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THE THEORY OF FORMAL LANGUAGES AND

IDENTITIES OF NONASSOCIATIVE ALGEBRAS

M. V. Zaicev and D. D. Repovš UDC 512.572

Abstract: We consider the numerical characteristics of identities of nonassociative algebras and pro-
pose a method for constructing some algebra A(w) with prescribed properties of the codimension growth
function. The growth of codimensions of A(w) is completely determined by the combinatorial complex-
ity of the language of subwords of w.
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In the present paper we use some results of the theory of formal languages to solve a whole series of
problems of PI-theory, the theory of polynomial identities of algebras. The combinatorial properties of
the languages consisting of the subwords of an infinite word have been used several times to construct
various examples of the asymptotic behavior of numerical characteristics related to identities; see [1, 2]
for instance. Some alternative construction of the algebras arising from an infinite binary word was
proposed in [3]. We modernize the approach of [3], which enables us to relate the numerical invariants of
identities of the constructed algebra to the combinatorial complexity of the language determined by the
original word.
To start with, we recall the necessary concepts of PI-theory. Take a field Φ of characteristic zero

and some (not necessarily associative) algebra A over Φ. Denote the absolutely free algebra over Φ
with an infinite set of generators X by Φ{X}. Then the collection of all identities of A constitutes the
two-sided ideal Id(A) of Φ{X}.
It is known that the ideal Id(A) is completely determined by its multilinear components; i.e., the

collection of subspaces Id(A) ∩ Pn for n = 1, 2, . . . , where Pn is the subspace of multilinear polynomials
on x1, . . . , xn in Φ{X}.
All necessary definitions and concepts of PI-theory can be found in [4]. Put

Pn(A) =
Pn

Id(A) ∩ Pn , cn(A) = dimPn(A).

The value cn(A) is called the nth codimension of A. It is established in [5] that the sequence {cn(A)}
is exponentially bounded for every associative PI-algebra. At the end of the 1980s Amitsur conjectured
that the sequence n

√
cn(A) has some limit that is a nonnegative integer. Later Regev proposed the

stronger property cn(A) ∼ Cntdn, where C is a constant, while the relation f(n) ∼ g(n) means that
limn→∞(f(n)/g(n)) = 1.
Moreover, d must be an integer, whereas t must be a half-integer. Regev’s conjecture means that the

three limits

d = lim
n→∞

n
√
cn(A), t = lim

n→∞ logn
cn(A)

dn
, C = lim

n→∞
cn(A)

ntdn
(1)

exist. We will call them the first, second, and third approximations. Furthermore, the number exp(A) = d
is called the PI-exponent of A. Note that for associative algebras Regev’s conjecture is confirmed in
the first and second approximations [6–9], while the question of the third approximation is still open.
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is partially supported by the Slovenia Research Agency (Grant P1–0292).

Original article submitted June 28, 2019; revised June 28, 2019; accepted October 18, 2019.

255



Moreover, it turned out that the sequence {cn(A)} is polynomially bounded in the case exp(A) = 1; i.e.,
{cn(A)} cannot be of intermediate growth.
In the general nonassociative case, there are examples of algebras with cn(A) growing asymptotically

as αn for every real α > 1 (see [2]). Moreover, there are examples with {cn(A)} exponentially bounded
but the first limit in (1) nonexistent [10]. In the second approximation, Regev’s conjecture without
associativity is also refuted [11]. There are also examples of algebras with intermediate growth of the

sequence of codimensions [1]. However, in all these examples cn(A) grows asymptotically as n
nβ with

0 < β < 1.
The main goal of this article is to show that the class of functions of intermediate growth realizable as

sequences {cn(A)} is much wider, and that Regev’s conjecture is false either in the third approximation
on assuming the existence of the first and second limits in (1).
Let us proceed to the main construction, namely, to constructing an algebra from a prescribed

infinite binary word. Recall that the formal language defined by the word w is the collection of all finite
subwords of w, while the combinatorial complexity of this language and the word w itself is the function
Compw : N→ N yielding the number Compw(n) of distinct subwords of length n in w.
Take an infinite word w = w1w2 . . . in the alphabet {0, 1}. Denote by A(w) the algebra generated

by two elements a and b0 with basis {a, b0, b1, . . . } and multiplication defined as follows: If w1 = 1 then
b1 = ab0 and if w1 = 0 then b0a = b1. Suppose that b1, . . . , bk−1 are already defined. Then

bk =

{
abk−1 if wk = 1,

bk−1a if wk = 0.
(2)

All remaining products of the basis elements vanish.
The algebra A(w) satisfies the identity

(x1x2)(x3x4) ≡ 0 (3)

for every w. Thus, we may count codimensions not only in Φ{X}, but also in the free metabelian
algebra M{X}; i.e., in the relatively free algebra of the variety defined by (3).
Given an element x of the metabelian algebra, denote by Rx and Lx the operators of right and

left multiplication by x, respectively. We will write both operators on the right; i.e., yRx = yx and
yLx = xy. Given a binary word u = u1 . . . um and y, x1, . . . , xm ∈ X ⊂M{X}, denote by yu(x1, . . . , xm)
the monomial yT1 . . . Tm, where Ti = Rxi if ui = 0 and Ti = Li if ui = 1. We can uniquely express each
multilinear monomial in x1, . . . , xn in M{X} as

(xixj)u(xi1 , . . . , xin−2), (4)

where u is a binary word of length n− 2, while {i1, . . . , in−2} = {1, . . . , n} \ {i, j}. The following lemma
ensures uniqueness.

Lemma 1. The elements of the form (4) are linearly independent.

Proof. Given an infinite binary word w, alongside A(w) consider the algebra C(w) with basis
{c0, c1, . . . , cm, . . . } and the multiplication table

ck+1 =

{
ckck−1 if wk = 1,

ck−1ck if wk = 0

for all k ≥ 1. Assume that all other products of basis elements vanish. Fix an element z of the form (4)
and consider a word w whose initial length n− 1 subword equals 1u. Then the substitution ϕ such that
ϕ(xi) = c1, ϕ(xj) = c0, ϕ(xi1) = c2, . . . , ϕ(xin−2) = cn−1 yields a nonzero value of z:

ϕ(z) = ϕ((xixj)u(xi1 , . . . , xin−2)) = cn−1,

while ϕ((xkxl)u
′(xt1 , . . . , xtn−2)) = 0 whenever (k, l, t1, . . . , tn−2) 
= (i, j, i1, . . . , in−2) or u 
= u′. �

Call a subword u of an infinite word w proper whenever at least one of the occurrences of u in w
starts in position k ≥ 3.
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Lemma 2. The multilinear monomial (y1y2)u(x1, . . . , xm) is not an identity of A(w) if and only if u
is a proper subword of w.

Proof. If u = wi . . . wi+m−1 and i ≥ 3 then bi−2Tau(a, . . . , a) = bi+m−1 
= 0, where Ta = Ra for
wi−1 = 0 or Ta = La for wi−1 = 1. If u is not a proper subword of w then every substitution of the basis
elements of A(w) into y1, y2, x1, . . . , xm yields the zero value. �
Lemma 3. For every binary word u and every substitution σ ∈ Sm in A(w), we have

(y1y2)u(xσ(1), . . . , xσ(m))− (y1y2)u(x1, . . . , xm) ≡ 0. (5)

Proof. If u is not a proper subword of w then both monomials in (5) vanish identically in A(w) by
Lemma 2. If u is a proper subword of w then each monomial in (5) can take a nonzero value only for
x1 = · · · = xm = a. �
Subdivide the proper subwords of w into the two categories: a subword u is called a subword of type 1

if u appears in w only after 0 or 1. If u occurs in w both after 0 and 1, then w is a subword of type 2.

Lemma 4. Suppose that u is a subword of type 1 in w. If u is always after zero, then the identities

(xixj)u(xi1 , . . . , xin−2) ≡ (xix1)u(x2, . . . , xi−1, xi+1, . . . , xn) (6)

hold in A(w) for i > 1 and {i1, . . . , in−2} = {1, . . . , n} \ {i, j}; moreover,
(x1xi)u(xi1 , . . . , xin−2) ≡ (x1x2)u(x3, . . . , xn), (7)

where {i1, . . . , in−2} = {2, . . . , n} \ {i}.
If u is always after 1 then the identities

(xjxi)u(xi1 , . . . , xin−2) ≡ (x1xi)u(x2, . . . , xi−1, xi+1, . . . , xn) (8)

hold in A(w) for i > 1 and {i1, . . . , in−2} = {1, . . . , n} \ {i, j}. Moreover,
(xix1)u(xi1 , . . . , xin−2) ≡ (x2x1)u(x3, . . . , xn), (9)

where {i1, . . . , in−2} = {2, . . . , n} \ {i}. Furthermore, the elements on the right-hand side of (6) with
2 ≤ i ≤ n and the elements on the right-hand side of (7) are linearly independent. The same independence
holds for the right-hand sides of (8) and (9).

Proof. Let us verify (6). Take the substitution ϕ : X → A(w) of the basis elements of A(w) for
the generators. By (3), the left- and right-hand sides of (6) vanish if at least two generators come from
{b0, b1, . . . }.
If ϕ(xi) = a then ϕ(xixj) = 0 for all j 
= i since u is always before zero in w. The value ϕ at the

right- and left-hand sides of (6) can be nonzero only if ϕ(xi) = bk and ϕ(xs) = a for all remaining s. But
then both sides of (6) become bk+n−1, which proves (6). Relations (7)–(9) are proved similarly.
Verify that the monomials f1 = (x1x2)u(x3, . . . , xn) and fi = (xix1)u(x2, . . . , xi−1, xi+1, . . . , xn),

2 ≤ i ≤ n, are linearly independent modulo the ideal of identities of A(w), provided that u is always
after some zero in w. Assume that f = λ1f1 + · · · + λnfn ≡ 0 is an identity. Suppose for instance that
λ1 
= 0. Then for every occurrence of u in w there exists k ≥ 0 such that the substitution ϕ(x1) = bk,
ϕ(x2) = · · · = ϕ(xn) = a yields the values ϕ(f1) = bk+n−1 and ϕ(f2) = · · · = ϕ(fn) = 0, which
contradicts the assumption that f is the identity of our algebra. By analogy, for every i > 1 we can find
a substitution ϕ with ϕ(fi) 
= 0 and ϕ(fj) = 0 for all j 
= i. The independence of the right-hand sides
of (8) and (9) is established similarly. �
Lemma 5. Suppose that u is a subword of type 2 in w. Then the linear span of the monomials

fij = (xixj)u(xl1 , . . . , xln−2), i 
= j, l1 < · · · < ln−2,
{l1, . . . , ln−2} = {1, . . . , n} \ {i, j}, (10)

in M{X} modulo the identities of A(w) is of dimension rn, where rn is the rank of the system∑

i

zij = 0, 1 ≤ j ≤ n,
∑

j

zij = 0, 1 ≤ i ≤ n, (11)

of 2n equations in n2 − n unknowns zij for 1 ≤ i 
= j ≤ n.
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Proof. Verify that the linear combination f =
∑
i,j λijfij is an identity in A(w) if and only if

the tuple of coefficients {λij} satisfies (11). Suppose firstly that one equality is violated: for instance,
λ = λi1+ · · ·+λin 
= 0. The definition of u shows that w has an initial subword of the form w1 . . . wk+1u
with wk+1 = 0 and wk+2 . . . wk+n−1 = u.
Denote w1 . . . wk by v. Then the definition of multiplication in A(w) yields b0v(a, . . . , a)au(a, . . . , a) =

bk+n−1. Consider the substitution ϕ : ϕ(xi) = bk, ϕ(xt) = a for all t 
= i. Then ϕ((xixj)u(xl1 , . . . , xln−2))
= bk+n−1 for every j 
= i, while ϕ(f) = λbk+n−1 
= 0. Similarly, λ1jf1j + · · ·+ λnjfnj is not an identity if
λ1j + · · ·+ λnj 
= 0.
Verify now that f ∈ Id(A(w)) whenever {λij} is a solution to (11). The values of all monomials fij

vanish for arbitrary substitutions ϕ such that among ϕ(x1), . . . , ϕ(xn) either there is no basis vector bk
or there are at least two vectors br and bm. Suppose that ϕ(xi) = bk and ϕ(xj) = a for all i 
= j.
Suppose again that u = wk+2 . . . wk+n−1. If wk+1 = 0 in w then bka = bk+1 and abk = 0. Thus,
ϕ(xix1) = · · · = ϕ(xixn) = bka = bk+1 and ϕ(fij) = bk+n−1 for all j 
= i. At the same time, ϕ(frt) = 0
for r 
= i.
Consequently, ϕ(f) =

(∑
j λij
)
bk+n−1 = 0. By analogy, if wk+1 = 1 then ϕ(x1xi) = · · · = ϕ(xnxi) =

abk = bk+1 and ϕ(f) =
(∑

j λji
)
bk+n−1 = 0.

The space generated by all fij of (10) in M{X} is of dimension n2 − n. Their linear combinations,
which are identities of A(w) constitute a space of dimension n2− n− rn. Consequently, the codimension
of the intersection of the latter space with Id(A(w)) is rn. �
Remark 1. To show that rn = 2n− 1 is an easy linear algebra exercise.
Theorem 1. For the algebra A(w), the nth codimension for n ≥ 3 equals

cn(A(w)) = k
(1)
n−2n+ k

(2)
n−2(2n− 1), (12)

where k
(1)
m and k

(2)
m are the numbers of length m subwords of type 1 or 2 in w respectively. In particular,

Compw∗(n− 2) ≤ cn(A(w)) ≤ 2Compw∗(n− 2), (13)

where w∗ = w3w4 . . . .
Proof. Denote by Pn,u the linear span in M{X} of all monomials (4) for every binary word u of

length n− 2. Then
Pn(M{X}) =

⊕

|u|=n−2
Pn,u. (14)

Lemma 2 implies that, modulo the ideal Id(A(w)), the space Pn(M{X}) contains only those terms of (14)
for which u is a proper subword of w. Suppose that u1, . . . , ut are all length n− 2 proper subwords and
f1 ∈ Pn,u1 , . . . , ft ∈ Pn,ut . It is not difficult to observe that if f1 + · · · + ft is an identity in A(w)
then so are all f1, . . . , ft. Now (14) follows from Lemmas 3–5, while (13) from the obvious relation

k
(1)
n−2 + k

(2)
n−2 = Compw∗(n− 2). �

Theorem 1 enables us to substantially enlarge the class of algebras with intermediate growth of
codimensions. For instance, in [12] for every function ϕ : R+ → R+ satisfying
(i) ϕ(t) log t,
(ii) ϕ(t) is differentiable on (0,∞),
(iii) ϕ′(t)� t−β for some constant β > 0,
(iv) ϕ′ is a decreasing function,

there exists a binary word u with log Compu(n) ∼ ϕ(n). Here the relation f(t) � g(t) means that
limn→∞(f(t)/g(t)) = 0, while log stands for the base 2 logarithm. Theorem 1 yields the following series
of propositions:
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Theorem 2. For every function ϕ(t) satisfying (i)–(iv) there is an algebra A with cn(A) ∼ 2ϕ(n). �
The new class of functions of intermediate growth realized as the growth of codimensions includes,

for instance, all functions a
√
n for a > 1.

Some more exotic example, presented in [12], corresponds to ϕ(t) = (t+ 10)
1
2
+ 1
4
cos(log log(t+1)) which

oscillates very slowly between n1/4 and n3/4.
Resting on other results of the theory of formal languages, we can construct examples of algebras

with even sharper oscillations of the function of codimensions; see [13, Theorem 9].

Theorem 3. There exists an algebra A for which we can choose an increasing sequence nk, for
k = 1, 2, . . . , such that
(a) cnk(A) < nk + log log nk for odd k,

(b) cnk > 2
nk

log lognk for even k. �
Theorem 1 enables us to construct some example of an algebra for which the first and second limits

in (1) exist, but the third limit does not. It therefore refutes Regev’s conjecture in the third approxima-
tion. To this end, consider the language E0 consisting of all words in the two-letter alphabet {a, b} which
avoid the subwords a2, b4, and ab2a. The combinatorial complexity of the language E0 is calculated
in [14]:

CompE0 =

{
2Fk+2 if n = 2k,

Fk+4 if n = 2k + 1,
(15)

where Fm is the mth Fibonacci number. Construct a word w whose language of all subwords coincides
with E0. To this end, write out successively all words in E0 of length 1, then of length 2, and so on.
Moreover, list the words starting with ba twice. Then, in order to avoid forbidden subwords, we insert,
if need be, an intermediate word of length at most 3 between adjacent words. For instance, between a
and b2a we can insert b, while between ab and ba, either a or ab2. Moreover, since the words with the
prefix ba occur twice, we can make additional insertions so that in one case this word v is preceded by the
letter a, while in the other by b. This is possible since between a and ba we can insert both ba and bab2;
between ab and ba, both a and ab2; between ab2 and ba, both the empty word and ba; between ab3 and ba,
either a or ab2. This enables us to construct a word w whose language coincides with E0 and all words
beginning with ba are subwords of type 2. The words beginning with a, b2a, and b3a cannot be subwords
of type 2; i.e., they are of type 1.
Observe that w∗ = w3w4 . . . includes all words of E0 by construction; thus, in order to apply

Theorem 1, it suffices to count the number of subwords of type 1 or 2 in the word w itself.
Denote by αk the number of length k subwords of w beginning with a. Then every subword like of the

form either abav or ab3au. Thus, αk = αk−2+αk−4 for k ≥ 5. Appreciating that α1, α2, α3, α4 = 1, 1, 2, 2,
we see that α2k = α2k−1 = Fk+1 for all k ≥ 1.
Denote the numbers of length m subwords of w beginning with ba, b2a, and b3a by βm, γm, and δm.

Then
β2k = α2k−1 = Fk+1, γ2k = α2k−2 = Fk, δ2k = α2k−3 = Fk

for even indices, while

β2k+1 = α2k = Fk+1, γ2k+1 = α2k−1 = Fk+1, δ2k+1 = α2k−3 = Fk

for odd indices. Hence,

k
(1)
n−2 =

{
Fk−1 + Fk+1 for n = 2k,

Fk−1 + Fk+2 for n = 2k + 1,

while k
(2)
n−2 = βn−2 = Fk for n = 2k and n = 2k + 1. Combining (16) and (17) with Theorem 1, we infer

that for the word w and the algebra A(w) constructed from it we have

cn(A(w)) = n(Ft−1 + Ft+1) + (2n− 1)Ft
259



for n = 2t and
cn(A(w)) = n(Ft−1 + Ft+2) + (2n− 1)Ft

for n = 2t+ 1. Since

Ft =
ϕt + (−ϕ)−t
2ϕ− 1 ∼ ϕt

1 +
√
5
, where ϕ =

1 +
√
5

2
,

while the coefficient of n in cn(A(w)) equals Ft−1+2Ft+Ft+1 for n = 2t and Ft−1+2Ft+Ft+2 for n = 2t+1,
it follows that

lim
n→∞

n
√
cn(A(w)) =

√
ϕ, lim

n→∞ logn
cn(A(w))√
ϕn

= 1.

At the same time, the third limit in (1) fails to exist because

lim
n=2t→∞

cn(A(w))

n
√
ϕn

=
ϕ2 + ϕ+ 2

ϕ(2ϕ− 1) , lim
n=2t+1→∞

cn(A(w))

n
√
ϕn

=
ϕ3 + ϕ+ 2

ϕ(2ϕ− 1) .

The main results of this article were announced in [15].
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