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1. INTRODUCTION

The application of asymptotic methods in various domains of algebra and discrete mathematics is
common practice in modern studies. Examples are the study of diverse growth functions in the theory
of formal languages [1], in group theory [2], and in the theory of polynomial identities [3]. In the theory
of identity relations of linear algebras, the role of the study of quantitative characteristics has increased
in recent years (see, e.g., [4] and references therein). Most important among such characteristics are
the sequences {cnA} of codimensions and {lnA} of colengths of a given algebra A (we recall the basic
definitions and notions in the next section).

The former characteristic has been studied in much more detail. Nevertheless, there have presently
appeared many papers analyzing the behavior of the sequence {ln(A)} for various algebras A. One of
the first papers in this direction was [5], in which it was proved that the growth of the sequence {ln(A)}
is polynomial for any associative algebra with a nontrivial identity, i.e., a PI-algebra. This result is
important, because many other characteristics grow exponentially, so that the influence of the growth of
colengths can be ignored. Note also that if A is a free associative algebra, then the growth of {ln(A)} is
overexponential.

In the case of Lie algebras, the behavior of the sequence {ln(A)} is more complicated. On the
one hand, the class L of Lie algebras with polynomial growth of {ln(L)} is fairly large. It includes
all finite-dimensional algebras, Lie algebras with nilpotent commutator subgroup, affine Kac–Moody
algebras, and a number of other algebras. On the other hand, there exist examples (see [6]) of Lie
algebras L with ln(L) ∼ (

√
b )n for any integer b ≥ 2 and even of algebras with overexponential growth

of colength. For example, if L is the free class-2 solvable Lie algebra of countable rank, then

ln(L) ∼
n!

(ln n)n

(see [6]). There also exist examples of intermediate growth, but they are few. One of them is as follows:
if L generates the variety AN2, then, according to [7],

ln(L) ∼ exp

(
π

√
2n

3

)
.
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In the general nonassociative case, there are only some scattered results. Thus, if A is a finite-dimen-
sional algebra of any signature with dimA = d, then, as proved in [8],

ln(A) ≤ d(n+ 1)d
2+d.

In [8] and [9], a family of examples of infinite-dimensional class-2 left nilpotent algebras with polyno-
mially growing sequences {ln} was constructed. Yet another curious example is as follows. In [10],
it was shown that there exist precisely three varieties V = varA with ln(V) = 1 for all n = 1, 2, . . . .
One of them is generated by the commutative associative polynomial algebra F [t], another one, by
a two-dimensional meta-Abelian Lie algebra, and the third one, by the infinite-dimensional Jordan
algebra J constructed by Shestakov [11, p. 104, Example 2].

The main objective of this paper is to construct a family of examples with subexponentially growing
sequence {ln(A)} (see Theorem 1 and its corollaries). The character of the asymptotic behavior
of {ln(A)} may be both monotone and strongly oscillating. Examples are based on a new approach
to constructing nonassociative algebras by using infinite binary words, which was proposed in [12], [13]
and developed in [14], [15]. The new construction makes it possible to connect numerical invariants of
algebras with combinatorial characteristics of infinite words and use results of the well developed theory
of formal languages.

2. BASIC NOTIONS AND DEFINITIONS

Let F be a field of characteristic zero. We denote by F{X} the absolutely free algebra over F with an
infinite set X of generators. Given an F-algebra A, a polynomial

f = f(x1, . . . , xn) ∈ F{X}

is called an identity of A if f(a1, . . . , an) = 0 for any a1, . . . , an ∈ A. The necessary information from
the theory of identity relations can be found in [3] or in [16]. The set of all identities of an algebra A forms
the ideal Id(A) in F{X}, which is stable with respect to all endomorphisms of F{X}, i.e., is a T-ideal.
Let Pn denote the subspace of all multilinear polynomials in x1, . . . , xn in F{X}. Then Pn ∩ Id(A) is
the set of all nth-degree multilinear identities of the algebra A. It is well known that, in the case of a
field of characteristic zero, any T-ideal is uniquely determined by its multilinear components. Therefore,
studying the identities of A largely reduces to studying the family of subspaces Pn ∩ Id(A), n = 1, 2, . . . .
As a rule, it is more convenient to consider the family of quotient spaces

Pn(A) =
Pn

Pn ∩ Id(A)
.

In the study of multilinear identities, an important role is played by the representation theory of the
symmetric group Sn. The action of Sn on the multilinear monomials is defined by

σ ◦ f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n))

and turns Pn into an FSn-module. The space Pn ∩ Id(A) is invariant with respect to the action of Sn;
therefore, the space Pn(A) is endowed with the structure of an FSn-module as well. Its charac-
ter χ(Pn(A)) is called the nth cocharacter of A and denoted by χn(A). The necessary information
from the representation theory of symmetric groups can be found in the monograph [17]. It is convenient
to write the decomposition of Pn(A) into a sum of irreducible summands in terms of characters as

χn(A) =
∑
λ�n

mλχλ, (2.1)

where χλ is the irreducible character corresponding to the partition λ of the number n and the
nonnegative integer mλ is the number of occurrences of χλ in χn(A). We must recall that a partition λ
of a number n is a set λ = (λ1, . . . , λk) of integers satisfying the conditions

λ1 ≥ · · · ≥ λk > 0, λ1 + · · ·+ λk = n.
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The dimension of the corresponding irreducible representation (or the degree of the character) is denoted
by dλ or degχλ. The number

ln(A) =
∑
λ�n

mλ

is called the nth colength of A. In other words, ln(A) is the number of terms in the decomposition of the
FSn-module Pn(A) into a sum of irreducible components.

We need yet another quantitative characteristic related to the identities of the algebra A. Recall that
the nth codimension of the identities of an algebra A equals

cn(A) = dimPn(A).

Obviously,

cn(A) =
∑
λ�n

mλ degχλ, (2.2)

where mλ is the same as in (2.1).
Since we consider nonassociative algebras, an important role is played by the parenthesizations of

monomials in different algebras. By T we denote a parenthesization of a word of length n and by
[a1 · · · an]T , the product of n elements of a nonassociative algebra with this parenthesization. For
example, if n = 4 and T = ( · )( · ), then [x1, . . . , x4]T = (x1x2)(x3x4). An algebra A with the identity

(x1x2)(x3x4) ≡ 0 (2.3)

is said to be meta-Abelian.
Given a parenthesization T , we can consider the subspace P T

n of Pn generated by all monomials
[xσ(1) · · · xσ(n)]T , σ ∈ Sn. Clearly,

Pn =
⊕
T

P T
n , (2.4)

where the summation is over all possible parenthesizations, i.e., contains

1

n

(
2n − 2

n− 1

)

summands. Each of the subspaces P T
n , as well as Pn ∩ Id(A), is an FSn-submodule in Pn. Therefore,

the quotient module

P T
n (A) =

P T
n

P T
n ∩ Id(A)

(2.5)

has the structure of an FSn-module as well. We denote its character by χT
n (A).

We need the following result of [12]. Let M1 denote the free meta-Abelian algebra with one
generator z. Then

χT
n (M1) = χn + 2χ(n−1,1) (2.6)

for any parenthesization T with the property [z1 · · · zn]T 
= 0 in M1.

3. MAIN RESULTS
Recall the construction of the algebra associated with an infinite binary word. Let w = w1w2 . . . ,

where all wi equal 0 or 1. The combinatorial complexity of the word w is the function Compw : N → N,
where Compw(n) is the number of different subwords of length n in w.

Let w be an infinite word in the alphabet {0; 1}. By A(w) we denote the nonassociative algebra with
basis {a, b0, b1, . . . } in which multiplication is defined as

bk =

{
abk−1 if wk = 1,

bk−1a if wk = 0
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for all k ≥ 1, and all the remaining products are zero. For any word w, the algebra A(w) satisfies
identity (2.3); therefore, all FSn-decompositions for Pn(A) can be considered modulo relation (2.3),
i.e., in the free meta-Abelian algebra M{X} rather than in the algebra F{X}.

Given an element x of any meta-Abelian algebra, by Rx and Lx we denote, respectively, the operators
of right and left multiplication by x. It is convenient to write both operators on the right, as yRx = yx and
yLx = xy. For any binary word u = u1 . . . um and any y, x1, . . . , xm ∈ X ⊂ M{X}, by yu(x1, . . . , xm)
we denote the monomial yT1 · · · Tm, where

Ti =

{
Rxi if ui = 0,

Lxi if ui = 1,
i = 1, . . . ,m.

It is easy to see that any monomial of degree n in M{X} can be written in the form

(xixj)u(xi1 , . . . , xin−2), (3.1)

where u is a binary word of length n− 2.
Let w = w1w2 . . . be an infinite binary word. We say that a finite word u is a proper subword of w if

u is a subword of the word w2w3 · · · .

Lemma 1. A multilinear monomial (y1y2)u(x1, . . . , xm) is not an identity of the algebra A(w) if
and only if u is a proper subword of w.

Proof. Let u = wi . . . wi+m−1, where i ≥ 2. Then

bi−2Tau(a, . . . , a) = bi+m−1 
= 0, Ta =

{
Ra if wi−1 = 0,

La if wi−1 = 1.

Therefore, (y1y2)u(x1, . . . , xm) /∈ Id(A(w). On the other hand, at the basis elements of A(w), y1y2
takes only the values b1, b2, . . . . Thus, for k ≥ 1, the product bku(a, . . . , a) is nonzero only for
u = wk+1 . . . wk+m.

Since A(w) is not one-generated, we cannot constrain the colength of this algebra by directly
applying relation (2.6). Let us denote the subalgebra of A(w) generated by the element a+ b0 as Ã(w).

Lemma 2. The algebras A(w) and Ã(w) satisfy the same identities, i.e., Id(A(w)) = Id(Ã(w)).

Proof. First, note that Ã(w) is the linear span of the elements a+ b0, b1, b2, . . . . Since the charac-
teristic of the field F is zero, it suffices to compare the multilinear identities of these two algebras. The
inclusion Id(A(w)) ⊆ Id(Ã(w)) is obvious, because Ã(w) is a subalgebra of A(w).

Let us show that any multilinear polynomial f = f(x1, . . . , xn) which is not an identity of A(w)
does not identically vanish in Ã(w). Since both algebras are meta-Abelian, we can assume f to be
a polynomial in the free meta-Abelian algebra M{X}. In this case, according to (3.1), f can be written
as a linear combination

f =
∑
i,k

∑
J

∑
u

αi,k,J,u(xixk)u(xj1 , . . . , xjn−2), (3.2)

where J = {j1, . . . , jn−2} = {1, . . . , n} \ {1, 2} and u is a binary word of length n− 2.
If f is not an identity in A(w), then there exists a substitution

ϕ : X → {a, b0, b1, . . . }
such that ϕ(f) 
= 0.

Clearly, we have ϕ(xi0) = bm for precisely one index i0 and ϕ(xr) = a for all other r. Moreover,
precisely one of the two products xi0xk and xkxi0 takes the nonzero value bm+1. Suppose that, say,
bma = bm+1 and abm = 0. Then, under the substitution ϕ, all monomials (xixk)u(xj1 , . . . , xjn−2)
with i 
= i0 vanish. Moreover, all (xi0xk)u(xj1 , . . . , xjn−2) with u 
= u0, where u0 = wm+2 · · ·wn+m−1 is
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the subword ofw beginning with them+2th letter, vanish as well. Let us write f in the form f = f0+ f1,
where

f0 =
∑
k

∑
J

αi0,k,J,u0(xi0xk)u0(xj1 , . . . , xjn−2),

f1 =
∑
i �=i0

∑
k

∑
J

∑
u

αi,k,J,u(xixk)u(xj1 , . . . , xjn−2)

+
∑
k

∑
J

∑
u �=u0

αi0,k,J,u(xi0xk)u(xj1 , . . . , xjn−2).

Then ϕ(f1) = 0 and ϕ(f0) = λ(bma)u0(a, . . . , a) = λbm+n−1, where

λ =
∑
k

∑
J

αi0,k,J,u0 
= 0.

Now we replace the substitution ϕ by ϕ̃ such that

ϕ̃(xi) = a+ b0 for all i = 1, . . . , n.

Then ϕ̃(xi0xk) = bma = bm+1 and ϕ̃(xixj) = 0 for all i 
= i0. In particular,

ϕ̃(f1) = 0 and ϕ̃(f0) = ϕ(f0),

i.e., ϕ̃(f) = ϕ(f) 
= 0. Since ϕ̃(xi) ∈ Ã(w) for all i = 1, . . . , n, it follows that f is not an identity of Ã(w),
which proves the lemma.

We proceed to the proof of the main result of this paper. Let us divide the proper subwords of w into
two categories. A subword u is called a subword of the first type if it occurs in w only after 0 or only
after 1. If u occurs in w both after 0 and after 1, then it is called a subword of the second type.

Theorem 1. Let w = w1w2 . . . be an infinite binary word. Then

ln(A(w)) = 2k
(1)
n−2 + 3k

(2)
n−2, (3.3)

where k
(1)
m and k

(2)
m are, respectively, the numbers of proper subwords of length m of the first and

second types in w. In particular,

2Compw∗(n− 2) ≤ ln(A(w)) ≤ 3Compw∗(n− 2), (3.4)

where w∗ = w2w3 · · · .

Proof. First, we analyze the structure of the modules P T
n (A) of the form (2.5) and the decomposition of

the space Pn(A) into a sum of such P T
n (A) in the case A = A(w). Note that all multilinear monomials

of the form (3.1) with the same binary word u have the same parenthesization and do not vanish in
the free meta-Abelian algebra M{X}. Moreover, the parenthesizations corresponding to different u are
different. In particular, the space Pn,u, which is the linear span of multilinear monomials (3.1) with fixed u

in F{X}, coincides with one of the subspaces P T
n , in (2.4) and P T

n � Id(M{X}) for the corresponding
parenthesizing T . And conversely, if P T

n � Id(M{X}), then, for the parenthesization T , there exists a
word u for which P T

n = Pn,u. Taking into account Lemma 1, we arrive at the conclusion

Pn ≡
∑
u

Pn,u (mod Id(A(w))),

where the summation is over all proper subwords u of the word w.
Let u1, . . . , uN be all proper subwords of length n− 2 in w. We show that

Pn ∩ Id(A(w)) = Pn,u1 ∩ Id(A(w)) ⊕ · · · ⊕ Pn,uN
∩ Id(A(w)) +

∑
T ′

P T ′
n , (3.5)
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where T ′ ranges over all parenthesizations for which P T ′
n ⊂ Id(A(w)). Obviously, the right-hand side

of (3.5) is contained in the left-hand side. Therefore, it suffices to prove that if f1 + · · ·+ fN ≡ 0 is an
identity of the algebra A(w), then all f1, . . . , fN are also identities of A(w).

Let, e.g.,

u1 = wk+1 · · ·wk+n−2, k ≥ 1.

Then, under any substitutionϕ : X → {a, b0, b1, . . . } such that ϕ(xi0) = bk−1 for some i0 and ϕ(xt) = a
for t 
= i0, all elements (3.1) with u 
= u1 vanish, because

bku1(a, . . . , a) = bk+n−1, bku(a, . . . , a) = 0.

In particular, ϕ(f2) = · · · = ϕ(fN ) = 0. Therefore, ϕ(f1) = 0. If ϕ′ is another substitution for which
ϕ′(x0) = bm−1, m ≥ 1, and u1 
= um+1 . . . um+n−2, then ϕ′(f1) = 0. Therefore, f1 ∈ Id(A(w)). Simi-
larly, f2, . . . , fN are identities of A(w), which proves relation (3.5).

From (3.5), taking into account (2.5), we obtain the decomposition

Pn(A(w)) =
⊕
u

Pn,u(A(w)), (3.6)

in which the summation is over all proper subwords u of length n− 2 in the word w and

Pn,u(A(w)) =
Pn,u

Pn,u ∩ Id(A(w))
.

Thus, to calculate the length of the FSn-module Pn(A(w)), i.e., ln(A(w)), it suffices to calculate and
sum the values

ln,u(A(w)) =
∑
λ�n

m
(u)
λ , where χ(Pn,u(A(w))) =

∑
λ�n

m
(u)
λ χλ.

According to Lemma 1 and relation (2.6), we have

χ(Pn,u(A(w))) = rχ(n) + sχn−1,1,

where r = 0 or 1 and s = 0, 1, or 2 for any proper subword u in w. Moreover,

dimPn,u(A(w)) = r + s(n− 1), (3.7)

because degχ(n) = 1 and degχn−1,1 = n− 1.

In [15, Lemma 4], it was shown that dimPn,u(A(w)) = n if u is a proper subword of the first type. It is
easy to see that (3.7) can hold only for r = s = 1; hence ln,u(A(w)) = 2. For a subword u of the second
type, it was proved in the same paper (see Lemma 5 and Remark 1) that dimPn,u(A(w)) = 2n − 1,
whence r = 1, s = 2, and ln,u(A(w)) = 3. This gives relation (3.3), which implies (3.4), because

k
(1)
n−2 + k

(2)
n−2 = Compw∗(n− 2).

This result makes it possible to realize a large class of functions as colength growth functions. Below
we give several examples of subexponential growth.

Corollary 1. Let ϕ : R+ → R
+ be a function such that

(1) ϕ(t) � log2(t);

(2) ϕ is differentiable on (0;∞);

(3) ϕ′(t) � t−β for some constant β > 0;

(4) ϕ is a decreasing function.

Then there exists an algebra A for which ln(A) ∼ 2ϕ(n).

MATHEMATICAL NOTES Vol. 109 No. 3 2021



COLENGTH GROWTH FUNCTIONS OF NONASSOCIATIVE ALGEBRAS 411

Proof. In [18], it was proved that, for any ϕ(t) satisfying conditions (1)–(4), there exists a binary word
w for which Compw(n) ∼ 2ϕ(n). It remains to apply Theorem 1 to the algebra A(w).

The relation f(t) � g(t) in the statement of Corollary 1 means that

lim
t→∞

f(t)

g(t)
= 0.

Corollary 1 covers both monotone subexponential functions, such as 2n
α

or nnα
with α ∈ (0; 1), and

weakly oscillating functions. The more exotic example given in [18] corresponds to the function

ϕ(t) = (t+ 10)1/2+(1/4) cos(ln ln(t+1)),

which slowly oscillates between n1/2 and n3/4.
Using other results of the theory of formal languages, we can construct examples of algebras with

much sharper oscillations of the sequence {ln(A)}. Thus, in [19, Theorem 3], an example of a binary
word w whose combinatorial complexity oscillates from “almost linear” to “almost exponential” was
given. Using this example, we obtain the following result.

Corollary 2. There exists an algebra A of the form A(w) for which there is an increasing
sequence nk, k = 1, 2, . . . , such that

(a) lnk
< nk + ln lnnk if k is even;

(b) lnk
> 2nk/(ln lnnk) if k is odd.

In addition to the realization of functions with exotic asymptotics, Theorem 1 gives exact colength
values in a number of cases. In the theory of factorial languages, the language E0 consisting of all words
in the two-letter alphabet {a, b} that do not contain the subwords a2, b4, and abba is well known (see,
e.g., [1]). It is easy to construct a binary word w for which the set of proper subwords coincides with the
language E0. One of such examples was given in the paper [15]. In the same paper, it was shown that,
for such a word w,

k
(1)
n−2 =

{
Fk−1 + Fk+1 if n = 2k,

Fk−1 + Fk+2 if n = 2k + 1,

and

k
(2)
n−2 = Fk

both for n = 2k and for n = 2k + 1, where

Ft =
ϕt + (−ϕ)−t

2ϕ− 1
are the Fibonacci numbers, ϕ =

1 +
√
5

2
.

Applying Theorem 1, we obtain yet another corollary.

Corollary 3. For the algebra A(w),

ln(A(w)) =

{
2Ft+1 + Ft+3 if n = 2t,

Ft+1 + 2Ft+3 if n = 2t+ 1.

In addition to the exact value, the asymptotics of the sequence ln(A(w)) can be estimated. Introduc-
ing the relation

f(x) � g(x) ⇐⇒ lim
x→∞

f(x)

g(x)
= 1

between real functions, we obtain

ln(A(w)) �
{
C0(

√
ϕ )n for even n,

2C0(
√
ϕ )n for odd n,

where C0 =
ϕ2

2
=

3 +
√
5

4
.
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