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Abstract: In this article, a space-dependent epidemicmodel equippedwith a constant latency period is exam-
ined. We construct a delay partial integro-differential equation and show that its solution possesses some
biologically reasonable features. We propose some numerical schemes and show that, by choosing the time
step to be sufficiently small, the schemes preserve the qualitative properties of the original continuousmodel.
Finally, some numerical experiments are presented that confirm the aforementioned theoretical results.
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1 Introduction
The increasing rate of globalization in recent decades led to an interconnected world in which diseases can
spread faster than ever: this threat became reality in 2020with the outbreak of the COVID-19 virus. Thus, the
importance of adequate modeling of epidemics is apparent.

One of the most frequently used tools in mathematics to model the spread of diseases is the SIR model
[6, 16]. These models can be used to describe the spread of some feature among a group of individuals. We
split our population into three categories: class S contains those who do not have the property yet, class I
includes those who have the property and they can also transmit it to others, and class R has those who had
the property, but they do not have it any more. Note that these models can be used not only in epidemics
but also in several other fields; see e.g. [1, 4, 19, 25] – however, in this article, we are going to focus on
epidemic models. The SIR models are generally systems of ordinary differential equations that do not take
into account the spatial location of the individuals of the above groups, although Kendall proposed a pos-
sible extension almost 60 years ago [2, 15]. This extension results in a system of partial integro-differential
equations that can be solved only numerically. The numerical solution can be produced by some appropri-
ate methods, but it is a natural requirement that it should possess the characteristic qualitative properties of
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the disease propagation process. These properties were investigated in the recent papers [8, 12, 23, 24]. The
qualitative properties of diffusion SIRmodels, which are also used to model spatial disease propagation, can
be found e.g. in [6, 10, 26].

Some diseases take some time to develop inside an infected individual, so they do not start to infect upon
their infection but only after a short period of time (so-called latency period). For this, we generalize the pre-
vious models by using delay integro-differential equations. In this paper, we formulate the basic qualitative
properties of these models, we show that the solution of the continuous problems possesses these features
and give sufficient conditions that guarantee the properties to the numerical solutions.

In Section 2, we construct ourmathematical models, and thenwe prove some properties of the analytical
solution in Section 3. Section 4 deals with the spatial discretization of the model, while Section 5 discusses
the application of the explicit Euler and Runge–Kutta methods. Then some numerical results are shown in
Section 6.

2 Construction of the Mathematical Model
The first, and possibly best known mathematical formulation of the SIR models comes from Kermack and
McKendrick [16], in which the authors propose the following model:

{{{
{{{
{

S󸀠(t) = −aS(t)I(t),
I󸀠(t) = aS(t)I(t) − bI(t),
R󸀠(t) = bI(t), (2.1)

where the functions S(t), I(t), R(t) : [0, T] → ℝ (T ∈ ℝ+) denote the number of individuals in class S (sus-
ceptible), class I (infected) and class R (recovered) at time t, respectively, while a, b ∈ ℝ+ are parameters
describing the rate of infection and recovery, respectively. In this paper, we will consider the more realistic
model

{{{{{{{
{{{{{{{
{

∂S(t, x, y)
∂t
= −S(t, x, y)FI(t − σ, x, y) − cS(t, x, y),

∂I(t, x, y)
∂t
= S(t, x, y)FI(t − σ, x, y) − bI(t, x, y),

∂R(t, x, y)
∂t
= bI(t, x, y) + cS(t, x, y)

(2.2)

that also contains a delay term besides the generalizations of papers [8, 23, 24]. In (2.2), X : (0, T] × Ω → ℝ,
(t, x, y) 󳨃→ X(t, x, y) (X ∈ {S, I, R}) denotes the spatial density of the class X at the point (x, y) ∈ Ω ⊂ ℝ2 (Ω is
a connected, bounded open set) and at the time instant t. The parameter b is the same as in (2.1). The term
cS(t, x, y) (c ∈ ℝ+) describes the effect of possible vaccination, which means that it is possible for some indi-
viduals to get from class S to class R without entering class I. The infection of a given individual is caused by
the infected individuals in its surroundings, due to the assumed latency period at a previous time instant, and
this effect depends on the spatial position of the individuals. Here we suppose that one can only be infected
by others in a δ-radius (δ ∈ ℝ+) neighborhood around itself, and the effect of the infection is described by
a given non-negative, continuous and bounded weight functionW. The constant delay σ > 0 is the length of
the latency period of the disease (see e.g. [7, 18, 27]). This phenomenon is included into the model by the
delay term

FI(t − σ, x, y) = ∬
Bδ(x,y) W(x󸀠, y󸀠)I(t − σ, x󸀠, y󸀠) dx󸀠 dy󸀠, (2.3)

where Bδ(x, y) is the δ radius open ball centered at (x, y) and W is the weight function. The natural births
and deaths are not taken into consideration in the model.

Because (2.2) is a delay system, to obtain a properly posed problem, we also need the values of the
function I on the time interval [−σ, 0]. This is the so-called history function that will be denoted by

Ih : [−σ, 0] × Ω → ℝ, (t, x, y) 󳨃→ Ih(t, x, y).
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Later, we will show that some assumptions are needed on the history function to assure that the solution is
continuous in space and time and behaves as expected. The history functions of S ans R are denoted similarly,
but these functions do not appear in the model.

The model does not have boundary condition in a classical sense, but due to the integral in (2.3), we
assume that I is equal to zero outside the domain Ω.

In the next section, we show that our problem has a unique solution, which behaves in a biologically
reasonable way.

3 Properties of the Analytic Solution

3.1 Existence, Uniqueness and Smoothness of the Solution

In this section, we discuss the solvability of system (2.2). The key tool will be the method of steps introduced
by Bellman [3], which involves the splitting of our time interval [0, T] into smaller intervals with length σ
with the grid points 0, σ, 2σ, 3σ, . . . , T. The (k + 1)th element of this list will be denoted by tk. Let us denote
the solution on the time interval (tk−1, tk] by Sk(t, x, y), Ik(t, x, y) and Rk(t, x, y). Then the delay differential
equation (2.2) on a given interval (tk , tk+1] (k ≥ 1) becomes a classical partial integro-differential equation

{{{{{{{
{{{{{{{
{

∂Sk+1(t, x, y)
∂t

= −Sk+1(t, x, y)FIk (t − σ, x, y) − cSk+1(t, x, y),
∂Ik+1(t, x, y)

∂t
= Sk+1(t, x, y)FIk (t − σ, x, y) − bIk+1(t, x, y),

∂Rk+1(t, x, y)
∂t

= bIk+1(t, x, y) + cSk+1(t, x, y),
(3.1)

with initial conditions
Sk+1(tk , x, y) = Sk(tk , x, y),
Ik+1(tk , x, y) = Ik(tk , x, y),
Rk+1(tk , x, y) = Rk(tk , x, y).

In the case of t ∈ (0, σ], (3.1) has the form

{{{{{{{
{{{{{{{
{

∂S1(t, x, y)
∂t

= −S1(t, x, y)FIh (t − σ, x, y) − cS1(t, x, y),

∂I1(t, x, y)
∂t
= S1(t, x, y)FIh (t − σ, x, y) − bI1(t, x, y),

∂R1(t, x, y)
∂t

= bI1(t, x, y) + cS1(t, x, y),

(3.2)

with initial conditions
S1(0, x, y) = Sh(0, x, y),
I1(0, x, y) = Ih(0, x, y),
R1(0, x, y) = Rh(0, x, y).

Because the structures of (3.1) and (3.2) are the same, we will only consider the case of (3.1), but all the
statements also will be valid for (3.2).

If we proceed to solve the equation step by step (i.e. solving it on (0, σ], then on (σ, 2σ] and so on), then
the term FIk (t − σ, x, y) is known since it only depends on Ik(t, x, y). It is also important to notice that the first
equation of (3.1) does not depend on the later ones, thus can be solved independently of the others. After
this, Sk+1(t, x, y) will be known, which means that the only unknown is Ik+1(t, x, y) in the second equation,
so it can also be solved directly. Finally, the last equation can also be solved by integration, resulting in the
solution of system (3.1).
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For the sake of simplicity, we introduce the function ̃Fk+1(t, x, y) := FIk (t − σ, x, y). In other words, we
shift the domain of FIk+1 (t − σ, x, y) from (tk−1, tk] × Ω to (tk , tk+1] × Ω. Then (3.1) has the form (t ∈ (tk , tk+1])

{{{{{{{
{{{{{{{
{

∂Sk+1(t, x, y)
∂t

= −Sk+1(t, x, y) ̃Fk+1(t, x, y) − cSk+1(t, x, y),
∂Ik+1(t, x, y)

∂t
= Sk+1(t, x, y) ̃Fk+1(t, x, y) − bIk+1(t, x, y),

∂Rk+1(t, x, y)
∂t

= bIk+1(t, x, y) + cSk+1(t, x, y).
(3.3)

Theorem 1. Assume that the history functions Sh(t, x, y), Ih(t, x, y) and Rh(t, x, y) are continuous in time and
also in spatial variables (x, y). Then system (2.2) has a unique solution, which is continuously differentiable in
time on (0, T] and is continuous in space.

Proof. We can express the solution of (3.3) as

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

Sk+1(t, x, y) = K1 exp(−ct −
t

∫
tk

̃Fk+1(s, x, y) ds),
Ik+1(t, x, y) = K2e−bt + e−bt t

∫
tk

ebsSk+1(s, x, y) ̃Fk+1(s, x, y) ds,
Rk+1(t, x, y) = K3 + b

t

∫
tk

Ik+1(s, x, y) ds + c t

∫
tk

Sk+1(s, x, y) ds.
(3.4)

For the solution to be continuous in time at point tk, we take

K1 = Sk(tk , x, y) ectk , K2 = Ik(tk , x, y) ebtk , K3 = Rk(tk , x, y)

since in this case limt→tk Xk+1(t, x, y) = Xk(tk , x, y) for X ∈ {S, I, R}. (Note that the values of K1, K2 and K3
are defined differently for different choices of k.) Also, because of the formof the solutions, it can be proved by
induction that if thehistory functions are continuous in time, thenour solutionwill also be continuous in time
on thewhole solution domain. It can be shown similarly that, if the history functions are continuous in space,
then the solution is also continuous in space since the weight functionW was assumed to be continuous. We
show that the solution is not only continuous in time but is also continuously differentiable in that variable.
By the fundamental theoremof calculus, it is also easy to see that the solutions are continuously differentiable
in t on each (tk , tk+1). At tk (k ≥ 1), we show that

lim
t→tk ∂Xk+1(t, x, y)

∂t
=
∂Xk(t, x, y)

∂t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨t=tk for X ∈ {S, I, R}.

However, because of the previous arguments, we know that the right-hand side of (3.1) is continuous in time
on [tk , tk+1), so e.g. in the case of Sk+1, we have

lim
t→tk ∂Sk+1(t, x, y)∂t

= lim
t→tk(−Sk+1(t, x, y) ̃Fk+1(t, x, y) − cSk+1(t, x, y))
= −Sk(tk , x, y) ̃Fk(tk , x, y) − cSk(tk , x, y) =

∂Sk(t, x, y)
∂t
󵄨󵄨󵄨󵄨󵄨󵄨󵄨t=tk .

A similar argument holds in the case of I and R. This shows the continuous differentiability of the solution in
variable t.

Another question iswhether solution (3.4) is the only one. It can easily be shown that, taking into account
only the first equation of (3.3), it can be thought of as an ordinary differential equation, and its right-hand
side fulfills the Lipschitz property. The same can also be shown for the second one (assuming that Sk+1(t, x, y)
is a known function) and also for the last one. Consequently, solution (3.4) is unique.

In the next section, we observe whether the continuous solution possesses some biological features.
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3.2 Qualitative Properties of the Analytic Solution

A mathematical model is considered to be reasonable not only when the system has only one solution but
the behavior of such solution should also possess the properties of the biological model. Here we are going
to observe four of these properties.

A natural requirement is that the density of each species cannot be negative.
(C1) The functions S(t, x, y), I(t, x, y) and R(t, x, y) should be non-negative.
Since we assume that there are no births or natural deaths in our region (or their rate is assumed to be equal)
and the individuals do not move, the sum of the densities of the three classes should remain constant at each
point, and this should also hold for the total number of individuals in the observed domain (which is given
by the integral of the sum of the densities).
(C2) The sum S(t, x, y) + I(t, x, y) + R(t, x, y) should be constant in t for all (x, y) points inside our domain.

Also, a consequence of this is that the integral ∫Ω S(t, x, y) + I(t, x, y) + R(t, x, y) dx dy is also constant
in time.

Since there is no way one individual can get to class S, the density of it cannot increase.
(C3) The function S(t, x, y) cannot increase in t at each point (x, y).
Also, no individual can get out of class R, so its density cannot decrease.
(C4) The function R(t, x, y) cannot decrease in t at each point (x, y).
Our goal is to show that the properties (C1)–(C4) are satisfied by the solution of system (2.2).

Theorem 2. Suppose that properties (C1)–(C4) hold for our history functions, which are also continuous in space
as well as in time. Then (C1)–(C4) also hold for the solution of system (2.2) on a time interval (0, T].

Proof. By Theorem 1, system (2.2) has a unique solution which is continuously differentiable in variable t
for t ∈ (0, T].

We will proceed by induction: first we prove the properties on (t0, t1], then by supposing that they hold
on (tk−1, tk], we prove them on (tk , tk+1]. However, since the proof on the first interval does not differ that
much from the proof on any arbitrary one, we present here only the proof of the latter one.

By adding up the equations of (3.3), it is clear that property (C2) holds.
For property (C1), let us consider system (3.3). The solution of this system is (3.4). From this form, it

is evident that, since K1 was chosen to be Sk(tk , x, y)ectk ≥ 0, the values of the function Sk+1(t, x, y) are
also non-negative. (If k = 0, then S1(0, x, y) = Sh(0, x, y) ≥ 0.) From the second equality of (3.4), since
K2 ≥ 0, Sk+1(s, x, y) ≥ 0 and ̃Fk+1(s, x, y) ≥ 0 for s ∈ [tk , t] (by the induction assumption), the relation
Ik+1(t, x, y) ≥ 0 is satisfied. The non-negativity of Rk+1(t, x, y) can be easily seen from the third equality
of (3.4) since both Ik+1(s, x, y) and Sk+1(s, x, y) are non-negative for all s ∈ [tk , t], and K3 = Rk(tk , x, y) is
also non-negative (if k = 0, then Rh(0, x, y) is non-negative because (C1) holds for the history function by
assumption). Thus, we proved that (C1) holds.

Property (C3) can be seen if we consider the form of the function Sk+1(t, x, y) in (3.4): it is evident that,
since c > 0 and ̃Fk+1(s, x, y) ≥ 0, the function is decreasing (here we also use that K1 ≥ 0, as mentioned
before).

Property (C4) is a consequence of the non-negativity of Ik+1(t, x, y) and Sk+1(t, x, y) since the right-hand
side of the third equation of system (2.2) is non-negative.

In the next sections, we examine the semi-discretized and the fully discretized versions of (2.2) and check
whether their solutions satisfy the analogous versions of (C1)–(C4).

4 The Spatially Discretized Models and Their Properties
It is evident that Bellman’s method can only be used in practice, when the integral of the history function
Ih at the time t = −σ is known, which is usually not the case. Because of this, in the following sections, we
propose a numerical approach to approximate these analytic solutions.



718 | B.M. Takács et al., Qualitative Properties of Space-Dependent SIR Models

Upon looking at system (2.2), it is evident that the most problematic part is the fact that it contains inte-
grals on its right-hand side. In Section 4.1, we approximate the integral term FI(t − σ, x, y) by using some
cubatures, and then, in Section 4.2, we define a spatial grid on the domain, approximating the partial dif-
ferential equation by a class of ordinary differential equations, by defining a separate equation for each
grid point.

4.1 The Properties of the Cubature Formula Model

We define some two-dimensional cubature formula on the disc Bδ(x, y)with positive weights to approximate
the integral FI(t, x, y). Let us introduce a set of cubature points (x + ηi , y + ξi) on the disc Bδ(x, y) and the
positive cubature weights wi > 0 (i = 1, . . . , p). Here the values ηi, ξi and wi might be also dependent on
(x, y) in the most general setting, but in this article, for simplicity, we use the same cubature formula

FI(t − σ, x, y) =
p
∑
i=1wiW(x + ηi , y + ξi)I(t − σ, x + ηi , y + ξi) ≈ FI(t − σ, x, y) (4.1)

for every point of the domain.
Using approximation (4.1), we obtain the system of partial differential equations

{{{{{{{
{{{{{{{
{

∂S(t, x, y)
∂t
= −S(t, x, y)FI(t − σ, x, y) − cS(t, x, y),

∂I(t, x, y)
∂t
= S(t, x, y)FI(t − σ, x, y) − bI(t, x, y),

∂R(t, x, y)
∂t
= bI(t, x, y) + cS(t, x, y).

(4.2)

It is clear that the arguments detailed in Section 3 can be used similarly, which results in the following
theorem.

Theorem 3. Assume that the history functions are continuous in space and time and properties (C1)–(C4) hold
for them. Then system (4.2) has a unique solution, which is continuously differentiable in time, continuous in
space and also has properties (C1)–(C4).

A natural question is the choice of the numerical approximation of the integral. In [23], two separate choices
of cubatures were investigated. One of them, the Elhay–Kautsky cubature, results in a uniform distribution
of points on the unit disc, while the other, the Gauss–Legendre cubature (which involves a transformation of
the integral to a unit square), results in a non-uniform distribution. Numerical experiments show that, while
the first one works well for polynomials, the second one is better for arbitrary nonlinear functions. Since
we cannot guarantee that our function I(t, x, y) is a polynomial, we are going to use here the latter one. For
further details of the different methods, see [23].

4.2 The Properties of the Semi-discretized Model

To obtain the numerical solution, we assume that our domain Ω is a rectangle with one vertex at the origin,
i.e. Ω = (0, A) × (0, B), A, B ∈ ℝ+. Note that the following arguments also hold for domains in a more general
form, but involve much more careful choice of spatial grids.

Let us discretize our rectangle shaped domain using the spatial grid

G = {(xk , yl) ∈ Ω | xk = (k − 1)hx , yl = (l − 1)hy , 1 ≤ k ≤ K, 1 ≤ l ≤ L},

supposing that (K − 1)hx = A and (L − 1)hy = B. This grid consists of KL points with spatial step sizes hx
and hy, and we approximate the continuous solutions by a matrix containing the values at these grid points.



B.M. Takács et al., Qualitative Properties of Space-Dependent SIR Models | 719

After this semi-discretization, we get the following set of equations:

{{{{{{{
{{{{{{{
{

dSk,l(t)
dt
= −Sk,l(t)F̂k,l(t − σ, xk , yl) − cSk,l(t),

dIk,l(t)
dt
= Sk,l(t)F̂k,l(t − σ, xk , yl) − bIk,l(t),

dRk,l(t)
dt
= bIk,l(t) + cSk,l(t),

(4.3)

in which Xk,l(t) (X ∈ {S, I, R}) denotes the approximation of the function at grid point (xk , yl) and at time t
and

F̂k,l(t − σ, xk , yl) =
p
∑
i=1wiW(xk + ηi , yl + ξi) ̂I(t − σ, xk + ηi , yl + ξi).

Note that the points (xk + ηi , yl + ξi) might not be part of G, so there are no Ik,l values assigned to them.
Because of this, we will approximate them by some interpolationmethod using the nearest known Ik,l values
and positive coefficients. (This is the reason for the ̂I notation.) In order to satisfy the qualitative properties,
it is important to choose such interpolations that preserve non-negativity in the sense that, if the known
values are non-negative, then the functionwe get at the end of our process should also be non-negative. Such
interpolations include monotone interpolation that uses piecewise cubic Hermite interpolating polynomials
[9, 13] (“pchip” for short), which will be used in the numerical experiments.

As in the previous section, the methods described in Section 3 can be used again for system (4.3), which
results in the following theorem.

Theorem 4. Assume that the history functions are continuous and properties (C1)–(C4) hold for them. Then
system (4.3)hasaunique solution,which is continuously differentiable in timeandalso has properties (C1)–(C4).

In Section 5, we present two different numerical methods for system (4.3): first we solve it using the explicit
Euler method via the Elsgolts approach [11], and later positivity-preserving Runge–Kutta methods [20–22].

5 The Fully Discretized Models and Their Properties

5.1 Application of the Explicit Euler Method

One of the key elements in the solution of delay differential equations is the fact that the discontinuities
should be included in the mesh of the time discretization. Since our history function is smooth, the only
discontinuities in the higher order derivatives might appear at the points kσ, k ∈ ℕ. Based on this, we define
them as

Gt = {tn/m ∈ [−σ, T] 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 tn/m = n σ
m
, n ∈ ℤ, −m ≤ n ≤ mT

σ}
,

where m is a positive integer.
On this above mesh, we can define the scheme

{{{
{{{
{

Sn+1 = Sn − τSn ∘ Tn−m − cτSn ,
In+1 = In + τSn ∘ Tn−m − bτIn ,
Rn+1 = Rn + bτIn + cτSn ,

(5.1)

where 0 ≤ n ≤ mT
σ and τ = σ

m . The symbol ∘ is the element-by-element or Hadamard product of the matrices,
and the (k, l) element of the matrix Xn (X ∈ {S, I, R}) is the approximation of the value Xk,l(tn/m); moreover,
the (k, l) element of Tn−m gives the approximation of F̂(tn/m − σ, xk , yl) by interpolating the elements of In−m.

Instead of analyzing the previous numerical method in terms of its convergence, we are going to observe
howwell themodel describes the real-life processes:more precisely,whether ourmodel preserves the discrete
versions of qualitative properties (C1)–(C4). From now on, we denote these by (D1)–(D4).
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Nowwe prove that, for a sufficiently small time step (or in other words, a sufficiently largem), properties
(D1)–(D4) hold for n > 0.

Theorem 5. Suppose that properties (D1)–(D4) hold for the history functions discretized on the grids G and Gt.
Property (D2) holds without restrictions. Furthermore, if we assume that the time step satisfies

τ = σ
m
≤ min{ 1

̄T + c
, 1
b}

, (5.2)

in which
̄T = max(xk ,yl)∈GM p

∑
i=1wiW(xk + ηi , yl + ξi), (5.3)

and
M = max(xk ,yl)∈G{S(0, xk , yl) + I(0, xk , yl) + R(0, xk , yl)},

then properties (D1), (D3) and (D4) also hold up to the step n ≤ mT
σ .

Proof. The proof is similar to the one of [24, Theorem 2].
We proceed through induction on n: first we prove that the properties hold for the first few steps, then we

prove that, if the properties are true up to some step n, then they also hold for step n + 1. Since the proof for
some arbitrary step and the first few ones are very similar, we only present here the one for the latter. Note
that the aforementioned properties should be proved for every element in the matrices Sn+1, In+1 and Rn+1,
but since they are all similar, here we present the proof for an arbitrary element.

By adding up all the equations of (5.1), we get property (D2). The first equation in the scheme can also
be rewritten as

Sn+1k,l = S
n
k,l(1 − τT

n−m
k,l − cτ).

Properties (C1) and (C3) hold if and only if

0 ≤ 1 − τTn−mk,l − cτ ≤ 1.

The higher bound is true if Tn−mk,l ≥ 0, but this holds because of either the assumption of the induction condi-
tion or the first assumption of the theorem. Also, the inequality of the lower bound can be rephrased as

τ ≤ 1
Tn−mk,l + c

.

It is easy to see that, because of the construction of ̄T and properties (D1) and (D2) (which hold at t(n−m)/m
by the induction condition), Tn−mk,l ≤ ̄T for all k, l : (xk , yl) ∈ G, which means that, if (5.2) holds, then prop-
erty (D1) holds for Sn+1.

Also, since Sn, In and Tn−m all have non-negative elements, (D1) holds also for In+1 if (5.2) holds. By
similar considerations, (D1) and (D4) also hold for Rn+1, which proves the statement.

An important remark is that the step size must be in the form σ
m , which means that, by condition (5.2), the

theoretically best step size is in the form σ
m̃ , where

m̃ = min{m ∈ ℕ+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 σm < min{ 1
̄T + c

, 1
b}}

.

5.2 Application of Runge–Kutta Methods

To achieve higher order convergence in our numerical approximation, we need to use higher order methods.
One of the most widely used ones are the Runge–Kutta methods. Since, in this paper, we consider a constant
delay, these methods are easily applicable.

In the sequel, the investigations will be based on the Shu–Osher form. Now we introduce the necessary
notation used in the case of the classical ordinary differential equations, and then generalize them for the
delay equations.
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Consider a time-dependent problem in the form

u󸀠(t) = F(u(t)), u(0) = u0, (5.4)

and a Runge–Kutta method given in the Butcher form [5] with coefficients (aij) ∈ ℝs×s and b ∈ ℝs. Let B be
the following matrix containing all the aforementioned coefficients of the method:

B = (
(aij) 0
bT 0
) ,

in which 0 is the zero vector with length s (the number of the stages in the method). Let us also denote the
(s + 1)-dimensional identity matrix by 𝕀. If there is such a number r > 0 for which (𝕀 + rB) is invertible, then
the explicit Runge–Kutta method for equation (5.4) can be expressed in the canonical Shu–Osher form [20–
22]

un(i) = viun + i−1∑
j=1 αij(un(j) + ∆tr F(un(j))), i = 1, . . . , s + 1,

un+1 = un(s+1), (5.5)

in which αij , vi are real constants, ∆t is the time step and un approximates u(n ∆t). Moreover, we have
αr = (αij) = r(𝕀 + rB)−1B ∈ ℝ(s+1)×(s+1) and vr = (vi) = (𝕀 + rB)−1 ̄e ∈ ℝs+1 (here ̄e = (1, 1, . . . , 1)T). The rea-
son for using such representation is that, on the right-hand side of (5.5), we have the linear combinations of
the steps of the explicit Euler method with time step ∆t/r. This means that the qualitative properties of the
explicit Euler method may be transmitted to the Runge–Kutta methods.

Depending on the values of the parameter r, wemight have different representations of the same scheme.
The Shu–Osher representation having the largest possible value of r for which (𝕀 + rB)−1 exists and αr and vr
have non-negative components is called optimal, and we define

C := max{r ≥ 0 | there exists (𝕀 + rB)−1 and αr ≥ 0, vr ≥ 0},
which is called the SSP (strong stability preserving) coefficient, and this constant will be used in the scheme
(r = C). For further reading, see [14].

In our case, problem (4.3) can be written in the form

u󸀠(t) = F(u(t), u(t − σ)), u is given on [−σ, 0]. (5.6)

Because of this, the explicit Runge–Kutta method applied to (5.6) takes the form

un(i) = viun + i−1∑
j=1 αij(un(j) + τCF(un(j), un−m)), i = 1, . . . , s + 1,

un+1 = un(s+1) (5.7)

(0 ≤ n ≤ mT
σ ) with the notation of Section 5.1.

The next theorem states that, for a sufficiently small time step, properties (D1)–(D4) hold for the above
scheme.

Theorem 6. Consider an explicit Runge–Kutta method in the form (5.7) with SSP coefficient C > 0 and applied
to system (4.3) with non-negative history function. Then (D2) holds, and the properties (D1), (D3) and (D4) also
hold if the step-size satisfies

τ = σ
m
≤ Cmin{ 1

̄T + c
, 1
b}

. (5.8)

Proof. Weprove the theoremby induction on n, but since the proof for the first and an arbitrary step is similar,
here we present only the latter one. Also, we are proving the required properties for a fixed k, l point since,
if they hold for an arbitrary point, then they also hold for all of them. To make notations simpler, in the next
sections, we are using the notation X̃n = Xn

k,l for X ∈ {S, I, R, T}, and k, l are arbitrary fixed indices.
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By applying method (5.7) to our equation (4.3), we get the following scheme for an ith intermediate step
(1 ≤ i ≤ s + 1)

̃Sn(i) = vi ̃Sn + i−1∑
j=1 αij( ̃Sn(j) − τC ( ̃Sn(j) ̃Tn−m + c ̃Sn(j))),

̃In(i) = vi ̃In + i−1∑
j=1 αij( ̃In(j) + τC ( ̃Sn(j) ̃Tn−m − b ̃In(j))),

R̃n(i) = vi R̃n +
i−1
∑
j=1 αij(R̃n(j) + τC (b ̃In(j) + c ̃Sn(j))).

(5.9)

Let Zn(i) = ̃Sn(i) + ̃In(i) + R̃n(i). Then adding up equations (5.9) yields
Z = ZnvC + αCZ, that is Z = Zn(𝕀 − αC)−1vC,

in which Z = (Zn(1), Zn(2), . . . , Zn(s+1))T and Zn = ̃Sn + ̃In + R̃n. It is well known that, for our Runge–Kuttamethod
tobe consistent,weneed that vi + ∑s+1j=1 αij = 1 for all 1 ≤ i ≤ s + 1, and consequently, (𝕀 − αC)−1vC = ̄e,which
shows that Zn(s+1) = Zn. Then, because of Zn(s+1) = Zn+1, we get that

Zn+1 = ̃Sn+1 + ̃In+1 + R̃n+1 = ̃Sn + ̃In + R̃n = Zn for all n,

so property (D2) holds.
The remaining three properties require that ̃Sn+1, ̃In+1 and R̃n+1 are non-negative, and ̃Sn+1 is non-in-

creasing, while R̃n+1 is non-decreasing. Let us rewrite the first two equations in the internal stage (5.9) as
̃Sn(i) = vi ̃Sn + i−1∑

j=1 αij ̃Sn(j)(1 − τC ( ̃Tn−m + c)),
̃In(i) = vi ̃In + τC i−1

∑
j=1 αij ̃Sn(j) ̃Tn−m + (1 − τCb) i−1∑j=1 αij ̃In(j).

(5.10)

By the definition of ̃Tn−m and by the assumption of the induction, and since we are using non-negative
cubature and positivity-preserving interpolation, ̃Tn−m is also non-negative.

It is clear that ̃Sn(1) = v1 ̃Sn, ̃In(1) = v1 ̃In and R̃n(1) = v1R̃n (by the Shu–Osher form of explicit Runge–Kutta
methods) and they are non-negative. Also, from the form of (5.10), it is clear that the non-negative property
of ̃Sn(i) and ̃In(i) (and also of R̃n(i)) holds for every 2 ≤ i ≤ s + 1 if the condition

0 ≤ 1 − τ
C
b and 0 ≤ 1 − τ

C
( ̃Tn−m + c) (5.11)

holds. The first part of this condition is satisfied because of the second term of the right-hand side of (5.8).
For the second part of (5.11), observe that, by the definition of ̄T in (5.3), we know that ̃Tn−m ≤ ̄T. Therefore,
the second part of condition (5.11) is also satisfied because of (5.8), so (D1) holds.

Moreover, since ̃Tn−m ≥ 0, we get that 1 − τ
C
( ̃Tn−m + c) ≤ 1. With this, we get the following estimate for

̃Sn(i) from the first equation of (5.10):

̃Sn(i) ≤ vi ̃Sn + i−1∑
j=1 αij ̃Sn(j). (5.12)

As mentioned before, to achieve consistency, we need vi + ∑i−1j=1 αij = vi + ∑s+1j=1 αij = 1 for all 1 ≤ i ≤ s + 1. Let
1 ≤ p ≤ s + 1 be the stage index for which the value of ̃Sn(p) is the largest, i.e. ̃Sn(i) ≤ ̃Sn(p) for all 1 ≤ i ≤ s + 1.
Then taking i = p inside (5.12) yields

̃Sn(p) ≤ vp ̃Sn + p−1∑
j=1 αpj ̃Sn(j) ≤ vp ̃Sn + p−1∑j=1 αpj ̃Sn(p) ≤ (1 − p−1∑j=1 αpj) ̃Sn + p−1∑j=1 αpj ̃Sn(p).

By rearranging, we have

(1 −
p−1
∑
j=1 αpj) ̃Sn(p) ≤ (1 − p−1∑j=1 αpj) ̃Sn ,
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that is ̃Sn(p) ≤ ̃Sn. Consequently, ̃Sn(i) ≤ ̃Sn for all 1 ≤ i ≤ s + 1, and also, ̃Sn+1 = ̃Sn(s+1) ≤ ̃Sn, which gives prop-
erty (D3).

By the third equation of (5.9), it is evident that R̃n(i) ≥ R̃n, hence R̃n+1 = R̃n(s+1) ≥ R̃n, which gives prop-
erty (D4).

We should also note here that, like in the case of the explicit Euler method, we cannot use arbitrary values
for time steps, but they should be in the form σ

m . Therefore, the theoretically best time step is σ
m̃ , where

m̃ = min{m ∈ ℕ+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨 σm < Cmin{ 1
̄T + c

, 1
b}}

.

6 Numerical Experiments
In this section, we present some numerical experiments to confirm our previous results. First we show that
the bounds we got in Theorems 5 and 6 are sharp in the sense that the use of bigger time steps results in
qualitatively bad behavior. Then, in the second part, we present some graphs on which the solutions are
compared for different values of σ and their qualitative properties are checked.

6.1 Construction of the Test Problem

Equation (2.2) is solved on the rectangle domain Ω = (0, A) × (0, B) (A, B ∈ ℝ+). We set the parameters as
A = B = 1and c = 0.01. In order to be able to define the FI(t − σ, x, y) function,we choose theweight function

W(x󸀠, y󸀠) = a(−‖(x󸀠, y󸀠) − (x, y)‖2 + δ).
In the numerical experiments, the choice a = 100 is used. The radius δ, delay-parameter σ and the rate of
recovery b will be set later. The history functions are chosen as

{{{{{
{{{{{
{

Sh(t, x, y) = 20 − Ih(t, x, y),

Ih(t, x, y) =
1

2πs2
exp(−12[(

x − 1
2

s )
2
+ (

y − 1
2

s )
2
])(1 + tσ),

Rh(t, x, y) = 0

(6.1)

for t ∈ [−σ, 0], where Ih(t, x, y) is a scaled Gaussian distributionwith standard deviation s = 1
10 concentrated

at themiddle of the domain (12 ,
1
2 ). Note that, since Ih ismonotone increasing and continuous in time, contin-

uous in space, is non-negative and 1
2πs2 ≈ 15.92 < 20, functions (6.1) fulfill properties (C1)–(C4). The graphs

of the history functions at time t = 0 can be seen in Figure 1.

Figure 1: The history functions Sh , Ih , Rh at t = 0 shown in columns, respectively.
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The semi-discretization is carried out on a standard rectangular mesh with step sizes hx = hy = 1
19 . As

mentioned before, we can use different cubatures to approximate the integral FI(t, x, y) (see [23]) –we define
the cubature as follows. First we transform the disc-like infection domain with radius δ to the rectangle
[0, δ] × [0, 2π) on the plane (r, ϑ) using a polar transformation with x󸀠 = x + r cos ϑ and y󸀠 = y + r sin ϑ. Then
we transform this rectangle to the square [0, 1] × [0, 1) on the plane (r󸀠, ϑ󸀠) by using the linear transforma-
tion r = δr󸀠 and ϑ = 2πϑ󸀠 with the Jacobian determinant 2πδ. Using the transformations above, the integral
FI(t − σ, x, y) has the form

1

∫
0

1

∫
0

a(−r󸀠δ + δ)I(t − σ, x + r󸀠δ cos(2πϑ󸀠), y + r󸀠δ sin(2πϑ󸀠))r󸀠 2πδ2 dr󸀠 dϑ󸀠.
For the integration over the interior of the aforementioned square, we take the 40-point generalized Gaussian
quadrature rule [17]with the quadrature points μ1, μ2, . . . , μ40 and correspondingweightsω1, ω2, . . . , ω40.
Therefore, the cubature has the form

FI(t − σ, x, y) =
40
∑
j=1 40
∑
l=1ωjωla(−μjδ + δ)I(t − σ, x + μjδ cos(2πμl), y + μjδ sin(2πμl))μj 2πδ2

=
402

∑
i=1 wiW(x + ηi , y + ξi)I(t − σ, x + ηi , y + ξi),

where i = 40(j − 1) + l, ηi = μjδ cos(2πμl), ξi = μjδ sin(2πμl) and wi = ωjωl2πδ2μj. Based on this, at the
given spatial grid point (xk , yl), the approximation

F̂k,l(t − σ, xk , yl) =
p
∑
i=1wiW(xk + ηi , yl + ξi) ̂I(t − σ, xk + ηi , yl + ξi)

is used, where ̂I(t − σ, xk + ηi , yl + ξi) is computed using piecewise cubic Hermite interpolation.
With the help of the previous constructions, the time discretization methods discussed in Section 5 now

can be applied (see the next subsections).

6.2 Sharpness of the Time Step Bounds

In the previous sections, namely in Theorems 5 and 6, we gave sufficient conditions for the qualitatively good
behavior of the numerical solution, i.e. if we use a smaller time step than the bounds, then our numerical
solution possesses properties (D1)–(D4). A natural question which might arise in the case of such sufficient
conditions is the effect of the use of bigger time steps.

In Table 1, we can see the theoretical bound (5.2),

τ ≤ min{ 1
(20∑40j=1∑40l=1 ωjωl100δ3(1 − μj)μj2π) + 0.01

, 10}, (6.2)

δ σ theor. b. time step real b. diff. ratio

0.13 1 0.2169 0.2 0.2 0 1.0000
0.12 1 0.2755 0.25 0.25 0 1.0000
0.15 0.3 0.1413 0.1 0.1 0 1.0000
0.15 0.5 0.1413 0.125 0.125 0 1.0000
0.14 0.4 0.1737 0.1333 0.1333 0 1.0000
0.13 0.5 0.2169 0.1667 0.1667 0 1.0000

Table 1: Numerical results for the explicit Euler method (5.1) for various time steps with final time T = 15 and b = 0.05
(the other parameters are given before).
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Figure 2: The numerical solution Sn shown at final time T = 3 computed with time steps τ = 0.25 (left) and τ = 0.333 (right),
with parameters δ = 0.12 and σ = 1. The white area corresponds to those grid points at which the solution becomes negative.
δ σ b theor. b. time step real b. diff. ratio

0.13 1 0.1 0.2169 0.2000 0.5000 3 0.4000
0.12 1 0.1 0.2755 0.2500 0.5000 2 0.5000
0.13 0.5 0.05 0.2169 0.1667 0.2500 1 0.6667
0.135 0.5 0.05 0.1937 0.1667 0.2500 1 0.6667
0.135 0.4 0.01 0.1937 0.1333 0.2000 1 0.6667

Table 2: Numerical results for the RK2 method (5.1) for various time steps with final time T = 15.
denoted by “theor. b.”, the actual time step in the form σ

m̃ (see the end of Section 5.1) denoted by “time step”,
and the bound calculated by experiments, i.e. the time step in the form σ

mexp
for which the method works as

expected, but for σ
mexp−1 , it gives qualitatively inaccurate results – this value is denotedby “real b.” in the table.

Also, the differencemexp − m̃ is denoted by “diff.” in the table. The bound can be considered sharp when this
value is zero. The last column shows the ratio of the “time step” and the “real bound”, i.e. the sharpness of
the bound we got from our theorem. As it can be seen, this ratio is 1 for several parameter values.

We show an example for the qualitatively bad behavior of the method and show the sharpness of the
obtained time step bound (6.2) in the second row of Table 1. On the left panel of Figure 2, the numerical
solution Sn can be seen at the time level t = 3 obtained with time step τ = σ

4 =
1
4 = 0.25. We can see that

the solution is qualitatively correct, namely, the values are non-negative. But when we use the next possible
time step τ = σ

3 =
1
3 = 0.3333, we also get negative values. On the right panel of Figure 2, the white area

corresponds to those grid points at which the solution is negative. Thus, the obtained bound is sharp.
The results for the second order Runge–Kutta method are presented in Table 2. Here we can see that the

theoretical bound is not that sharp in all of the cases, so our condition is only sufficient, but not necessary.
However, in some cases, the theory gives time steps that are not far from the best possible one (when we have
small numbers in the “diff.” column). For different choices of the parameters and initial conditions, wemight
get even better results, resulting in a sharp bound even in the higher order case.

6.3 Comparison of the Cases with Different Delay Parameters

In this section, we present some graphs of the numerical solutions of equation (2.2) with different values
of σ. We plot the solution at final time T = 7 with parameters b = 0.1 and δ = 0.1, computed with the largest
possible time step below the theoretical bound 0.4752 (computed similarly to (6.2) with C = 1), and the
second order Runge–Kutta method is used. As we can see in Figure 3, the increase of parameter σ results
in a slower spread of the infection, which corresponds to the biological requirements (a longer latent period
results in a slower pandemic).
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Figure 3: The numerical solutions Sn , In , Rn at T = 7 shown in columns, respectively, σ values σ = 0.2, σ = 0.5, σ = 1.0
and σ = 2.0.
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7 Conclusions, Further Work
In this article, we extended our previous works concerning space-dependent SIRmodels with the addition of
constant delay to the equation.We could show using themethod of steps that this new equation has a unique
solution with biologically reasonable properties. Then it was shown that numerical methods with carefully
chosen step sizes will preserve the discrete versions of the aforementioned features.

One remaining question concerns the use of time steps not in the form σ
m (m ∈ ℕ+). In these cases, an

additional interpolation is needed to compute the values of our functions at times tn/m − σ. However, if we
use positivity-preserving interpolations (like themethod “pchip” mentioned in Section 4.2), then statements
similar to Theorems 5 or 6 can be formulated, although the computational time increases considerably.

Another possible extension of the previousmethods includes the introduction of non-constant delay, i.e.
given by a time- or space-dependent function. In these cases, the addition of an interpolation step to our
algorithm is needed, and a more careful choice of time steps is also required.

Funding: The research by the authors B. M. Takács, I. Faragó and R. Horváth reported in this paper and car-
ried out at BME has been supported by the NRDI Fund (TKP2020NC, Grant No. BME-NC) based on the charter
of bolster issued by the NRDI Office under the auspices of the Ministry for Innovation and Technology, and
the Hungarian Ministry of Human Capacities OTKA grant SNN125119. The work of the author I. Faragó was
completed in the ELTE Institutional Excellence Program (TKP2020-IKA-05) financed by the Hungarian Min-
istry of Human Capacities. The research of the author D. Repovš reported in this paper was supported by the
Slovenian Research Agency grants P1-0292, N1-0114, N1-0083, N1-0064 and J1-8131.

References
[1] A. Alsenafi and A. B. T. Barbaro, A convection-diffusion model for gang territoriality, Phys. A 510 (2018), 765–786.
[2] M. S. Bartlett, Measles periodicity and community size, J. Roy. Stat. Soc. Ser. A 120 (1957), 48–70.
[3] R. Bellman, On the computational solution of differential-difference equations, J. Math. Anal. Appl. 2 (1961), 108–110.
[4] L. Bonnasse-Gahot, H. Berestycki, M-A. Depuiset, M. B. Gordon, J.-P. Nadal, S. Roché and N. Rodríguez, Epidemiological

modeling of the 2005 French riots: A spreading wave and the role of contagion, Sci. Rep. 8 (2018), Article ID 107.
[5] J. C. Butcher, Numerical Methods for Ordinary Differential Equations, 3rd ed., John Wiley & Sons, Chichester, 2016.
[6] V. Capasso,Mathematical Structures of Epidemic Systems, Lecture Notes in Biomath. 97, Springer, Berlin, 1993.
[7] K. L. Cooke, Stability analysis for a vector disease model, Rocky Mountain J. Math. 9 (1979), no. 1, 31–42.
[8] P. Csomós and B. Takács, Operator splitting for space-dependent epidemic model, Appl. Numer. Math. 159 (2021),

259–280.
[9] R. L. Dougherty, A. S. Edelman and J. M. Hyman, Nonnegativity-, monotonicity-, or convexity-preserving cubic and quintic

Hermite interpolation,Math. Comp. 52 (1989), no. 186, 471–494.
[10] R. Ducasse, Qualitative properties of spatial epidemiological models, preprint (2020), https://arxiv.org/abs/2005.06781.
[11] L. E. Élgolts, Qualitative Methods in Mathematical Analysis, American Mathematical Society, Providence, 1964.
[12] I. Faragó and R. Horváth, Qualitative properties of some discrete models of disease propagation, J. Comput. Appl. Math.

340 (2018), 486–500.
[13] F. N. Fritsch and R. E. Carlson, Monotone piecewise cubic interpolation, SIAM J. Numer. Anal. 17 (1980), no. 2, 238–246.
[14] S. Gottlieb, D. Ketcheson and C.-W. Shu, Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations,

World Scientific, Hackensack, 2011.
[15] D. G. Kendall, Mathematical models of the spread of infection, in:Mathematics and Computer Science in Biology and

Medicine, HMSO, London (1965), 213–225.
[16] W. O. Kermack and A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. A Math. Phys.

Eng. Sci. 115 (1927), no. 772, 235–240.
[17] J. Ma, V. Rokhlin and S. Wandzura, Generalized Gaussian quadrature rules for systems of arbitrary functions, SIAM J.

Numer. Anal. 33 (1996), no. 3, 971–996.
[18] W. Ma, M. Song and Y. Takeuchi, Global stability of an SIR epidemic model with time delay, Appl. Math. Lett. 17 (2004),

no. 10, 1141–1145.
[19] S. Rendine, A. Piazza and L. L. Cavalli-Sforza, Simulation and separation by principal components of multiple demic

expansions in Europe, Amer. Natur. 128 (1986), no. 5, 681–706.

https://arxiv.org/abs/2005.06781


728 | B.M. Takács et al., Qualitative Properties of Space-Dependent SIR Models

[20] C.-W. Shu, Total-variation-diminishing time discretizations, SIAM J. Sci. Statist. Comput. 9 (1988), no. 6, 1073–1084.
[21] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws,

in: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations (Cetraro 1997), Lecture Notes in Math. 1697,
Springer, Berlin (1998), 325–432.

[22] C.-W. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock-capturing schemes, J. Comput. Phys.
77 (1988), no. 2, 439–471.

[23] B. Takács and Y. Hadjimichael, High order discretization methods for spatial-dependent epidemic models,Math. Comput.
Simulation 198 (2022), 211–236.

[24] B. Takács, R. Horváth and I. Faragó, Space dependent models for studying the spread of some diseases, Comput. Math.
Appl. 80 (2020), no. 2, 395–404.

[25] A. Volkening, D. F. Linder, M. A. Porter and G. A. Rempala, Forecasting elections using compartmental models of infection,
SIAM Rev. 62 (2020), no. 4, 837–865.

[26] S.-L. Wu, C.-H. Hsu and Y. Xiao, Global attractivity, spreading speeds and traveling waves of delayed nonlocal
reaction-diffusion systems, J. Differential Equations 258 (2015), no. 4, 1058–1105.

[27] R. Xu and Z. Ma, Global stability of a SIR epidemic model with nonlinear incidence rate and time delay, Nonlinear Anal.
Real World Appl. 10 (2009), no. 5, 3175–3189.


	Qualitative Properties of Space-Dependent SIR Models with Constant Delay and Their Numerical Solutions
	1 Introduction
	2 Construction of the Mathematical Model
	3 Properties of the Analytic Solution
	3.1 Existence, Uniqueness and Smoothness of the Solution
	3.2 Qualitative Properties of the Analytic Solution

	4 The Spatially Discretized Models and Their Properties
	4.1 The Properties of the Cubature Formula Model
	4.2 The Properties of the Semi-discretized Model

	5 The Fully Discretized Models and Their Properties
	5.1 Application of the Explicit Euler Method
	5.2 Application of Runge–Kutta Methods

	6 Numerical Experiments
	6.1 Construction of the Test Problem
	6.2 Sharpness of the Time Step Bounds
	6.3 Comparison of the Cases with Different Delay Parameters

	7 Conclusions, Further Work


