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Abstract: We investigate the boundary value problem for biharmonic operators on the Heisenberg
group. The inherent features of Hn make it an appropriate environment for studying symmetry rules
and the interaction of analysis and geometry with manifolds. The goal of this paper is to prove that a
weak solution for a biharmonic operator on the Heisenberg group exists. Our key tools are a version
of the Mountain Pass Theorem and the classical variational theory. This paper will be of interest to
researchers who are working on biharmonic operators on Hn.
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1. Introduction

Recently, the embedded symmetry of the Heisenberg group Hn has been used to
combine geometric understanding and analytic calculations to establish a new sharp Stein–
Weiss inequality on the line of duality with the mixed homogeneity. The Riesz potentials
and SL(2,R) invariance yield a natural bridge for the encoded information connecting
these geometric structures.

Let us take a look at a few of the apparently disparate fields where Hn emerges as
a key player. We mention topics such as nilpotent Lie group representation theory, the
structure theory of finite groups, homological algebra, the moduli of abelian varieties,
abelian harmonic analysis foundations, partial differential equations, quantum physics, etc.

The automorphisms or symmetries of the finite Heisenberg group are crucial in the
study of Lie algebras [1,2] and quantum mechanics in finite dimensions [3,4]. The concept
of the quotient group of a specific normalizer properly expresses these symmetries [5]. One
of the reasons might be that the role of Hn is understated in many instances.

One could achieve what one wants out of a situation by ignoring extra structure
imposed by Hn, as did Hermann Weyl, one of the pioneers of incorporating Hn into
quantum mechanics (see Weyl [6]). We also think that Mumford’s key contributions to the
study included an understanding of the importance of Hn in rigidifying abelian varieties
(see Mumford [7–9]).

Another element that contributes to its relative obscurity is that Hn is actually a
collection of comparable objects, analogous to a functor or an algebraic geometry scheme,
or even a combination of numerous overlapping functors. Howe [10] provided examples
in harmonic analysis, which are largely attempts to bridge the gap between abelian and
nonabelian harmonic analysis by illustrating how certain significant abelian harmonic
analysis conclusions might be enriched through a Heisenberg group interpretation.
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Suppose that Ω ⊂ Hn is a bounded domain with smooth boundary ∂Ω. The following
is the boundary value problem for a biharmonic operator with a nonlinear source on Hn :{

−∆2
Hn u = f (x, u), x ∈ Ω ⊂ Hn,

u|∂Ω = ∂u
∂ν

∣∣∣
∂Ω

= 0, x ∈ ∂Ω, (1)

where ν denotes the outward unit normal on the boundary ∂Ω.
We shall consider Carathéodory functions f : Ω×R→ R which satisfy the following

conditions:

( f1) For some c1, c2 > 0,

| f (x, ξ)| ≤ c1 + c2|ξ|s for a.e. x ∈ Ω and all ξ ∈ R,

where Q is the homogeneous dimension of Hn and

2 < s <
2Q

Q− 2
− 1;

( f2) lim
|ξ|→0

f (x, ξ)

|ξ| = 0 uniformly in x ∈ Ω;

( f3) For some µ > 2 and r > 0,

0 < µF(x, ξ) < ξ f (x, ξ) for a.e. x ∈ Ω and all ξ ∈ R,

where |ξ| > r and F(x, ξ) =
∫ ξ

0
f (x, t)dt;

( f4) f (x, ξ) ∈ C(Ω̄,R).

Example 1. Let n ≥ 3 and introduce the following notation:

t∗ :=
nt

n− t
.

Then f : Ω×R→ R, given by

f (x, ξ) := a(x)|ξ|s−2ξ, s ∈ [2, 2∗),

where a ∈ L∞(Ω), is an example of a Carathéodory function satisfying conditions ( f1)− ( f4).

Recently, the existence of at least one radial solution has been proved by Safari and
Razani [11] for the following problem

−∆Hn u + R(ξ)u = a(|ξ|Hn)|u|p−2u− b(|ξ|Hn)|u|q−2u, ξ ∈ Ω,
u > 0, ξ ∈ Ω,
∂u
∂n = 0, ξ ∈ ∂Ω,

where Ω denotes the Korányi ball in Hn.
On the other hand, Kumar [12] considered the following problem:

−∆Hn u− µ
g(ξ)u

(|z|4+t2)
1/2 = λ f (ξ)

uγ + h(ξ)up in Ωr,

u > 0 in Ω,
u = 0 on ∂Ω,

and showed that there exists a solution u ∈ H1
0(Ω,Hn) ∩ L∞(Ω).
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Related to problem (1), Huang [13] studied eigenvalue problem (2) for the bi-Kohn
Laplacian {

∆2
Hu = λu in Ω,

u|∂Ω = ∂u
∂ν

∣∣∣
∂Ω

= 0 (2)

and obtained universal bounds on the (k + 1)-th eigenvalue in terms of the first k eigenval-
ues independent of the domains.

The purpose of our paper is to investigate Hn, which is the most well-known non-
abelian nilpotent Lie group. Many researchers have investigated the existence of solutions
to semilinear equations in recent years – see, for example, Citti’s [14] pioneering work on
Hn. Problem (1) on Hn is a natural generalization of the classical problem on Rd (see An
and Liu [15], Benci and Cerami [16], Cerami, Solimini and Struwe [17], Chaudhuri and
Ramaswamy [18], Chen [19,20], and the references therein).

Our paper was inspired by recent work on Hn by Bordoni, Filippucci and Pucci [21],
D’Onofrio and Molica Bisci [22], Kassymov [23], Molica Bisci and Repovš [24], and Pucci
and Temperini [25], where the authors established the existence of solutions to the elliptic
equations (systems).

The following is the main result of our paper.

Theorem 1. Let f : Ω×R→ R be a Carathéodory function satisfying the conditions ( f1)− ( f4).
Then, problem (1) has a nontrivial weak solution.

To prove this result, in order to establish the existence, we shall invoke the Mountain
Pass Theorem, as well as variational tools (see Ambrosetti and Rabinowitz [26]). As
usual, one must prove that the Euler functional I associated with problem (1) satisfies the
Palais–Smale compactness criterion and has appropriate geometric features.

2. Preliminaries

The definitions and notations associated with Hn are discussed in this section. For
further information, see Garofalo and Lanconelli [27] and Loiudice [28]. The Heisenberg
group Hn :=

(
R2n+1, ·

)
is the space R2n+1 with the following composition law

(z̃, t) ◦
(
z′, t′

)
:=
(
z̃ + z′, t + t′ + 2 Im

〈
z̃, z′

〉)
.

Here,
ξ̃ := (z̃, t) = (x̃, ỹ, t) ∈ R2n+1, x̃ ∈ Rn, ỹ ∈ Rn, t ∈ R,

and R2n is identified by Cn. The family of dilations has the following form:

δλ(ξ̃) :=
(

λx̃, λỹ, λ2t
)

for all λ > 0.

The homogeneous dimension of Hn is Q = 2n + 2, whereas its topological dimension
is 2n + 1.

The Lie algebra of Hn is generated by the left-invariant vector fields

T :=
∂

∂t
, Xi :=

∂

∂xi
+ 2yi

∂

∂t
, Yi :=

∂

∂yi
− 2xi

∂

∂t
, i = 1, 2, . . . , n,

and for the generators, the following noncommutative formula holds[
Xi, Yj

]
= −4δijT,

[
Xi, Xj

]
=
[
Yi, Yj

]
= [Xi, T] = [Yi, T] = 0. (3)

The parabolic dilation given by

δλξ :=
(

λx, λy, λ2t
)

,
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has the property
δλ(ξ0 · ξ) = δλξ · δλξ0,

where
z = (x, y) ∈ R2n, ξ = (z, t) ∈ Hn.

We define the homogeneous norm on Hn by

|ξ| :=
(
|z|4 + t2

) 1
4

and we can write it as follows

|(x, y, t)| =
((

x2 + y2
)2

+ t2
) 1

4
,

which is also known as the Korányi gauge norm N(z, t), i.e.,

ρ(ξ) =
(
|z|4 + t2

) 1
4

is the Heisenberg distance between ξ and the origin.
In the same way, the distance between (z, t) and (z′, t′) on Hn is given by

ρ
(
z, t; z′, t′

)
:= ρ

((
z′, t′

)−1 · (z, t)
)

.

The vector field T, on the other hand, is homogeneous of order 2.

T( f ◦ δr) = r2T( f ) ◦ δr.

The Heisenberg gradient and the Kohn Laplacian are explicitly given by

∇Hn := (X1, X2, . . . , Xn, Y1, Y2, . . . , Yn)

and

∆Hn :=
n

∑
i=1

X2
i + Y2

i =
n

∑
i=1

(
∂2

∂x2
i
+

∂2

∂y2
i
+ 4yi

∂2

∂xi∂t
− 4xi

∂2

∂yi∂t
+ 4
(

x2
i + y2

i

) ∂2

∂t2

)
.

Next, recall the definitions of spaces D1,p(Ω), D1,p
0 (Ω), D2,p(Ω), and D2,p

0 (Ω)

D1,p(Ω) := {u : Ω→ R | u, |∇Hn u| ∈ Lp(Ω)},

D2,p(Ω) := {u : Ω→ R | u, |∇Hn u|, |∆Hn u| ∈ Lp(Ω)},

where Ω ⊆ Hn and 1 < p < ∞, equipped with the norms

‖u‖D1,p(Ω) :=
(
‖u‖Lp(Ω) + ‖∇Hn u‖Lp(Ω)

) 1
p

and

‖u‖D2,p(Ω) :=
(
‖u‖Lp(Ω) + ‖∇Hn u‖Lp(Ω) + ‖∆Hn u‖p

) 1
p .

Note that D1,p
0 (Ω) and D2,p

0 (Ω) are the closures of C∞
0 (Ω) with respect to the norms

‖u‖
D1,p

0 (Ω)
:=
(∫

Ω
|∇Hn u|pdzdt

) 1
p

and ‖u‖
D2,p

0 (Ω)
:=
(∫

Ω
|∆Hn u|pdzdt

) 1
p
.
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Theorem 2 (Dwivedi and Tyagi [29]). Suppose that k ∈ N and p ∈ [1, ∞). Then the following
properties hold:

(i) If k < Q
p , then Dk,p

0 (Ω) is continuously embedded in Lp∗(Ω) for 1
p∗ =

1
p −

k
Q ;

(ii) If k = Q
p , then Dk,p

0 (Ω) is continuously embedded in Lr(Ω) for all r ∈ [1, ∞);

(iii) If k > Q
p , then Dk,p

0 (Ω) is continuously embedded in C0,γ(Ω̄) for all 0 ≤ γ < k− Q
p .

We denote W := D2,2
0 (Ω) and define the energy functional I : W → R in order to

introduce the variational framework for problem (1):

I(u) :=
1
2

∫
Ω
|∇Hn u|2dx−

∫
Ω

F(x, u)dx, (4)

where
F(x, u) =

∫ u

0
f (x, s)ds.

Let f be a Carathéodory function satisfying conditions ( f 1)− ( f 4). Then, it follows
that for any ξ ∈ R,

(i) There exist c3, c4 > 0 such that

c3|ξ|µ − c4 ≤ F(x, ξ) for all x ∈ Ω, (5)

where µ > 2;
(ii) For any ξ ∈ R, we have

| f (x, ξ)| ≤ ε|ξ|+ (s + 1)κ(ε)|ξ|s (6)

and

|F(x, ξ)| ≤ ε|ξ|2 + κ(ε)|ξ|s+1, (7)

where ε and κ(ε) are sufficiently small positive numbers.

Throughout this article, we shall denote ‖ · ‖D2,2
0 (Ω)

by ‖ · ‖. Next, ‖ · ‖p will represent
the standard Lp norm. Furthermore, I will be assumed to be Fréchet differentiable for
u ∈W and any ϕ ∈W. Hence,

I′(u)ϕ =
∫

Ω
∆Hn u · ∆Hn ϕdx−

∫
Ω

f (x, u)ϕ(x)dx.

For more background details, we recommend the comprehensive treatise by Papageor-
giou, Rădulescu, and Repovš [30].

3. Proof of Theorem 1

Definition 1. A function u : Ω→ R is a weak solution of problem (1) if u ∈W and∫
Ω

∆Hn u · ∆Hn ϕdx =
∫

Ω
f (x, u)ϕ(x)dx for all ϕ ∈ C∞

c (Ω).

Definition 2. A sequence {un} in Banach space E is a (PS)c sequence for a functional Φ ∈ (Φ,R)
if every {un} ⊂ E satisfies the following property

Φ(un)→ c for n→ ∞ and Φ′(un)→ 0 for n→ ∞ in E∗,

where ′ denotes the Fréchet differential and E∗ is the dual space of E.
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Theorem 3 (Jabri [31]). Let X be a Banach space, φ : X → R a C-functional with a (PS)c
sequence, and Γ a class of paths joining u = 0 to u = ω,

Γ := {γ ∈ C([0, 1], X)|γ(0) = 0, γ(1) = ω},

where ω ∈ X, ‖ω‖ > r > 0, φ is bounded from below on

S(0, ρ) := {u ∈ X | ‖u‖ ≤ ρ},

i.e.,
α := max{φ(0), φ(ω)} < β := inf

u∈S(0,ρ)
φ(u).

Then, φ has a critical value
c := inf

γ∈Γ
max

u∈γ(0,1)
Φ(u) ≥ β.

To prove our main result, we must first establish the following lemma.

Lemma 1. Let Ω be a measurable subset of Hn and f a Carathéodory function satisfying conditions
( f1) and ( f2). Then there exist positive constants ρ, α > 0 such that ‖u‖W = ρ and I(u) ≥ α for
all u ∈W.

Proof. Using the relation (7), we obtain

I(u) =
1
2

∫
Ω
|∆Hn u(x)|2dx−

∫
Ω

F(x, u(x))dx

≥ 1
2

∫
Ω
|∆Hn u(x)|2dx− ε

∫
Ω
|u(x)|2dx− κ(ε)

∫
Ω
|u(x)|s+1dx

≥ 1
2
‖u‖2 − ε‖u‖2 − κ(ε)‖u‖s+1

s ,

since D2,2
0 (Ω) is continuously embedded in Ls(Ω), for all 1 ≤ s < ∞ (see Theorem 2).

Therefore,
‖u‖s ≤ C‖u‖. (8)

Consequently,

I(u) ≥ 1
2
‖u‖2 − ε‖u‖2 − κ(ε)C‖u‖s+1 ≥ ‖u‖2

(
1
2
− ε− κ(ε)C‖u‖s−1

)
.

Let u ∈W and ‖u‖ = ρ. By hypothesis, we know that s > 1. Choosing ρ sufficiently
small and ε such that

α := ρ2
(

1
2
− ε− κ(ε)Cρs−1

)
> 0,

we obtain I(u) ≥ α > 0.

A second condition of the Mountain Pass Theorem will be provided by following
lemma.

Lemma 2. Let f be a Carathéodory function satisfying conditions ( f 1)–( f 4) and let α, ρ > 0 be
the constants from Lemma 1. Then there exists v > 0 a.e. in W, such that ‖v‖ > ρ and I(v) < α.

Proof. Fix ‖u‖ = 1 and u ≥ 0 a.e. in Hn with t > 0. Invoking (5), we can obtain
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I(tu) =
1
2

∫
Ω
|∆Hn(tu)|2dx−

∫
Ω

F(x, tu(x))dx

≤ t2

2

∫
Ω
|∆Hn u|2dx− c4tµ

∫
Ω
|u|µdx + c3|Ω|

=
t2

2
− c4tµ

∫
Ω
|u|µdx + c3|Ω|.

Since µ > 2 and t → +∞, we have I(tu) → −∞. Then, setting v = βu, we get the
assertion when β is large enough.

Lemma 3. Let f be a Carathéodory function satisfying conditions ( f1)-( f4) and {un} ⊂ W a
sequence satisfying I(un)→ c and

sup
{∣∣I′(un)ϕ

∣∣ : ϕ ∈W, ‖ϕ‖ = 1
}
→ 0, n→ ∞. (9)

Then, the sequence {un} is bounded in W.

Proof. Let {un} ⊂W be a (PS)c sequence. Then, for every ϕ ∈W, we have

I′(un)ϕ =
∫

Ω
∆Hn un · ∆Hn ϕdx−

∫
Ω

f (x, un(x))ϕ(x)dx

and
I(un) =

1
2

∫
Ω
|∆Hn un|2dx−

∫
Ω

F(x, un(x))dx.

Therefore,

I(u)− 1
µ

I′(un)un =

(
1
2
− 1

µ

) ∫
Ω
|∆Hn un|2dx−

∫
Ω

(
F(x, u(x))− f (x, u(x))u(x)

µ

)
dx

=

(
1
2
− 1

µ

) ∫
Ω
|∆Hn un|2dx−

∫
Ω∩|un |≤r

(
F(x, u(x))− f (x, u(x))u(x)

µ

)
dx

−
∫

Ω∩|u|>r

(
F(x, u(x))− f (x, u(x))u(x)

µ

)
dx,

where µ > 2.
Invoking (7), we can calculate∣∣∣∣∫Ω∩|u|≤r

F(x, u(x))− f (x, u(x))u(x)
µ

dx
∣∣∣∣ ≤ (εr2 + κ(ε)rs+1 + 1

µ

(
εr2 + qκ(ε)rs+1))|Ω|. (10)

For simplicity, we denote

θ̃ :=
(

εr2 + κ(ε)rs+1 +
1
µ

(
εr2 + qκ(ε)rs+1

))
|Ω|.

Using (10) and assumption ( f3), we get

I(un)−
1
µ

I′(un)un ≥
(

1
2
− 1

µ

) ∫
Ω
|∆Hn un|2dx− θ̃. (11)

Invoking (9) with ϕ := un/‖un‖W , we know that for any n there exists λ > 0 such that∣∣∣∣I′(un)

(
un

‖un‖

)∣∣∣∣ ≤ λ,

with I(un) ≤ λ.
Thus, we can get

I(un)−
1
µ

I′(un)un ≤ λ(1 + ‖un‖).
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Combining this with (11), we arrive at(
1
2
− 1

µ

)
‖un‖2 ≤ λ(1 + ‖un‖) + θ̃.

Finally,

‖un‖2 ≤
(

1
2
− 1

µ

)−1(
λ(1 + ‖un‖) + θ̃

)
≤
(

1
2
− 1

µ

)−1
C1(1 + ‖un‖) ≤ C(1 + ‖un‖),

where C > 0.

Next we shall prove that the (PS)c sequence of I has a strongly convergent subse-
quence.

Lemma 4. Let f be a Carathéodory function satisfying conditions ( f1)-( f4) and suppose that
{un} ⊂W is a (PS)c sequence of I. Then {un} has a strong convergent subsequence in W.

Proof. Since W is a reflexive Banach space, we have un → u weakly in W. Thus,

I′(un)(un − u) =
∫

Ω
∆Hn un · ∆Hn (un − u)dx−

∫
Ω

f (x, un)(un − u)dx → 0, n→ ∞. (12)

Also, un → u is strongly convergent in Ls+1(Ω). Therefore

f (x, un)(un − u)→ 0, a.e. in Ω, n→ ∞.

Using the Vitali convergence theorem, we obtain

lim
n→∞

∫
Ω

f (x, un)(un − u)dx = 0. (13)

Plugging (13) in (12), we get∫
Ω

∆Hn un · ∆Hn(un − u)dx → 0, n→ ∞, (14)

which yields
‖un − u‖2 → 0 as n→ ∞.

This completes the proof of Lemma 4.

We can now prove Theorem 1.

Proof. We beging the proof by observing that by virtue of Lemma 4, every (PS)c subse-
quence of I is strongly convergent in W. It is now easy to verify that I(0) = 0.

On the other hand, by Lemma 2, there exists α > 0 such that

I(u) ≥ α > I(0), where u ∈W, ‖u‖ = ρ.

The existence of a critical point of the functional I, which is a nontrivial weak solution
of problem (1), can now be deduced by invoking the Mountain Pass Theorem.

Remark 1. We have proved the main result under the (AR) condition. It is a natural question if
one can omit the (AR)-condition (see Choudhuri [32]).

4. Epilogue

The biharmonic operators on the Heisenberg group Hn were investigated in depth
in this paper. Our findings support some previously published research. We believe that
researchers working in this field will be inspired by our work and that our results will
stimulate more research in this area.
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In conclusion, we believe that our results can be generalized to other biharmonic
operators. This problem is left as an open problem for researchers who are interested in
this topics. For example, one might consider the following relevant open problem{

−∆2
H,pu(x) = f (x, u), x ∈ Ω ⊂ Hn,
u(x) = ∆Hu(x) = 0, x ∈ ∂Ω,

(15)

where Ω ⊂ Hn is a measurable set with sufficiently smooth boundary ∂Ω and the p-
biharmonic is given by

∆2
H,p := ∆H ·

(
|∆H |p−2∆H

)
.
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