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We establish a continuous embedding W s(·),2(Ω) ↪→ Lα(·)(Ω), where the variable 
exponent α(x) can be close to the critical exponent 2∗

s(x) = 2N
N−2s̄(x) , with s̄(x) =

s(x, x) for all x ∈ Ω̄. Subsequently, this continuous embedding is used to prove the 
multiplicity of solutions for critical nonlocal degenerate Kirchhoff problems with a 
variable singular exponent. Moreover, we also obtain the uniform L∞-estimate of 
these infinite solutions by a bootstrap argument.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A strong motivation behind the partial differential equation considered in this paper comes from the 
following problem, studied by Bisci et al. [27]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−M

⎛
⎝ˆ

Ω

|∇u|2dx

⎞
⎠Δu = λ

uγ
+ u2∗−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(1.1)
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This is a typical Kirchhoff problem. Here, M : R+
0 → R+

0 is the Kirchhoff function, usually of the form

M(t) = a + btθ−1, a, b ≥ 0, a + b > 0, θ ≥ 1. (1.2)

In particular, when M(t) ≥ c > 0 for some c and all t ∈ R+
0 , Kirchhoff problem is said to be non-degenerate. 

On the other hand, when M(0) = 0 and M(t) > 0 for all t ∈ R+, Kirchhoff problem is said to be degenerate.
Recently, this kind of nonlocal problems have been widely studied. The readers can be referred to [22–26]

for various kinds of Kirchhoff problems with M as in (1.2), which are driven by a Laplacian and involve 
a singular term u−γ . Lei et al. [22] obtained the multiplicity of solutions for Kirchhoff problems like (1.1). 
Liu and Sun [25] studied a class of singular Kirchhoff problems with a Hardy potential with the help of 
the Nehari manifold technique. Furthermore, Liao et al. [24] used the Nehari manifold approach for the 
subcritical Kirchhoff problem with an additional singular term. A noteworthy mention at this stage is the 
work due to Gu et al. [23] where the existence and the uniqueness of solution is obtained by a minimization 
method, to a singular problem involving a non-positive critical nonlinearity.

Following Lei et al. [22], Liu et al. [26] obtained two solutions of Kirchhoff problems with a critical term 
and a singular term |x|−βu−γ . Barrios et al. [4] investigated the following equation

⎧⎪⎨
⎪⎩

(−Δ)su = λ f(x)
uγ + Mup in Ω,

u > 0 in Ω,

u = 0 in RN \ Ω
(1.3)

with f a nonnegative function, p > 1, and M ∈ {0, 1}. They studied the existence and multiplicity of 
solutions by employing the Sattinger method and the sub/supersolution technique. Canino et al. [8] gener-
alized the result by Chen et al. [10, Section 3] to the case of p-fractional Laplacian (−Δp)s. We draw the 
attention of the reader to [1,17] (not restricted to only these) for existence results and [15,29,30,36,38] for 
the multiplicity results.

Off-late, from a scientific point of view, fractional Sobolev spaces and related non-local problems have 
attracted the attention of many scholars because they occur naturally in many fields, such as electrorheolog-
ical fluids and image processing (cf. Barrios et al. [4] and the references therein). Readers who are interested 
to know the physical motivation behind the study of elliptic problems involving Kirchhoff operator can 
refer to Carrier [9]. In fact, there are only a few papers on the p(x)-Laplace operator involving singular 
nonlinearity and some of which can be found in the articles [2,17] and the references therein.

At the end of the 20th century, the fractional variable derivatives proposed by two mathematicians, 
Ross and Samko [33], first appeared in nonlinear diffusion processes. At that time, scholars discovered that 
the temperature change of some objects with a reaction diffusion process can be better expressed by the 
variable derivative of a nonlocal integral-differential operator. Therefore, gradually, the problem of fractional 
variable-order became favored by many authors.

Xiang et al. [37] studied an elliptic problem driven by a fractional Laplace operator involving variable-
order and proved the existence of two solutions using the Mountain pass theorem and Ekeland’s variational 
principle. However, their key result is that there exist infinitely many solutions to the limit problem when a 
parameter λ goes to ∞. Xiang et al. [35] considered a variable-order fractional Kirchhoff-type problem which 
could be degenerate, they proved that there exists two nonnegative solutions using the Nehari manifold 
approach. Furthermore, they also verified the existence of infinitely many solutions with the help of a 
symmetric critical point theorem. Wang and Zhang [34] studied a variable-order fractional Kirchhoff-type 
problem involving variable exponents and also obtained the existence of infinitely many solutions.

Further papers that can be consulted for the study of Kirchhoff problem are Fiscella [14], Ghosh and 
Choudhuri [16], Khiddi and Sbai [21]. However, as far as we know, none of the cited works addressed the 
problem of a variable-order Laplacian with a singularity of variable exponent. The novelty of our present 
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work lies in the treatment of the problem with a variable critical nonlinearity and the estimate of the 
boundedness of infinitely many solutions.

2. Preliminaries

Let X be a normed linear space

X =

⎧⎪⎨
⎪⎩u : RN → R measurable : u|Ω ∈ L2(Ω) and

⎛
⎝¨

Q

|u(x) − u(y)|2
|x− y|N+2s(x,y) dxdy

⎞
⎠

1
2

< ∞

⎫⎪⎬
⎪⎭

with the Gagliardo norm

‖u‖X = ‖u‖2 +

⎛
⎝¨

Q

|u(x) − u(y)|2
|x− y|N+2s(x,y) dxdy

⎞
⎠

1
2

,

where

Ω ⊂ RN , Q = R2N \ ((RN \ Ω) × (RN \ Ω))

and ‖u‖2 denotes the L2-norm of u over Ω.
We shall frequently use the following subspace X0 of X

X0 =
{
u ∈ X : u = 0 in RN \ Ω

}
with the norm

‖u‖X0 =

⎛
⎝¨

Q

|u(x) − u(y)|2
|x− y|N+2s(x,y) dxdy

⎞
⎠

1
2

.

Our workspace (X0, ‖ · ‖X0) will be a Hilbert space with the norm ‖ · ‖X0 induced by the inner product

〈ψ,ϕ〉 =
¨

Q

(ψ(x) − ψ(y))(ϕ(x) − ϕ(y))
|x− y|N+2s(x,y) dxdy, for all ψ,ϕ ∈ X0.

Our workspace X0 will also be a Banach space with reflexivity and separability, see [3, Lemma 2.3].
We conclude this section by defining the best Sobolev constant

S = inf
u∈X0\{0}

˜
Q

|u(x)−u(y)|2
|x−y|N+2s(x,y) dxdy

‖u‖2
α(·)

. (2.1)

Remark 2.1.

1. Note that X, X0 ⊂ W s(·),2(Ω), where W s(·),2(Ω) is the usual fractional variable-order Sobolev space 
with the so-called Gagliardo norm

‖u‖W s(·),2(Ω) = ‖u‖2 +

⎛
⎝ ¨ |u(x) − u(y)|2

|x− y|N+2s(x,y) dxdy

⎞
⎠

1
2

.

Ω×Ω
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2. Any uniform constant appearing in a well-known embedding will be represented by one of the symbols 
C, C ′, C ′′, etc., with a prefix and/or suffix.

Remark 2.2. For all fundamental results in functional analysis we direct the readers to Brézis [6]. For more 
details on fractional Sobolev spaces we refer to Di Nezza et al. [13]. For further details on Lebesgue spaces 
with variable exponents we refer to Rădulescu and Repovš [32].

3. Statement of the problem and the main results

We investigate the existence of infinite solutions to the following variable-order problem with critical 
variable exponent growth

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎝ ¨

R2N

|u(x) − u(y)|2
|x− y|N+2s(x,y) dxdy

⎞
⎠

θ−1

(−Δ)s(.)u = λ
u

|u|γ(x)+1 + |u|α(x)−2u in Ω,

u = 0 in RN \ Ω,

(3.1)

where Ω ⊂ RN with N ≥ 2 is a smooth bounded domain, λ > 0, s(·) : R2N → (0, 1) is a continuous function 
such that

0 < s− = inf
(x,y)∈Ω×Ω

{s(x, y)} ≤ s(x, y) ≤ s+ = sup
(x,y)∈Ω×Ω

{s(x, y)} < 1,

γ(·) : Ω → (0, 1) is a continuous function such that

0 < γ− = inf
x∈Ω

{γ(x)} ≤ γ(x) ≤ γ+ = sup
x∈Ω

{γ(x)} < 1,

α(·) : Ω → R is a continuous function such that

1 − γ− < 1 < 2θ < α− = inf
x∈Ω

{α(x)} ≤ α(x) ≤ α+ = sup
x∈Ω

{α(x)} ≤ 2∗s(x),

and (−Δ)s(·) is the fractional Laplace operator of variable-order s(·). The fractional Laplace operator of a 
variable-order s(·) is defined by

(−Δ)s(·)u(x) = CN,s(·) lim
ε→0

ˆ

RN\Bε(x)

(u(x) − u(y))
|x− y|N+2s(x,y) dy, x ∈ RN ,

where CN,s(·) > 0 is an explicit constant.
Our main results are as follows.

Theorem 3.1. Let Ω ⊂ RN be a Lipschitz bounded domain, N > 2s(·) in Ω̄ × Ω̄, and α(·) : Ω̄ → R a 
continuous function satisfying the following conditions:
(A1) 1 < α− ≤ α+;
(A2) there exists ε = ε(x) > 0 such that

sup
y∈Ωx,ε

{α(y)} ≤ 2N
N − 2 inf

(y,z)∈Ωx,ε×Ωx,ε

{s(y, z)} , (3.2)

where Ωz,ε = Bε(z) 
⋂

Ω, for z ∈ Ω.
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Moreover, let s(·) : R2N → (0, 1) be continuous and assume that
(H1) 0 < s− ≤ s+ < 1;
(H2) s(·) is symmetric, that is, s(x, y) = s(y, x), for any (x, y) ∈ R2N .
Then there exists a constant C = C(N, s, α, Ω) such that for every u ∈ X, the following holds

‖u‖α(·) ≤ C‖u‖W s(·),2(Ω),

that is, the embedding W s(·),2(Ω) ↪→ Lα(x)(Ω) is continuous.

Theorem 3.2. There exists λ0 > 0 such that for any λ ∈ (0, λ0), problem (3.1) has infinitely many solutions 
in X0.

Theorem 3.3. Let 0 ≤ u ∈ X0 be a weak solution to problem (3.1). Then u ∈ L∞(Ω).

3.1. Weak solutions

Associated to problem (3.1), the energy functional Iλ : X0 → R is defined by

Iλ(u) = 1
2θ‖u‖

2θ
X0

−
ˆ

Ω

λ

1 − γ(x) |u|
1−γ(x)dx−

ˆ

Ω

1
α(x) |u|

α(x)dx. (3.3)

Having defined Iλ, we now define the sense in which the solution to problem (3.1) will be considered.

Definition 3.1. u ∈ X0 is said to be a weak solution to problem (3.1) if |u|−γ(x)ϕ ∈ L1(Ω) and

‖u‖2(θ−1)
X0

〈u, ϕ〉 =
ˆ

Ω

λ|u|−γ(x)−1uϕdx +
ˆ

Ω

|u|α(x)−2uϕdx (3.4)

for every ϕ ∈ X0. Here,

〈u, ϕ〉 =
¨

Q

(u(x) − u(y))(ϕ(x) − ϕ(y))
|x− y|N+2s(x,y) dxdy.

Note that the functional Iλ is continuous in X0, but it fails to be C1 in X0. This is bad news as far 
as the application of theorems in the variational analysis is concerned because, most of them demand the 
energy functional to be C1 over its domain of definition. Thus, inspired by the cutoff technique introduced 
by Clark and Gilbarg [12] and later used by Gu et al. [18], we shall apply it to problem (3.1).

Choose l to be sufficiently small and define an even cutoff C1-function η : R → R+ such that 0 ≤ η(t) ≤ 1
and

η(t) =

⎧⎪⎪⎨
⎪⎪⎩

1, if |t| ≤ l

η is decreasing, if l ≤ t ≤ 2l
0, if |t| ≥ 2l.

Set

f(u(x)) := |u(x)|α(x)−2u(x) for all u ∈ X0.
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Clearly, we have f(−u(x)) = −f(u(x)). Now consider the following cutoff problem:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎝ ¨

R2N

|u(x) − u(y)|2
|x− y|N+2s(x,y) dxdy

⎞
⎠

θ−1

(−Δ)s(.)u = λ
u

|u|γ(x)+1 + f̃(u) in Ω,

u = 0 in RN \ Ω,

(3.5)

where

f̃(u(x)) = f(u(x))η
(‖u‖2

X0

2

)
.

We further define

F (u(x)) = |u(x)|α(x)

α(x) , F̃ (u(x)) = F (u(x))η
(‖u‖2

X0

2

)
.

Remark 3.1. It is easy to see that if u is a weak solution to problem (3.5) with 
‖u‖2

X0
2 ≤ l, then u is also a 

weak solution to problem (3.1).

Remark 3.2. We shall use

δ =

⎧⎨
⎩
γ+, ‖u1−γ(x)‖ 1

1−γ(x)
< 1

γ−, ‖u1−γ(x)‖ 1
1−γ(x)

> 1
(3.6)

whenever we shall estimate the singular term. Throughout this article, wherever necessary, any subsequence 
of a given sequence will be represented by the symbol of the sequence itself.

Remark 3.3. For better understanding of some of the notations, we define

‖u‖X0 = ‖U‖L2(k(·)dxdy) for all u ∈ X0,

where

U(x, y) = u(x) − u(y), k(·)dxdy = k(x, y)dxdy = 1
|x− y|N+2s(x,y) dxdy

and

‖U‖L2(k(·)dxdy) =
ˆ

Ω×Ω

|U(x, y)|2k(x, y)dxdy. (3.7)

The energy functional Īλ : X0 → R, associated to problem (3.5) is defined as follows:

Īλ(u) = 1
2θ‖u‖

2θ
X0

−
ˆ

Ω

λ

1 − γ(x) |u|
1−γ(x)dx−

ˆ

Ω

F̃ (u)dx.

Furthermore, the Fréchet derivative of 
´
Ω F̃ (u)dx is

η

(‖u‖2
X0

2

) ˆ

Ω

f̃(u)ϕdx + η′
(‖u‖2

X0

2

)
〈u, ϕ〉

ˆ

Ω

F̃ (u)dx for every ϕ ∈ X0. (3.8)
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However, by Remark 3.1, since we are interested in those solutions which obey 
‖u‖2

X0
2 ≤ l, the Fréchet 

derivative of 
´
Ω F̃ (u)dx can be considered to be of the form

ˆ

Ω

f̃(u)ϕdx for every ϕ ∈ X0. (3.9)

Note that Īλ is an even functional over X0. Finally, we give the definition of weak solutions to problem 
(3.5).

Definition 3.2. u ∈ X0 is said to be a weak solution to problem (3.5) if |u|−γ(x)ϕ ∈ L1(Ω) and

‖u‖2(θ−1)
X0

〈u, ϕ〉 = λ

ˆ

Ω

|u|−γ(x)−1
uϕdx +

ˆ

Ω

f̃(u)ϕdx (3.10)

for every ϕ ∈ X0.

3.2. Existence of nontrivial solutions

The proof of Theorem 3.2 will require several lemmas which we now state and prove in this subsection. In 
order to establish the existence of infinitely many solutions to problem (3.5), one needs a prior knowledge of 
whether at least one solution to problem (3.5) exists or not. Lemmas 3.1 and 3.2 will establish the existence 
of a nontrivial solution for problem (3.5) in X0 at which Īλ attains this infimum. This infimum incidentally 
has been found to be negative, in a small neighborhood of zero.

We at first notice that since Īλ ∈ C0(X0, R) and hence the following minimization problem can be 
considered

mλ = min
u∈Br

Īλ(u) (3.11)

for some r > 0.

Lemma 3.1. There exist r ∈ (0, 1), λr > 0 and βr > 0 such that Īλ(u) > βr for all λ ∈ (0, λr) and u ∈ X0
with ‖u‖X0 = r. Let

mλ = inf
u∈Br

Īλ(u).

Then mλ < 0 for all λ ∈ (0, λr].

Proof. Let λ > 0. Clearly, since Īλ is continuous and is defined at every point in X0, an infimum of Īλ exists 
in any closed and bounded neighborhood of 0 ∈ X0. On using the Hölder inequality and the continuous 
embedding of X0 in L1(Ω), we have for any u ∈ X0,

ˆ

Ω

|u|1−γ(x)dx ≤ C‖u‖1−δ
X0

, (3.12)

where C > 0. It follows from Theorem 3.1 that

1
2θ‖u‖

2θ
X0

−
ˆ 1

α(x)η
(‖u‖2

X0

2

)
|u|α(x)dx ≥ 1

2θ‖u‖
2θ
X0

− C ′

α− ‖u‖α−

X0
> 0
Ω
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for every u ∈ ∂Br, provided 0 < r < 1 is small enough.
Fix such an r > 0, taking λ > 0 small enough, other negative terms in Īλ may be made arbitrarily small. 

Therefore we can find r and λ such that min
u∈∂Br

{Īλ(u)} > 0. Thus there exists βr > 0 such that Īλ(u) > βr

for u ∈ X0 with ‖u‖X0 = r. Moreover, since Īλ(tu) < 0 for t small enough, we have mλ < 0. Therefore, say, 
mλ = inf

u∈B̄r

{Īλ(u)} < 0. �
We now prove that for a finite range of λ, a solution to problem (3.5) exists.

Lemma 3.2. Let λr be given as in Lemma 3.1. Then for any λ ∈ (0, λr), problem (3.5) has a solution 
u0 �= 0 ∈ X0 with Īλ(u0) = mλ < 0.

Proof. First, we show that there exists u0 ∈ B̄r such that

lim
n→∞

Īλ(un) = Īλ(u0) = mλ. (3.13)

Let {un} be a minimizing sequence of Īλ chosen from the closed ball of radius r, i.e. B̄r. Hence it is a 
bounded sequence in X0. Thus by the reflexivity of X0 and Egoroff’s theorem, there exists a subsequence 
{un}, such that

un ⇀ u0 in X0,

un → u0 in Lp(x)(Ω) for any 1 < p(x) < 2∗s− ,

un → u0 a.e. in Ω,

(3.14)

where u0 ∈ B̄r. Since 0 < γ− ≤ γ+ < 1, we have by Hölder’s inequality that for any n

∣∣∣∣∣∣
ˆ

Ω

|un|1−γ(x)dx−
ˆ

Ω

|u0|1−γ(x)dx

∣∣∣∣∣∣ ≤
ˆ

Ω

∣∣∣|un|1−γ(x) − |u0|1−γ(x)
∣∣∣ dx

≤
ˆ

Ω

|un − u0|1−γ(x)
dx ≤ C‖un − u0‖1−γ+

2 .

(3.15)

Thus, using (3.14) in (3.15), we obtain

lim
n→∞

ˆ

Ω

|un|1−γ(x)dx =
ˆ

Ω

|u0|1−γ(x)dx. (3.16)

Now, consider vn = un − u0. Then by notation (3.7) in Remark 3.3 and the Brézis-Lieb Lemma ([7]),

‖Un‖L2(k(·)dxdy) = ‖Vn‖2
L2(k(·)dxdy) + ‖U0‖2

L2(k(·)dxdy) + o(1), (3.17)

as n → ∞. Since {un} ⊂ B̄r, by (3.17) we have that u0, vn ⊂ B̄r. Now, by Lemma 3.1, for every u ∈ X0
with ‖u‖X0 = r < 1, we obtain

1
2θ‖u‖

2θ
X0

−
ˆ

Ω

F̃ (u)dx > 0,

so since r < 1, for n sufficiently large, we have
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1
2θ‖vn‖

2θ
X0

−
ˆ

Ω

F̃ (vn)dx > 0. (3.18)

Therefore by (3.16), (3.17), (3.18) and since θ > 1, we have

mλ = Īλ(vn) + o(1)

= 1
2θ (‖vn‖2θ

X0
+ ‖u0‖2θ

X0
) −

ˆ

Ω

λ

1 − γ(x) |u0|1−γ(x)dx−
ˆ

Ω

(F̃ (vn) + F̃ (u0))dx + o(1)

= Īλ(u0) + 1
2θ‖vn‖

2θ
X0

− 1
α−

ˆ

Ω

η

(‖vn‖2
X0

2

)
|vn|α(x)dx + o(1)

= Īλ(u0) + 1
2θ‖vn‖

2θ
X0

− 1
α−

ˆ

Ω

|vn|α(x)dx + o(1); since ‖vn‖X0 ≤ r < 1

≥ Īλ(u0) + o(1) > mλ.

(3.19)

The last inequality is due to u0 ∈ B̄r. Therefore, u0 is a local minimizer of Īλ with Īλ(u0) = mλ < 0. This 
also implies that u0 �= 0. Thus the minimization problem (3.11) has been solved. Since Īλ is a C1 functional 
in X0 \ {0}, we have Ī ′λ(u0) = 0 which satisfies Definition (3.10). �
3.3. Genus and its properties

In this section we shall prove Lemma 3.4 which establishes that functional Īλ fulfills the (PS)c condition 
for c < c∗ where c∗ > 0. Then we shall show that all hypotheses of the Clark theorem are satisfied and this 
will eventually yield our Theorem 3.2.

Rabinowitz [31] introduced the definition of genus G(·). We shall list some of the properties of genus for 
the reader’s convenience. Let Γ denote the family of all closed subsets of B \ {0} that are symmetric with 
respect to the origin.

Lemma 3.3. Let A, B ∈ Γ. Then

1. A ⊂ B ⇒ G(A) ≤ G(B).
2. Suppose that A and B are homeomorphic via an odd map. Then G(A) = G(B).
3. G(SN−1) = N , where SN−1 is the (N − 1)-sphere in RN .
4. G(A ∪B) ≤ G(A) + γ(B).
5. G(A) < ∞ ⇒ G(A \B) ≥ G(A) −G(B).
6. For every compact subset A of B, G(A) < ∞, and there exists δ > 0 such that G(A) = G(Nδ(A)), where 

Nδ(A) = {x ∈ B : d(x, A) ≤ δ}.
7. Suppose Y ⊂ B is a subspace of B such that codim(Y ) = k and G(A) > k. Then A ∩ B �= ∅.

Define Γn to be the collection of closed and symmetric subsets of B such that none of which includes 0
in it and the genus of each of these subsets is at least n.

We will need the following Clark theorem [20].

Theorem 3.4. Let B be an infinite-dimensional Banach space and suppose that I ∈ C1(B, R) obeys the 
following conditions:

(i) I(u) = I(−u) is bounded below, I(0) = 0, and I fulfills the (PS)c condition.
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(ii) For any n ∈ N, there exists An ∈ Γn such that sup
u∈An

I(u) < 0.

Then I accommodates a sequence of critical points {un} such that I(un) ≤ 0, un �= 0 and un → 0 as n → ∞.

Another important compactness condition which will be used later is the Palais-Smale condition at energy 
level c ∈ R, see [28, Definition 5.1.6]. We shall now prove that Īλ satisfies the (PS)c condition under suitable 
range.

Lemma 3.4. There exists λ0 > 0, such that for every λ ∈ (0, λ0), the functional Īλ fulfills (PS)c condition, 
whenever

c <

(
1
2θ − 1

β

)
Sα∗θ/(α∗−2θ) −

(
1
2θ − 1

β

)− 1−δ
2θ−1+δ

[
λC

(
1

1 − γ+ − 1
β

)] 2θ
2θ−1+δ

= c∗

where c∗ > 0.

Proof. Since Īλ is not differentiable at u = 0, we first fix the sequences that will be considered in this lemma. 
Suppose {un} ⊂ X0 is an eventually zero sequence, then it converges to 0 and so we discard it immediately. 
Suppose {un} ⊂ X0 is a sequence with infinitely many terms equal to 0, then we choose a subsequence of 
{un} with all terms nonzero. Thus, without loss of generality, we shall assume that {un} is such that un �= 0
for every n ∈ N and un � 0 in X0 as n → ∞. Let this sequence {un} be such that

Īλ(un) → c and Ī ′λ(un) → 0, as n → ∞. (3.20)

We shall show that {un} is bounded in X0. Indeed, observe that Īλ is a coercive functional. This is 
because

lim
‖u‖X0→∞

Īλ(u)
‖u‖X0

= lim
‖u‖X0→∞

⎛
⎝1

2‖u‖
2θ−1
X0

− 1
‖u‖X0

ˆ

Ω

|u|1−γ(x)

1 − γ(x) dx− 1
‖u‖X0

ˆ

Ω

η

(‖u‖2
X0

2

)
|u|α(x)

α(x) dx

⎞
⎠

= lim
‖u‖X0→∞

⎛
⎝1

2‖u‖
2θ−1
X0

− 1
‖u‖X0

ˆ

Ω

|u|1−γ(x)

1 − γ(x) dx

⎞
⎠ , since by the definition of η

≥ lim
‖u‖X0→∞

(
1
2‖u‖

2θ−1
X0

− C ′

‖u‖X0

‖u‖1−γ−

X0

1 − γ+

)
= ∞.

(3.21)

Moreover, since Īλ(un) → c as n → ∞ for some 0 < c < c∗, the sequence {un} is bounded. Suppose not, 
then there exists a subsequence of {un}, such that ‖un‖X0 → ∞ as n → ∞. Then from (3.21) we obtain

0 = lim
‖u‖X0→∞

Īλ(un)
‖un‖X0

≥ lim
‖u‖X0→∞

(
1
2‖un‖2θ−1

X0
− C ′

‖un‖X0

‖un‖1−γ−

X0

1 − γ+

)
= ∞,

(3.22)

which is absurd. Hence, we get the boundedness of the sequence {un} in X0.
Since the space X0 is reflexive, there exists a subsequence of {un} and u ∈ X0 such that as n → ∞ we 

have
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un ⇀ u weakly in X0, ‖un‖X0 → a,

un → u strongly in Lr(·)(Ω) for 1 ≤ r(x) < 2∗s− ,

un(x) → u(x) a.e. in Ω,

un ⇀ u weakly in Lα(x)(Ω) if (A2) is satisfied,
ˆ

Ω

|un − u|α(x)dx → bα
∗
,

(D)

where

α∗ =
{

(1 − t0)α− + t0α
+, b > 1

(1 − t0)α+ + t0α
−, b < 1

(3.23)

for some t0 ∈ (0, 1) and ‖un − u‖α(·) → b. If a = 0, then it is an immediate conclusion that un → 0 in X0

and hence un → 0 in Lα(x)(Ω) as n → ∞ (by Theorem 3.1). Therefore we discard the case of a = 0.
Since by Remark 3.1, we are interested in solutions which obey

‖u‖2
X0

2 ≤ l,

we further make the assumption

0 <
a2

2 ≤ l.

Note that this is where we are given a possible choice of l in the definition of η.
Moreover, by the weak convergence we have

lim
n→+∞

¨

Q

(un(x) − un(y))(v(x) − v(y))
|x− y|N+2s(x,y) dxdy =

¨

Q

(u(x) − u(y))(v(x) − v(y))
|x− y|N+2s(x,y) dxdy.

Further, we have

lim
n→+∞

ˆ

Ω

|un|−γ(x)vdx =
ˆ

Ω

|u|−γ(x)vdx < ∞. (3.24)

The finiteness of the limit can be established by Remark 5.1. Now consider

o(1) =〈Ī ′λ(un), un − u〉

=‖un‖2(θ−1)
X0

〈un, un − u〉 − λ

ˆ

Ω

|un|−γ(x)−1un(un − u)dx−
ˆ

Ω

η

(‖un‖2
X0

2

)
|un|α(x)−2un(un − u)dx

− η′
(‖un‖2

X0

2

)
〈un, un − u〉

ˆ |un|α(x)

α(x) dx (3.25)

Ω
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=‖un‖2(θ−1)
X0

〈un, un − u〉 − λ

ˆ

Ω

|un|−γ(x)−1un(un − u)dx−
ˆ

Ω

η

(
a2

2

)
|un|α(x)−2un(un − u)dx

− η′
(
a2

2

)
〈un, un − u〉

ˆ

Ω

|un|α(x)

α(x) dx

=‖un‖2(θ−1)
X0

(a2 − ‖u‖2
X0

) −
ˆ

Ω

|un|α(x)dx +
ˆ

Ω

|u|α(x)dx + o(1)

=‖un‖2(θ−1)
X0

‖un − u‖2
X0

−
ˆ

Ω

|un − u|α(x)dx + o(1).

(3.26)

Note that, we have again used Remark 5.1 to tackle the singular term and that we get lim
n→∞

´
Ω uu

−γ(x)
n dx =´

Ω u1−γ(x)dx. Thus we derive

a2(θ−1) lim
n→∞

‖un − u‖2
X0

= lim
n→∞

ˆ

Ω

|un − u|α(x)dx = bα
∗
. (3.27)

If b = 0, then from (D) and (3.27) we obtain un → u in X0 as n → ∞, since a > 0. Therefore we need 
to show that b = 0. Let us assume to the contrary, that b > 0. Then, using (2.1), (D), and (3.27), we would 
get

0 ≤ a2(θ−1) lim
n→∞

‖un − u‖2
X0

= bα
∗
. (3.28)

Next, from (3.28) we would have

Sa2(θ−1)b2 ≤ bα
∗
,

a2(θ−1)(a2 − ‖u‖2
X0

) = bα
∗
.

(3.29)

It would also follow from (3.29) that

b ≥ S
1

α∗−2 a
2(θ−1)
α∗−2 (3.30)

and from (3.29) that

a2 ≥ Sb2 ≥ S(S
2

α∗−2 a
4(θ−1)
α∗−2 ) = S

α∗
α∗−2 a

4(θ−1)
α∗−2 . (3.31)

This would further lead to

a
2(α∗−2θ)

α∗−2 ≥ S
α∗

α∗−2 which would imply that a2 ≥ S
α∗

α∗−2θ . (3.32)

We can assume that no subsequence of the bounded (PS) sequence {un} is such that ‖un − u‖X0 → 0, 
as n → ∞, whenever 0 < c < c∗. Let us further choose β such that 1 − γ− < 1 < 2θ < β < α− and consider 
the following

Īλ(un) − 1
β
〈Ī ′λ(un), un〉 ≥

(
1
2θ − 1

β

)
‖un‖2θ

X0
+ λ

(
1
β
− 1

1 − γ+

) ˆ

Ω

|un|1−γ(x)dx

+
(

1
β
− 1

α−

)ˆ
η

(‖un‖2
X0

2

)
|un|α(x)dx + 1

β
‖un‖2

X0
η′
(‖un‖2

X0

2

)ˆ |un|α(x)

α(x) dx
Ω Ω
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≥
(

1
2θ − 1

β

)
‖un‖2θ

X0
+ λ

(
1
β
− 1

1 − γ+

) ˆ

Ω

|un|1−γ(x)dx

+ 1
β
‖un‖2

X0
η′
(‖un‖2

X0

2

) ˆ

Ω

|un|α(x)

α(x) dx. (3.33)

On passing to the limit n → ∞ in (3.33) and using 0 < a2

2 ≤ l, equation (3.20), the Brézis-Lieb Lemma, 
and the Young inequality, we would get

c ≥
(

1
2θ − 1

β

)
(a2θ + ‖u‖2θ

X0
) − λ

(
1

1 − γ+ − 1
β

) ˆ

Ω

|u|1−γ(x)dx + 1
β
a2η′

(
a2

2

)
lim
n→∞

ˆ

Ω

|un|α(x)

α(x) dx

≥
(

1
2θ − 1

β

)
(a2θ + ‖u‖2θ

X0
) − Cλ

(
1

1 − γ+ − 1
β

)
‖u‖1−δ

X0

≥
(

1
2θ − 1

β

)
(a2θ + ‖u‖2θ

X0
) −

(
1
2θ − 1

β

)
‖u‖2θ

X0
−
(

1
2θ − 1

β

)− δ
2θ−1+δ

[
λC

(
1

1 − γ+ − 1
β

)] 2θ
2θ−1+δ

≥
(

1
2θ − 1

β

)
a2θ −

(
1
2θ − 1

β

)− δ
2θ−1+δ

[
λC

(
1

1 − γ+ − 1
β

)] 2θ
2θ−1+δ

≥
(

1
2θ − 1

β

)
Sα∗θ/(α∗−2θ) −

(
1
2θ − 1

β

)− 1−δ
2θ−1+δ

[
λC

(
1

1 − γ+ − 1
β

)] 2θ
2θ−1+δ

=c∗. (3.34)

This is a contradiction to the assumption that c < c∗. Also, for a sufficiently small λ, say λ0, one can 
get c∗ > 0. Therefore we conclude that b = 0. Thus we have obtained un → u in X0 as n → ∞. So the 
functional Īλ fulfills the (PS)c condition whenever c < c∗. �
Remark 3.4. Observe that since c∗ > 0, we can use Theorem 3.4.

Remark 3.5. Notice that since c∗ > 0, there is a possibility of the occurrence of the situation where the 
sequence obeys the following

Īλ(un) → 0, Ī ′λ(un) → 0, (3.35)

as n → ∞. This implies that there exists a subsequence of {un} such that un → v0 in X0 as n → ∞. This 
forces us to have v0 �= 0 a.e. in Ω. For if v0 = 0 over a subset of Ω of nonzero Lebesgue measure, then we 
shall have Īλ(un) → 0, Ī ′λ(un) → −∞, which is a contradiction to (3.35).

4. Proofs of the main results

4.1. Proof of Theorem 3.1

An important embedding result in the literature is due to Ho and Kim [19] who considered a Sobolev 
space of constant order but with a variable exponent. We will prove the embedding result for a variable 
order but with a constant exponent.

Using the Closed graph theorem, we only need to establish that W s(·),2(Ω) ⊂ Lα(·)(Ω). To this end, let 
u ∈ W s(·),2(Ω)\{0} be arbitrary and fixed. We shall show that u ∈ Lα(·)(Ω), namely,
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ˆ

Ω

|u|α(x)dx < ∞. (4.1)

Throughout the proof, K > 0 will denote different constants independent of u. We cover Ω by 
{Bεj (xj)}kj=1 with xj ∈ Ω and εj ∈ (0, 1). Here Ωj := Bεj (xj) 

⋂
Ω are Lipschitz domains and the con-

dition in (A2) is satisfied for all j ∈ {1, ..., k}. We fix j ∈ {1, ..., k} and denote sj := inf(y,z)∈Ωj×Ωj
s(y, z), 

αj := supx∈Ωj
α(x). From (A2) and the choice of εj , we get

αj ≤
2N

N − 2sj
:= 2∗s,j .

By the above expression and the well-known embedding theorem in the constant exponent case (refer 
[13]), we obtain

ˆ

Ωj

|u(x)|αjdx ≤ K

⎛
⎜⎝ˆ

Ωj

|u(x)|2dx +
¨

Ωj×Ωj

|u(x) − u(y)|2
|x− y|N+2sj dxdy

⎞
⎟⎠

αj
2

.

Besides, we note that

¨

Ωj×Ωj

|u(x) − u(y)|2
|x− y|N+2s(x,y) dxdy ≥

¨

Ωj×Ωj

|u(x) − u(y)|2
|x− y|N+2sj

dxdy

=
¨

Ωj×Ωj

∣∣∣∣ |u(x) − u(y)|
|x− y|2sj

∣∣∣∣
2 1
|x− y|N−2sj dxdy. (4.2)

A simple calculation leads to

ˆ

Ωj

|u(x)|α(x)dx ≤ K

⎛
⎜⎝1 +

ˆ

Ωj

|u(x)|2dx +
¨

Ωj×Ωj

|u(x) − u(y)|2
|x− y|N+2s(x,y) dxdy

⎞
⎟⎠

αj
2

≤ K

⎛
⎝1 +

ˆ

Ω

|u(x)|2dx +
¨

Ω×Ω

|u(x) − u(y)|2
|x− y|N+2s(x,y) dxdy

⎞
⎠

α+
2

.

On summing up over the index j we get

ˆ

Ω

|u(x)|α(x)dx ≤ K

⎛
⎝1 +

ˆ

Ω

|u(x)|2dx +
¨

Ω×Ω

|u(x) − u(y)|2
|x− y|N+2s(x,y) dxdy

⎞
⎠

α+
2

< ∞,

and so (4.1) holds. Therefore ‖u‖α(·) ≤ C‖u‖W s(·),2(Ω) holds. �
4.2. Proof of Theorem 3.2

We now prove that problem (3.5) has infinitely many solutions.



J. Zuo et al. / J. Math. Anal. Appl. 514 (2022) 126264 15
Proof of Theorem 3.2. For each m ∈ N, choose Ym ⊂ X0, a finite-dimensional subspace of dimension m. 
Therefore, by (2) and (3) of Lemma 3.3, we have that G(Sm−1) = m and therefore G(rSm−1) = m.

Choosing a sufficiently small r, say r0 = r0(Ym), such that for every u ∈ r0Sm−1, i.e. ‖u‖X0 = r0 <
√

2l, 
according to Theorem 3.1, we have

Īλ(u) ≤ 1
2θ‖u‖

2θ
X0

− λ

1 − γ−

ˆ

Ω

|u|1−γ(x)dx− 1
α+

ˆ

Ω

η

(‖u‖2
X0

2

)
|u|α(x)dx

= 1
2θ‖u‖

2θ
X0

− λ

1 − γ−

ˆ

Ω

|u|1−γ(x)dx− 1
α+

ˆ

Ω

|u|α(x)dx

≤ 1
2θ‖u‖

2θ
X0

− C ′′λ

1 − γ− ‖u‖1−γ−

X0
− C ′′′

α+ ‖u‖α+

X0
dx < 0, due to the ordering 1 − γ− < 2θ < α−.

(4.3)

The hypotheses of Theorem 3.4, namely (i) −(ii) are all satisfied. Note that the hypothesis (i) holds since 
Īλ(0) = 0, Īλ is even. The hypothesis (ii) holds by the discussion leading to (4.3). Thus, by Theorem 3.4
we establish the existence of infinitely many critical points {um} for functional Īλ which in turn proves, by 
Remark 3.1, that problem (3.5) has infinitely many solutions, and hence we have established the existence 
of infinitely many solutions for problem (3.1). �
4.3. Proof of Theorem 3.3

Finally, we address the boundedness of solutions to problem (3.1).

Proof of Theorem 3.3. The aim of this subsection is to establish the boundedness of the solution to the 
problem (3.1). We shall sketch the ideas without giving the details as the argument is pretty standard one. 
We shall use a bootstrap argument in order to achieve this by assuming the integrability of certain order 
p > 1, to begin with.

Let 0 ≤ u ≤ X0 be a solution such that |{x : u(x) = 0}| = 0. We consider the set Ω′ = {x ∈ Ω : u(x) > 1}
and thus by the positivity of u, we have u = u+ > 0 a.e. in Ω. Let u ∈ Lp(Ω) for p > 1. On testing with up

in (3.4) we obtain the following (see [5]).

(p + 1)2

4p ‖u‖2(θ−1)
X0

〈u, up〉, (see [5, Lemma C.2])

=

⎛
⎝λ

ˆ

Ω′

|u|p−γ(x)dx +
ˆ

Ω′

|u|α(x)−1+pdx

⎞
⎠ (p + 1)2

4p

≤

⎛
⎝λ

ˆ

Ω′

|u|p(1 + |u|α(x)−1)dx

⎞
⎠ (p + 1)2

4p ; since in Ω′ we have u > 1

≤

⎛
⎝λ

ˆ

Ω′

|u|p|u|α+
dx

⎞
⎠ (p + 1)2

4p

≤ λpC ′′‖u‖α+

β∗ ‖up‖t; due to Hölder’s inequality,

(4.4)

where t = β∗
∗ + for some β∗ > α+ > 1. We further have
β −α
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C ′‖u‖2(θ−1)
X0

‖u p
2 ‖2

β∗ ≤ C ′‖u‖2(θ−1)
X0

‖u p+1
2 ‖2

β∗

≤ C ′‖u‖2(θ−1)
X0

¨

Ω′×Ω′

∣∣∣u(x)
(p+1)

2 − u(y)
(p+1)

2

∣∣∣2
|x− y|N+2s(x,y) dxdy.

(4.5)

By (4.4) and (4.5), we have the following

C ′‖u‖2(θ−1)
X0

‖u p
2 ‖2

β∗ ≤ λpC ′′‖u‖α+

β∗ ‖up‖t. (4.6)

We fix β∗ > 1, set Θ = β∗

2t > 1, and pick a suitable t and τ = tp to get

‖u‖Θτ ≤ (pC)t/τ‖u‖τ , (4.7)

where C = λC′′‖u‖α+
β∗

‖u‖2(θ−1) corresponds to the chosen solution u.
We now iterate with τ0 = t, τn+1 = Θτn = Θn+1t. After n iterations, the inequality (4.7) yields

‖u‖τn+1 ≤ C

n∑
i=0

t
τi

n∏
i=0

(τi
t

) t
τi ‖u‖t. (4.8)

By using the fact that Θ > 1 and employing the following scheme of iteration: τ0 = t, τn+1 = Θτn =
Θn+1t, we have

∞∑
i=0

t

τi
=

∞∑
i=0

1
Θi

= Θ
Θ − 1

and

∞∏
i=0

(τi
t

) t
τi = Θ

Θ2
(Θ−1)2 .

Therefore, on passing to the limit n → ∞ in (4.8), we have

‖u‖∞ ≤ C
Θ

Θ−1 Θ
Θ2

(Θ−1)2 ‖u‖t, (4.9)

hence u ∈ L∞(Ω). �
5. Epilogue

We shall complete the paper with the following observations.

Remark 5.1. A similar remark as in [11] can also be made here in order to establish the following exchanging 
of the integral and the limit for the singular term.

lim
n→+∞

ˆ

Ω

|un|−γ(x)−1uvdx =
ˆ

Ω

|u|−γ(x)−1uvdx for every v ∈ X0, (5.1)

where u is a pointwise limit of {un}, a.e. in Ω.
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As mentioned in Section 3.1, after Definition 3.1, we shall give the derivative of the singular term of Iλ
in a more clear way.

Remark 5.2. The derivative of the functional

J(u) =
ˆ

Ω

|u|1−γ(x)dx

for a nonzero u ∈ X0 is given by

〈J ′(u), ϕ〉 =
ˆ

Ω

(1 − γ(x))u|u|−1−γ(x)ϕdx for every ϕ ∈ X0.

Indeed, we have

〈J ′(u), ϕ〉 =
ˆ

Ω

(1 − γ(x))|u|−γ(x)sgn(u)ϕdx for every ϕ ∈ X0.

However, we also have
ˆ

Ω

(1 − γ(x))|u|−γ(x)−1|u|sgn(u)ϕdx =
ˆ

Ω

(1 − γ(x))|u|−γ(x)−1u(sgn(u))2ϕdx

=
ˆ

Ω

(1 − γ(x))|u|−γ(x)−1uϕdx for every ϕ ∈ X0.

(5.2)

Therefore,

〈J ′(u), ϕ〉 =
ˆ

Ω

(1 − γ(x))|u|−γ(x)−1uϕdx for every ϕ ∈ X0. � (5.3)
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