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Numerical characteristics of polynomial identities of left nilpotent algebras are exa-
mined. Previously, we came up with a construction which, given an infinite binary
word, allowed us to build a two-step left nilpotent algebra with specified properties of
the codimension sequence. However, the class of the infinite words used was confined to
periodic words and Sturm words. Here the previously proposed approach is generalized
to a considerably more general case. It is proved that for any algebra constructed given
a binary word with subexponential function of combinatorial complexity, there exists a
PI-exponent. And its precise value is computed.

INTRODUCTION

In the paper we study numerical characteristics of polynomial identities of left nilpotent
algebras. Previously, we came up with a construction which, given an infinite binary word, allowed
us to build a two-step left nilpotent algebra with specified properties of the codimension sequence.
However, the class of the infinite words used was confined to periodic words and Sturm words. Here
the previously proposed approach is generalized to a considerably more general case. It is proved
that for any algebra constructed given a binary word with subexponential function of combinatorial
complexity, there exists a PI-exponent. And its precise value is computed.
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Let F be a field of characteristic zero and A an algebra over F . With A we associate an integer-
valued sequence {cn(A)}, n = 1, 2, . . . , defined by its multilinear identities. In the general case the
sequence {cn(A)} may grow superexponentially. For instance, if A is an absolutely free algebra of
countable rank, then {cn(A)} = p(n)n!, where p(n) = 1

n

(
2n−2
n−1

)
is the Catalan number. If A is a

free associative algebra or a free Lie algebra, then {cn(A)} = n! or (n − 1)!, respectively.
Nevertheless, there is a broad class of algebras for which {cn(A)} is exponentially bounded, i.e.,

{cn(A)} ≤ an for all n ≥ 1 with some constant a. Among these are all finite-dimensional algebras
[1], all associative PI-algebras [2], infinite-dimensional simple Lie algebras of Cartan type [3], affine
Kac–Moody algebras [4, 5], Lie algebras with nilpotent commutant [6], and others. If the sequence
{cn(A)} is exponentially bounded, then the root sequence n

√
cn(A) is bounded, and it is natural

to ask whether its limit exists.
In the late 1980s, Sh. Amitsur conjectured that for any associative PI-algebra A, the limit

lim
n→∞

n
√

cn(A) (1)

exists and is an integer. That conjecture was confirmed in the 1990s [7, 8]. Later, a similar conjecture
was validated for finite-dimensional Lie algebras [9], finite-dimensional Jordan algebras [10], Lie
superalgebras with nilpotent commutant [11], and a number of others. For some infinite-dimensional
Lie algebras, the conjecture received partial confirmation: it was proved that limit (1) exists, but
it turned out to be fractional [12, 13]. The existence of limit (1) was also proved for all finite-
dimensional simple algebras [14]. Moreover, examples of simple finite-dimensional algebras with
fractional limit (1) were constructed [15]. If limit (1) exists, then it is conventionally called a
PI-exponent of A and is denoted by exp (A).

At present, we know of just one work where a series of algebras with the missing PI-exponent
is constructed [16]. In this connection, it seems important to extend the class of algebras in which
the PI-exponent exists. In [17], we can find a family of nonassociative algebras whose PI-exponents
run over all real values in an infinite interval (1;∞). All algebras of the family are two-step left
nilpotent, i.e., satisfy an identity of the form

x(yz) ≡ 0. (2)

Examples in [17] were constructed based on combinatorial properties of infinite binary Sturm words
and periodic words.

Recently, it has been proved that every finitely generated algebra A with identity (2) has
exponentially bounded growth of the codimension sequence {cn(A)} [18]. The main objective of
the present paper is to generalize one of the basic results in [17]—Theorem 5.1—to a much wider
class of algebras associated with binary words. We introduce the concept of a slope for an arbitrary
infinite binary word w and prove that in the case where the combinatorial complexity of w grows
subexponentially, the PI-exponent of a corresponding algebra exists and is explicitly expressed via
the slope of w.
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All basic notions in the theory of algebras with identities are contained in [19-21].

1. BASIC NOTIONS AND CONSTRUCTIONS

Denote by F{X} an absolutely free algebra over a field F with an infinite set X of free
generators. Recall that a polynomial f = f(x1, . . . , xn) ∈ F{X} is called an identity of an algebra
A if f(a1, . . . , an) = 0 for any a1, . . . , an ∈ A. The set of all identities of A forms a two-sided ideal
Id (A) in F{X}, which is stable under all endomorphisms of F{X}. Denote by Pn the subspace
of all multilinear polynomials in variables x1, . . . , xn in F{X}. Then the intersection Pn ∩ Id (A)
consists of all multilinear identities of A of degree n. Put

Pn(A) =
Pn

Pn ∩ Id (A)
, cn(A) = dim Pn(A).

The symmetric group Sn acts naturally on Pn,

σ ◦ f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)). (3)

Since an ideal Id (A) is stable under an automorpism induced on F{X} by formula (3), Pn(A) is
also an FSn-module.

Representations of the symmetric group play a key role in the quantitative PI-theory. We
therefore recall the basic concepts and constructions used in what follows. Let λ � n be a partition of
a natural number n, i.e., λ = (λ1, . . . , λk), where λ1 ≥ . . . λk > 0 are integers, with λ+ . . .+λk = n.
A Young diagram Dλ is a tableau with n boxes arranged in k rows. The first row contains λ1

boxes, the second row contains λ2 boxes, and so on. A Young tableau Tλ is a diagram Dλ with
boxes occupied by numbers from 1 to n. The row stabilizer RTλ

of Tλ is a subgroup of Sn that is
isomorpic to Sλ1 × . . . × Sλk

and consists of all permutations that permute numbers within rows.
Similarly, the column stabilizer CTλ

consists of permutations that permute symbols within columns.
Denote by R(Tλ), C(Tλ), and eTλ

the following elements of the group ring FSn:

R(Tλ) =
∑

σ∈RTλ

σ, C(Tλ) =
∑

τ∈CTλ

(sgn τ) τ, eTλ
= R(Tλ)C(Tλ).

The element eTλ
is a quasi-idempotent, i.e., e2

Tλ
= γeTλ

, where γ is a nonzero scalar. In particular,
C(Tλ)eTλ

�= 0. It is known that FSneTλ
is a minimal left ideal, and every irreducible representation

of the group Sn is isomorphic to its representation on one of the ideals FSneTλ
. To be familiar with

the foundations of the representation theory of the symmetric group, we ask the reader to consult
[22]; its applications in the PI-theory can be found in [19-21].

In studying numerical characteristics linked to identical relations, it is common practice to use
the notation adopted in character theory. Let χλ = χ(FSneTλ

) be a character of an irreducible
module FSneTλ

. Then the expression

χ(M) =
∑
λ	n

mλχλ, (4)
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where M is some FSn-module, means that in the decomposition of M into irreducible components:
namely,

M = M1 ⊕ . . . ⊕ Mq, (5)

the module isomorphic to FSneTλ
occurs mλ times. A nonnegative integer mλ is called the

multiplicity of a character χλ in χ(M).
Now let M in (4) be a submodule of Pn, complementary to Pn ∩ Id (A) and isomorphic to

Pn(A). We will identify M with Pn(A). Consider one of the summands Mj in (5). It is generated
by a multilinear polynomial of the form eTλ

g, where g = g(x1, . . . , xn) ∈ Pn. Since eTλ
is a quasi-

idempotent, f = C(Tλ)eTλ
g is a nonzero element of Mj . On the other hand, if λ′

1, . . . , λ
′
t are heights

of columns in Dλ (here t = λ1), then the variable set {x1, . . . , xn} is decomposed into the union of
disjoint subsets X1 ∪ . . .∪Xt of orders λ′

1, . . . , λ
′
t, respectively, such that f is skew-symmetric with

respect to each subset Xi, i = 1, . . . , t. Thus the following lemma holds true.

LEMMA 1. Let Mj be one of the irreducible summands in (5) and let χ(Mj) = χλ, where
λ = (λ1, . . . , λk) � n. Denote by λ′

1, . . . , λ
′
t column heights in Dλ. Then Mj is generated as an

FSn-module by a multilinear polynomial f = f(x1, . . . , xn) such that {x1, . . . , xn} = X1∪ . . .∪Xt,
|Xj | = λ′

j , j = 1, . . . , t, and f is skew-symmetric in variables of each subset X1, . . . ,Xt. Moreover,
mλ �= 0 in (4) if and only if f is not an identity of A.

Consider several other quantitative characteristics associated with identities and representations
of Sn. The quantity q in (5) is called the length of a module M , and if M = Pn(A), then it is called
the colength of an algebra A and is denoted by ln(A). Clearly,

ln(A) =
∑
λ	n

mλ, (6)

where mλ are multiplicities in (4). If we denote by dλ = deg χλ the dimension of an appropriate
representation, then

cn(A) =
∑
λ	n

mλdλ. (7)

From (6) and (7), we derive the upper estimate

cn(A) ≤ ln(A)max{dλ | mλ �= 0}. (8)

Instead of the dimension dλ, it is more convenient to use a numerical characteristic close to it.
Let λ = (λ1, . . . , λk) � n. Put

Φ(λ) =
1(

λ1
n

)λ1
n

. . .
(

λk
n

)λk
n

.

The quantities Φ(λ)n and dλ asymptotically coincide up to polynomial factor. We revise this
statement for k = 2. In this case Φ(λ) is in fact a function of one variable:

Φ(x) =
1

xx(1 − x)1−x
, 0 < x ≤ 1

2
. (9)
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LEMMA 2 [17, Lemma 3.3]. Let λ = (λ1, λ2) be a partition of a number n. Then

1√
πn3

Φ(β)n < dλ < Φ(β)n,

where β = λ2
n , and Φ(x) is defined by (9).

We point out yet another property of a function Φ.

LEMMA 3. Φ(x) is continuous on an interval (0; 1
2 ] and Φ(a) < Φ(b) for any 0 < a < b ≤ 1

2 .
Now we recall some notions from the combinatorial theory of infinite words. Let w = w1w2 . . .

be an infinite word over a binary alphabet {0; 1}. The combinatorial complexity of a word w is
a function Compw(n) equal to the number of different subwords of length n in the word w (see
[23]). It is known that if w is a periodic word, then Compw(n) = const, starting with some n.
Otherwise Compw(n) ≥ n + 1. A word w is called a Sturm word if Compw(n) = n + 1 for all n.
Along with slow growth of the complexity function, periodic words and Sturm words possess yet
another important statistical characteristic. In either case there exists a limit

π(w) = lim
n→∞

w1 + . . . + wn

n
,

which is called the slope of w.
In order to generalize the result in [17] to a wider class of algebras, we extend the notion of a

slope. First let u = u1 . . . un be a finite word over a binary alphabet. The slope of u is the parameter

π(u) =
u1 + . . . + un

n
,

and the length of u is the number |u| = n. Now, for an infinite word w, we put

qn = min{π(u) | u is a subword of w of length n},

and define the slope π(w) as
π(w) = lim

n→∞
qn.

The parameter π(w) will define PI-exponents of algebras corresponding to a word w under
weaker conditions on the function Compw than in the case of periodic words and Sturm words.

LEMMA 4. Let w be a word with slope π(w) = α < 1. Then, for any natural T , w will
contain a subword u of length T with slope π(u) ≤ α.

Proof. Fix an arbitrary sufficiently small ε > 0. By the definition of π(w), w has finite subwords
of unbounded length with a slope smaller than α + ε. Let v be one of such words of sufficiently
large length m. Divide m by T with a remainder, i.e., m = NT + q, and partition v into N + 1
subwords, i.e., v = v1 . . . vN+1, where the consecutive subwords v1, . . . , vN have length T , and vN+1

is a subword of length q or an empty word (if q = 0). Obviously, for q = 0, among v1, . . . , vN there
is at least one word with a slope smaller than α+ ε; otherwise the slope of v would be no less than
α + ε.
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Now we consider the general case 0 < q < T and suppose that π(vi) ≥ α+ε for all i = 1, . . . , N .
The slope of any word of length T may assume values only within the set

{
0,

1
T

,
2
T

, . . . ,
T − 1

T

}
.

Consequently, there is an integer k such that

k

T
< α + ε,

k + 1
T

≥ α + ε.

By our assumption, each subword v1, . . . , vN has no less than k+1 ones, and there are no less than
N(k + 1) ones in the word v1 . . . vN . Even if π(vN+1) = 0, i.e., vN+1 consists of zeros only, then v

has no less than N(k + 1) ones. Therefore,

π(v) ≥ (k + 1)N
NT + q

=
k + 1
T + q

N

.

Since k+1
T ≥ α + ε, and q

N → 0 as N → ∞, the condition π(v) < α + ε is not satisfied with a
sufficiently large length m of a word v. This means that for ε > 0 as small as is wished, there exists
a subword u of length T with π(u) < α + ε. For a word u of length T , π(u) may assume a discrete
set of values of the form k

T , 0 ≤ k ≤ T − 1; therefore, there also exists a subword u of length T

with π(u) ≤ α. �

Lemma 4 implies that the upper and lower limits of the sequence qn coincide, i.e., it has an
ordinary limit.

2. ALGEBRAS OF BINARY WORDS

Let K = {k1, k2, . . .} be an infinite integer-valued sequence in which ki ≥ 2 for all i ≥ 1. An
algebra A(K) is defined as follows. Its basis is the infinite union

{a, b} ∪ Z1 ∪ Z2 ∪ . . . ,

where
Zi = {z(i)

j | 1 ≤ j ≤ ki}, i = 1, 2, . . . ,

and nonzero products of basic elements are defined via relations

z
(i)
2 a = z

(i)
3 , . . . , z

(i)
ki−1a = z

(i)
ki

, z
(i)
ki

a = z
(i)
1 , i = 1, 2, . . . ,

z
(i)
1 b = z

(i+1)
2 , i = 1, 2, . . . .

(10)

Obviously, the algebra A(K) satisfies identity (2), and hence only products with left-normed
arrangement of parentheses may be nonzero. Therefore, we omit parentheses in representations of
monomials. Furthermore, the linear hull 〈Z1 ∪ Z2 ∪ . . .〉 is an ideal of codimension two with zero
multiplication. Consequently, every monomial f , which is skew-symmetric in four variables or in
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two sets of variables of cardinality three, is an identity of the algebra A(K). From this, in view of
Lemma 1, we conclude that the following lemma holds true.

LEMMA 5. Let
χn(A(K)) =

∑
λ	n

mλχλ.

Then nonzero multiplicities mλ may occur only in partitions λ = (n), λ = (n − k, k), and λ =
(n − k − 1, k, 1).

We specify the form of the sequence K. Let w be an infinite binary word and m ≥ 2 be an
integer. Put

ki =

⎧⎨
⎩

m if wi = 0,

m + 1 if wi = 1.
(11)

The resulting algebra depending on m and w is denoted by A(m,w).

LEMMA 6 [17, Lemma 4.2]. For an arbitrary m ≥ 2 and for any word w, the colength of an
algebra A(m,w) with all n satisfies the inequality

ln(A(m,w)) ≤ 3(m + 1)n3Compw(n).

As distinct from [17], we consider algebras, not with the condition Compw(n) ≤ n + 1 on w,
but with any subexponential growth of the complexity function. A function of natural argument
ϕ(n) is said to be subexponential if

lim
n→∞

ϕ(n)
an

= 0

for any real a > 1. Lemma 6 and formula (8) show that for a word w with a subexponential
complexity function, the values

n
√

cn(A(m,w)) and n
√

max{dλ | mλ �= 0}

are asymptotically close. Note that the complexity function of a word w is exactly a function of
combinatorial complexity in a factor language consisting of all finite subwords of w, and the class
of languages with subexponential combinatorial complexity is quite rich (see, e.g., [24, 25]).

We find an upper estimate for codimensions cn(A(m,w)).

LEMMA 7. Let A = A(m,w), where m ≥ 2, and w be an infinite binary word with slope
π(w) = α; β = 1

m+α . Then for any ε > 0 there exists N = N(ε) such that for all n ≥ N , the
multiplicity mλ in the decomposition of a cocharacter χn+1(A) is equal to zero if λ2

n > β + ε.
Proof. First we analyze all possible values for multilinear monomials in the algebra A under the

substitution of basic elements for variables. Suppose that there exists an associative monomial g =
g(a, b) of degree n such that z

(i)
j g(a, b) �= 0 (in fact, g(a, b) is a monomial from right multiplications

by a and b). Then g has the form

g = ai0bai1b . . . bair+1,

29



where 0 ≤ i0, ir+1 ≤ m and i0, . . . , ir ∈ {m − 1,m}. Moreover,

i1 + . . . + ir = (m − 1)r + rπ(wi+1 . . . wi+r), (12)

where π(wi+1 . . . wi+r) is the slope of a subword wi+1 . . . wi+r in w. Furthermore,

n = deg g = i0 + ir+1 + i1 + . . . + ir + r + 1

= i0 + ir+1 + (m − 1)r + rπ(wi+1 . . . wi+r) + r + 1,
(13)

as follows from (12). Since the slope of any word does not exceed 1, from (13) we derive

n ≤ 2m + (m − 1)r + 2r + 1 ≤ (3m + 2)r.

In particular,
r ≥ n

3m + 2
, (14)

i.e., r grows linearly with n. The definition of a slope π(w) = α implies that for any δ > 0, the
value π(wi+1 . . . wi+r) is strictly greater than α−δ for all sufficiently large n and r. Therefore, (13)
also yields

n ≥ (m − 1)r + r(α − δ) + r + 1 = r(m + α − δ) + 1,

whence
degb g

deg g
=

r + 1
n

≤ 1
m + α − δ

− 1
n(m + 1)

+
1
n

. (15)

Now consider a partition λ � n + 1 with λ2
n ≥ β + ε and suppose that mλ �= 0 in

the decomposition of a cocharacter χn+1(A). Lemma 1 implies that there exists a multilinear
polynomial f = f(x1, . . . , xn+1) depending on λ2 skew-symmetric sets of order at least two, which
is not an identity in A. This means that there is a substitution ϕ : {x1, . . . , xn+1} → {z(i)

j , a, b}
under which ϕ(f) �= 0 and b occurs among ϕ(x1), . . . , ϕ(xn+1) as a minimum λ2 − 1 times. Then
ϕ(f) is a linear combination of monomials like z

(i)
j g(a, b), where g is an associative monomial of

degree n, with degb g ≥ λ2 − 1. Consequently,

degb g

deg g
≥ 1

m + α
+ ε − 1

n
. (16)

The limit of the right part in (15) equals 1
m+α−δ , and the limit of the right part in (16) equals

1
m+α + ε; therefore, for ε fixed, we can choose δ such that (15) and (16) are simultaneously not
satisfiable, a contradiction. �

LEMMA 8. Let w be an infinite binary word with slope π(w) = α, m ≥ 2, and A = A(m,w).
Then, for any ν > 0 and for all sufficiently large n,

cn+1(A) ≤ 3(m + 1)(n + 1)4Compw(n + 1)(Φ(β) + ν)n+1,

where β = 1
m+α , and Φ(x) is defined by formula (9).
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Proof. Fix ν > 0. Since Φ is continuous (see Lemma 3), there exists ε such that |Φ(x)−Φ(β)| <

ν if |x − β| < ε. Now let λ be a partition of n + 1 with nonzero multiplicity mλ in χn+1(A). By
Lemma 7, we have λ2

n ≤ β + ε. Define ρ = λ2
n . In view of Lemma 5, the third component λ3 in the

partition λ equals 0 or 1.
If λ = (λ1, λ2), i.e., λ3 = 0, then

dλ = deg χλ ≤ Φ(ρ)n+1 ≤ (Φ(β) + ν)n+1

by virtue of Lemma 2. For a single element partition λ = (n + 1), a similar inequality is
straightforward.

Let λ3 = 1. The hook length formula for dimensions of irreducible representations of the group
Sn (see [22]) implies that

dλ = dμ
λ2(λ1 + 1)(n + 1)
(λ2 + 1)(λ1 + 2)

< (n + 1)dμ,

where μ = (λ1, λ2) � n. Consequently, dλ < (n + 1)Φ(ρ)n by Lemma 2. Thus the inequality

dλ < (n + 1)(Φ(β) + ν)n+1 (17)

holds for all λ � (n + 1) with mλ �= 0. From (17), (8) and Lemma 6, we derive

cn+1(A) ≤ ln+1(A)(n + 1)(Φ(β) + ν)n+1

≤ 3(m + 1)(n + 1)4Compw(n + 1)(Φ(β) + ν)n+1. �

3. MAIN RESULT

We find an upper estimate for the codimension growth of the algebra A(m,w).

LEMMA 9. Let w be a word with slope π(w) = α, m ≥ 2, and A = A(m,w). Then for any
0 < ε < 1

m+α there exist r0 and an increasing sequence nr0, nr0+1, . . . such that

cnr+1(A) ≥ 1√
πn3

r

Φ
(

1
m + α

− ε

)nr

, r ≥ r0. (18)

In addition, nr+1 − nr ≤ 2m + 1 for all r ≥ r0.
Proof. We choose r0 so that εr0 > m. Let r ≥ r0 be an arbitrary integer. By Lemma 4, w has a

subword v = wi+1 . . . wi+r with slope π(v) ≤ α. As in Lemma 7, the algebra A contains a nonzero
product like z

(i)
j g(a, b), where g = g(a, b) is an associative monomial from right multiplications by

a and b,
g = ai0bai1b . . . bair ,

with 0 ≤ i0 ≤ m, and i1, . . . , ir ∈ {m − 1,m}. Furthermore,

i1 + . . . + ir = (m − 1 + π(v))r,
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n = deg g = i0 + i1 + . . . + ir + r = i0 + r(m + π(v)) ≤ m + r(m + α),

and the degree of g with respect to b equals r. From the previous inequality, by the choice of r, it
follows that

r

n
≥ 1

m + α
− ε. (19)

In the free algebra F{X}, consider a left-normed monomial

f = zx0
1 . . . x0

i0y1x
1
1 . . . x1

i1y2 . . . yrx
r
1 . . . xr

ir .

Under substitution ϕ : X → A, with ϕ(z) = z
(i)
j , ϕ(xp

q) = a, and ϕ(ys) = b for all admissible p, q,

and s, the value ϕ(f) equals z
(i)
j g(a, b), i.e., ϕ(f) �= 0. Now if we alternate f over pairs {xk

1 , yk},
1 ≤ k ≤ r, we obtain a polynomial f̃ . The multiplication table of basic elements of the algebra A

shows that ϕ(f̃) = ϕ(f) �= 0, i.e., f̃ is not an identity in A.
We look at how the symmetric group Sn acts on variables {xq

p, ys} and consider an FSn-
submodule of Pn+1 generated by f̃ . The structure of quasi-idempotents of a ring FSn shows that
the decomposition of FSnf̃ into irreducible components may give rise only to submodules with
character χλ, where λ = (n − t, t) and t ≥ r. For one of such partitions λ, we obtain

cn+1(A) ≥ dλ ≥ 1√
πn3

Φ
(

t

n

)n

by virtue of Lemma 2. Since t
n ≥ r

n ,

cn+1(A) ≥ 1√
πn3

Φ
(

1
m + α

− ε

)n

in view of (19) and Lemma 3.
It is precisely this value n = i0 + i1 + . . . + ir + r = i0 + r(m + π(wi+1 . . . wi+r)) that we take

as nr for chosen r ≥ r0.
We estimate the difference nr+1 − nr. Note first that nr+1 > nr by the choice of words

wt+1 . . . wt+r+1 and wi+1 . . . wi+r with a minimal slope. The quantity nr is defined by the subword
wi+1 . . . wi+r of length r in w having a minimal slope, and the product rπ(wi+1 . . . wi+r) is equal to
the number of ones among wi+1, . . . , wi+r. Similarly, for nr+1, there is a subword wt+1 . . . wt+r+1

with least number of ones, i.e.,

nr+1 = i′0 + (r + 1)(m + π(wt+1 . . . wt+r+1)),

and so
nr+1 − nr ≤ 2m + (r + 1)π(wt+1 . . . wt+r+1) − rπ(wi+1 . . . wi+r).

By the choice of wt+1 . . . wt+r+1 and wi+1 . . . wi+r, the number of ones in these subwords either is
the same or differs by 1. Hence nr+1 − nr ≤ 2m + 1. �

We are in a position to prove our main result, generalizing [17, Thm. 5.1].

32



THEOREM. Let w be an infinite binary word with slope π(w) = α and with a complexity
function Compw(n) of subexponential growth; m ≥ 2 is an integer. Then the algebra A = A(m,w)
defined by relations (10) and (11) has a PI-exponent, in which case

exp (A) = Φ
(

1
m + α

)
, (20)

where
Φ(x) =

1
xx(1 − x)1−x

.

Proof. For convenience, we define an = n
√

cn(A) and show that the upper and lower limits of
the sequence an coincide and are equal to Φ

(
1

m+α

)
.

First we estimate the lower limit. To do this, we prove that for an arbitrarily small ε > 0 with
all sufficiently large n, the following inequality holds:

cn+1(A) ≥ 1

22m+1
√

πn3
Φ

(
1

m + α
− ε

)n

. (21)

By Lemma 9, for a given ε, there exists a sequence of indices nr, r = r0, r0 + 1, . . . , for
which inequality (18) is satisfied. For any n ≥ nr0 , there is an r such that nr ≤ n < nr+1 and
n − nr < 2m + 1.

Note that the right annihilator of any element x �= 0 in A is equal to zero. This implies that
ct+1(A) ≥ ct(A) for any t. Therefore,

cn+1(A) ≥ cnr+1(A) ≥ 1√
πn3

nr

Φ
(

1
m + α

− ε

)nr

. (22)

Since n ≥ nr, Φ(x) ≤ 2, and n − nr ≤ 2m + 1, the right part of (22) is not smaller than

1

22m+1
√

πn3
Φ

(
1

m + α
− ε

)n

,

which proves relation (21).
We have (

22m+1
√

πn3
)− 1

n → 1 as n → ∞;

therefore, relation (21) implies the inequality

lim
n→∞

an ≥ Φ
(

1
m + α

− ε

)
for any ε > 0.

Consequently,

lim
n→∞

an ≥ Φ
(

1
m + α

)
. (23)

To derive an estimate for the upper limit of {an}, we use Lemma 8. Since Compw(n) is a
subexponential growth function, the limit of the quantity

(
3(m + 1)(n + 1)4Compw(n + 1)

) 1
n
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as n → ∞ is equal to one. By Lemma 8, therefore,

lim
n→∞

an ≤ Φ
(

1
m + α

)
. (24)

Inequalities (23) and (24) mean that there exists an ordinary limit of the sequence {an}, i.e., a
PI-exponent of the algebra A(m,w), and that equality (20) holds. �

In conclusion we dub the conjecture that any two-step left nilpotent algebra with finitely
many generators has a PI-exponent. Important particular cases are finite-dimensional algebras and
relatively free algebras of finite rank. For these, the question posed is also open. The condition of
being finitely generated is essential, as shown by the counterexample in [18].
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