).
Thus, there exists u2

�
2 X such that J 0.u2

�
/ D 0 and J�.u2�/ � �.��/ > 0. Fur-

ther, u2
�
¤ 0X and the vectors u1

�
and u2

�
are distinct. The proof of point (i) is

complete.
Now, we assume that (h?1) holds. Since J�.u1�/ < 0, it follows that

�1

2
ku1�k

2
2 �

�c

.q C 1/
c
qC1
qC1kuk

qC1
2 � J�.u

1
�/ < 0:

In particular, ku1
�
k2 D O.�

1=.1�q// as �!1. Therefore, for any r 2 .q; 1/, one
has ku1

�
k2 D o.�

1=.1�r// as �!1.
Let us assume that ku1

�
k2 D O.�

1=.1��// for some � > 1 as �!1. Then
ku1
�
k2 ! 0 as �!1. On the other hand,

J.u1�/ � .�
?
� �/

nX
kD1

Fk.t?/;

hence J�.u1�/! �1. Now, since

�1

2
ku1�k

2
2 � �c

�C1
�C1Cku

1
�k
�C1
2 � J�.u

1
�/;

one has �
�1

2
� �c

�C1
�C1Cku

1
�k
��1
2

�
ku1�k

2
2 ! �1;

as �!1. This fact contradicts the initial assumption.
The proof is thus complete.

Remark 3.2. We observe that Theorem 3.1 can be checked by a careful analysis
of a three critical points theorem contained in [7, Theorem 3.6].
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134 G. Molica Bisci and D. Repovš

Now, instead of (h2) we will assume a weaker condition, namely:

(h02) lims!0
fk.s/
s
D 0, for every k 2 ZŒ1; n�.

The next theorem below shows that assumption (h02) is still strong enough to
prove a similar multiplicity result as Theorem 3.1. In this setting we obtain that
the solutions are uniformly bounded in norm with respect to the parameter � but,
unfortunately, we lose the precise location of the eigenvalues. The main tool for
our goal is a theoretical result given in [3, Theorem 2.1] (see, for completeness,
[16, Theorem 1.13]).

We prove the following preliminary fact.

Proposition 3.3. Assume that condition (h1) holds in addition to (h02). Then

lim
%!0C

supu2ˆ�1.��1;%Œ/‰.u/

%
D 0:

Proof. Due to (h02), for an arbitrary small " > 0 there exists ı" > 0 such that

jfk.s/j < "jsj;

for every jsj < ı" and k 2 ZŒ1; n�. On the other hand, on account of (h1), one can
fix � > 1 and

jfk.s/j < "jsj
� ;

for every jsj � ı" and k 2 ZŒ1; n�. Combining these two facts, we obtain

Fk.t/ � "
t2

2
C

c."/

.� C 1/
jt j�C1;

for every t 2 R and k 2 ZŒ1; n�.
Now, fix % > 0. For every u 2 ˆ�1.� �1; %Œ/, due to the above estimates, we

have

‰.u/ �
"

2
kuk22 C

c."/

.� C 1/
c�C1�C1kuk

�C1
2 <

"%

�1
C c."/

c�C1�C1

.� C 1/

�
2%

�1

��C1
2

;

taking into account that

¹u 2 X W utAu < 2%º �

´
u 2 X W kuk2 <

�
2%

�1

�1=2µ
:

Thus, there exists %."/ > 0 such that, for every 0 < % < %."/, we have

0 �
supu2ˆ�1.��1;%Œ/‰.u/

%
<

"

�1
C c."/

%
��1
2

.� C 1/

�
2

�1

��C1
2

< ";

which completes the proof.
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Our multiplicity result reads as follows.

Theorem 3.4. Assume that conditions (h1) and (h02) hold. Then there exist a non-
empty open intervalƒ � .0;C1/ and a number  > 0 such that for every � 2 ƒ,
problem (Sf

A;�
) has at least two distinct, nontrivial solutions u1

�
; u2
�
2 X; and

kui
�
k2 <  , i 2 ¹1; 2º.

Proof. Let X WD Rn, and consider the functionals ˆ and ‰ defined in (2.3). Note
that J� WD ˆ � �‰. We already know that for every positive parameter � the func-
tional J� is coercive and consequently satisfies the Palais–Smale condition, be-
cause X is finite dimensional.

Due to the fact that the functions fk are sublinear at infinity and superlinear at
zero, the terms Fk.t/=t2 ! 0 as jt j ! 1 and t ! 0, respectively.

Since supt2R

Pn
kD1 Fk.t/ > 0, there exists t0 2 R such that

Pn
kD1 Fk.t0/ > 0,

and we may fix a number t? 2 R n ¹0º such thatPn
kD1 Fk.t?/

t2?
D max

t¤0

Pn
kD1 Fk.t/

t2
:

Therefore the number

�? WD

�Tr.A/C 2
P
i<j aij

2

�
t2?Pn

kD1 Fk.t?/
;

is well-defined.
Now, let us choose u0 D 0X and u1 2 X such that

u1k D t?; for every k 2 ZŒ1; n�:

Fixing " 2 .0; 1/, due to Proposition 3.3, one can choose % > 0 such that

supu2ˆ�1.��1;%Œ/‰.u/

%
<

"

�?
and % <

�Tr.A/C 2
P
i<j aij

2

�
t2? :

Note that

"

�?
<

1

�?
D
‰.u1/

ˆ.u1/
and ˆ.u1/ D

�Tr.A/C 2
P
i<j aij

2

�
t2? :

Therefore, by choosing

a WD
1C "

‰.u1/

ˆ.u1/
�

sup
u2ˆ�1.��1;%Œ/

‰.u/

%

;

all the assumptions of [3, Theorem 2.1] can be verified.
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136 G. Molica Bisci and D. Repovš

Hence, there exist a non-empty open interval ƒ � Œ0; a� and a positive real 
such that for every � 2 ƒ, the functional J� admits at least three distinct critical
points in X having k � k2-norm less than  . The proof is complete.

As a direct application of [4, Theorem 3.1] we give the following multiplicity
property.

Theorem 3.5. Let fk W R! R be a continuous function for every k 2 ZŒ1; n�.
Assume that there exist positive constants  and ı such that

(g1) ı > . �1
Tr.A/C2

P
i<j aij

/1=2 .

(g2) The following inequality holds:
nX
kD1

max
j�j�

Fk.�/ < �.; ı/

 
nX
kD1

Fk.ı/

!
;

where

�.; ı/ WD
�1

2

�12 C .Tr.A/C 2
P
i<j aij /ı

2
:

Further, require that

(g3) lim supj�j!1
Fk.�/

�2
< �1

2
, for all k 2 ZŒ1; n�.

Then, for each
� 2 ƒ1 WD

�
�?1 ; �

?
2

�
;

where

�?1 WD
Tr.A/C 2

P
i<j aij

2
�Pn

kD1 Fk.ı/ �
Pn
kD1 maxj�j� Fk.�/

� ;
and

�?2 WD
�1

2

2
�Pn

kD1 maxj�j� Fk.�/
� ;

problem (Sf
A;�

) has at least three distinct solutions and, moreover, for each h > 1,
there exists an open interval

ƒ2 �
�
0; �?3;h

�
;

where

�?3;h WD
�1h

2

2
�
�12

� Pn
kD1 Fk.ı/

Tr.A/C2
P
i<j aij

�
�
Pn
kD1 maxj�j� Fk.�/

� ;
and a positive real number � > 0 such that, for each � 2 ƒ2, problem (Sf

A;�
) has

at least three solutions whose norms are less than � .
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Proof. We use the notations adopted above. Our aim is to apply [4, Theorem 3.1].
First of all let us verify that J� is a coercive functional for every positive parame-
ter �. By (g3) there are constants � 2 �0; �1=2Œ and � > 0 such that

1

�2

Z �

0

fk.s/ds <
�1

2
� �; (3.2)

for every j�j � � and k 2 ZŒ1; n�. Let us put

M1 WD max
.k;�/2ZŒ1;n��Œ��;��

Z �

0

fk.s/ds: (3.3)

At this point note that, for every � 2 R and k 2 ZŒ1; n�, one hasZ �

0

fk.s/ds �M1 CM2�
2;

where

M2 WD
�1

2
� �:

Moreover, the following inequality holds:

J�.u/ �
utAu

2
�

nX
kD1

�
M1 CM2u

2
k

�
; for all u 2 X:

Hence,

J�.u/ �
utAu

2
�M2kuk

2
2 � nM1; for all u 2 X;

and by relation (2.1), one has

J�.u/ � �kuk
2
2 � nM1; for all u 2 X; (3.4)

which clearly shows that

lim
kuk2!1

J�.u/ D C1: (3.5)

Hence J� is coercive for every positive parameter � > 0.
Next, consider the vector u? 2 X of components u?

k
D ı; for every k 2 ZŒ1; n�.

Thus

ˆ.u?/ D

�Tr.A/C 2
P
i<j aij

2

�
ı2: (3.6)

Put

r WD
�1

2
2:
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It follows now from (g1) thatˆ.u?/ > r . Further, we explicitly observe that, in
view of (2.2), one has

ˆ�1.� �1; rŒ/ � ¹u 2 X W kuk1 � º: (3.7)

Moreover, taking (3.7) into account, a direct computation ensures that

sup
u2ˆ�1.��1;rŒ/

‰.u/ �

nX
kD1

max
j�j�

Fk.�/: (3.8)

At this point, by definition of u?, we can clearly write

‰.u?/ D

nX
kD1

Fk.u
?/ D

nX
kD1

Fk.ı/: (3.9)

Moreover, by using hypothesis (g2) from (3.8) and (3.9), we have

sup
u2ˆ�1.��1;rŒ/

‰.u/ <
r

r Cˆ.u?/
‰.u?/;

taking into account that
r

r Cˆ.u?/
D �.; ı/:

Thus, we can apply [4, Theorem 3.1], bearing in mind that

ˆ.u?/

‰.u?/ � supu2ˆ�1.��1;rŒ/‰.u/
� �1;

and
r

supu2ˆ�1.��1;rŒ/‰.u/
� �2

as well as
hr

r ‰.u
?/

ˆ.u?/
� supu2ˆ�1.��1;rŒ/‰.u/

� �?3;h:

The proof is complete.

Remark 3.6. As observed in [4, Remark 2.1], the real intervals ƒ1 and ƒ2 in
Theorem 3.5 are such that either

ƒ1 \ƒ2 D ;;

or
ƒ1 \ƒ2 ¤ ;:

In the first case, we actually obtain two distinct open intervals of positive real
parameters for which problem (Sf

A;�
) admits two nontrivial solutions; otherwise,
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we obtain only one interval of positive real parameters, precisely ƒ1 [ƒ2, for
which problem (Sf

A;�
) admits three solutions and in addition, the subinterval ƒ2

for which the solutions are uniformly bounded.

The following is a simple application of Theorem 3.5.

Example 3.7. Let gk W R! R be as follows:

gk.s/ WD

´
0 if s < 2,
k
p
s � 2 if s � 2,

whose potentials are given by

Gk.t/ WD

Z t

0

gk.s/ds D

´
0 if t < 2,
2k
3
.t � 2/3=2 if t � 2,

for every k 2 ZŒ1; n�. Consider the algebraic nonlinear system

Au D �g.u/; (Sg
A;�

)

where A 2 Xn and g.u/ WD .g1.u1/; : : : ; gn.un//t .
We observe that there exist two positive constants  D 2 and

ı > 2max

´
1;

�
�1

Tr.A/C 2
P
i<j aij

�1=2µ
;

such that all the conditions of Theorem 3.5 hold. Then for each

� 2 ƒ01 WD
�
�?1 ;C1

�
;

where

�?1 WD
Tr.A/C 2

P
i<j aij

2
�Pn

kD1Gk.ı/
� ;

problem (Sg
A;�

) has at least three distinct solutions (two nontrivial) and moreover,
for each h > 1, there exist an open interval

ƒ02 �
�
0; �?3;h

�
;

where

�?3;h WD h
Tr.A/C 2

P
i<j aij

2
�Pn

kD1Gk.ı/
� D h�?1 ;

and a positive real number � > 0 such that for each � 2 ƒ02, problem (Sg
A;�

) has
at least three solutions whose norms are less than � .
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Remark 3.8. A vector u WD .u1; : : : ; un/t 2 Rn is said to be positive (nonnega-
tive) if uk > 0 (uk � 0) for every k 2 ZŒ1; n�. Now, let A 2 Xn and consider the
following conditions:

(A1) If i ¤ j , then aij � 0.

(A2) For every i 2 ZŒ2; n�, there exists ji < i such that aiji < 0.

Assume that (A1) holds. Then, if u WD .u1; : : : ; un/t 2 X is a solution of

nX
jD1

aijuj � 0; for all i 2 ZŒ1; n�; (S?A )

then ui � 0, for every i 2 ZŒ1; n� (see [11, 28] and [9, Proposition 2.1]). If, in
addition to (A1), condition (A2) holds, then any solution of (S?A ) is trivial or other-
wise is positive (see [9, Proposition 2.2]). Hence, if fk are nonnegative, for every
k 2 ZŒ1; n�, our results guarantee the existence of two nonnegative solutions if A
satisfies hypothesis .A1/. Finally, if (A2) holds together with (A1), then the ob-
tained solutions are positive.

4 Applications

In this section we present some direct applications to discrete equations.

4.1 Tridiagonal matrices

Let n > 1 and .a; b/ 2 R� �RC be such that

cos
�

�

nC 1

�
< �

b

2a
:

Set

Tridn.a; b; a/ D

0BBBBBBB@

b a 0 : : : 0

a b a : : : 0

: : :

0 : : : a b a

0 : : : 0 a b

1CCCCCCCA
n�n

:

Note that Tridn.a; b; a/ is a symmetric and positive definite matrix whose first
eigenvalue is given by

�1 D b C 2a cos
�

�

nC 1

�
;
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see, for instance, [20, Example 9, page 179]. In this setting an important case is
given by the following matrix:

Tridn.�1; 2;�1/ WD

0BBBBBBB@

2 �1 0 : : : 0

�1 2 �1 : : : 0

: : :

0 : : : �1 2 �1

0 : : : 0 �1 2

1CCCCCCCA
n�n

2 Xn;

which is associated to the second-order discrete boundary value problem´
��2uk�1 D �fk.uk/; 8 k 2 ZŒ1; n�;

u0 D unC1 D 0;
(Sj
�

)

where �2uk�1 WD �.�uk�1/, and, as usual, �uk�1 WD uk � uk�1 denotes the
forward difference operator. We point out that the matrix Tridn.�1; 2;�1/ was
considered in order to study the existence of nontrivial solutions of nonlinear
second-order difference equations [8, 14, 15, 17]. For completeness, we just men-
tion here that there is a vast literature on nonlinear difference equations based
on fixed point and upper and lower solution methods (see, for instance, the pa-
pers [2, 12]).

Example 4.1. By Theorem 3.4, there are a non-empty open intervalƒ� .0;C1/
and a number  > 0 such that for every � 2 ƒ, the following problem,

Tridn.a; b; a/u D �g.u/; (T g
�

)

where g.u/ WD .g1.u1/; : : : ; gn.un//t , in which

gi .ui / WD

8̂<̂
:
�iu2i if ui � 0,
iui

logui
if 0 < t � e�1,

�
i
e

if ui > e�1,

has at least two distinct nontrivial solutions u1
�
; u2
�
2 Rn, and

kui�k2 < ; i 2 ¹1; 2º:

Note that g in Example 4.1 satisfies (h02) but not (h2) for any constant �0 > 1.
Therefore, one can apply Theorem 3.4 but not Theorem 3.1.
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4.2 Fourth-order difference equations

As it is well known, boundary value problems involving fourth-order difference
equations such as 8̂̂<̂

:̂
�4uk�2 D �fk.uk/; 8 k 2 ZŒ1; n�;

u�2 D u�1 D u0 D 0;

unC1 D unC2 D unC3 D 0;

(Df
�

)

can also be expressed as the problem (Sf
A;�

), where A is the real symmetric and
positive definite matrix of the form

A WD

0BBBBBBBBBBBBBBBBB@

6 �4 1 0 : : : 0 0 0 0

�4 6 �4 1 : : : 0 0 0 0

1 �4 6 �4 : : : 0 0 0 0

0 1 �4 6 : : : 0 0 0 0

: : :

0 0 0 0 : : : 6 �4 1 0

0 0 0 0 : : : �4 6 �4 1

0 0 0 0 : : : 1 �4 6 �4

0 0 0 0 : : : 0 1 �4 6

1CCCCCCCCCCCCCCCCCA

2 Xn:

Hence, Proposition 1.1 is a direct consequence of Theorem 3.4.

4.3 Partial difference equations

A lattice point z WD .i; j / in the plane is a point with integer coordinates. Two
lattice points are said to be neighbors if their Euclidean distance is one. An edge
is a set ¹z; z?º consisting of two neighboring points, whereas a directed edge is
an ordered pair .z; z?/ of neighboring points. A path between two lattice points z
and z? is a sequence z D z0; : : : ; zs D z? of lattice points such that zi and ziC1
are neighbors for 0 � i � s � 1. A set S of lattice points is said to be connected if
there is a path contained in S between any two points of S . A finite and connected
set of lattice points is called a net. An exterior boundary point of a net S is a
point outside S but has a neighbor in S . The set of all exterior boundary points
is denoted by @S . The set of all edges of S is denoted by �.S/ and the set of all
directed edges of a net S by E.S/. The pair .S; �.S// is a planar graph and the
pair .S;E.S// is a planar directed graph. With the above notations we consider
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the problem, namely .Ef
�
/, given by´

Du.z/C �f .z; u.z// D 0; z 2 S;

u.z/ D 0; z 2 @S;

where

Du.z/ WD Œu.iC1; j /�2u.i; j /Cu.i�1; j /�CŒu.i; jC1/�2u.i; j /Cu.i; j�1/�

is the well-known discrete Laplacian acting on a function u W S [ @S ! R. Then
problem (Ef

�
) can be written as a nonlinear algebraic system (see, for more details,

the monograph of Cheng [10]). We also cite the paper [13] in which the existence
of infinitely many solutions for problem (Ef

�
) has been investigated.

Example 4.2. For each

� >
1

0:3787311542
' 2:6;

the following problem,

Œu.i C 1; j / � 2u.i; j /C u.i � 1; j /�C Œu.i; j C 1/ � 2u.i; j /C u.i; j � 1/�

C �a.u.i; j // D 0; 8 .i; j / 2 ZŒ1; 2� � ZŒ1; 2�;

with boundary conditions

u.i; 0/ D u.i; 3/ D 0; 8 i 2 ZŒ1; 2�;

u.0; j / D u.3; j / D 0; 8 j 2 ZŒ1; 2�;

where a.s/ WD log.1C s2/ for every s > 0 and zero otherwise, admits two non-
trivial (positive) solutions.

Indeed, let h W ZŒ1; 2� � ZŒ1; 2�! ZŒ1; 4� be the bijection defined by

h.i; j / WD i C 2.j � 1/; for every .i; j / 2 ZŒ1; 2� � ZŒ1; 2�.

Next, define
wk WD u.h

�1.k//;

and
gk.wk/ D gk.u.h

�1.k/// WD a.wk/;

for every k 2 ZŒ1; 4�. The above problem can then be written as

Bw D �g.w/;
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where

B WD

0BBBBBBBB@

4 �1
::: �1 0

�1 4
::: 0 �1

� � � � � � � � � � � � � � �

�1 0
::: 4 �1

0 �1
::: �1 4

1CCCCCCCCA
;

w WD .w1; : : : ; wk/ and g.w/ WD .g1.w1/; : : : ; g4.w4//t . Our assertion now im-
mediately follows from Theorem 3.1 and Remark 3.8.

Some recent results about the discontinuous case are obtained in [18].
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