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A T O T A L  F I N I T E - D I M E N S I O N A L  S E L E C T I O N  

T H E O R E M  t) 
S. M .  A g e e v  a n d  D.  R e p o v s  UDC 515 

{} 1. S t a t e m e n t  of  t h e  T h e o r e m  

DEFINITION 1.1. A Dim-filtration of a (p + 1)-dimensional paracompact  space X is a nested 
sequence X = Xp D Xp-1 D --- D X0 D X-1 D X-2 = 6 of subspaces of X such that  d imx t (X t_ l )  < 
t for all 0 < t < p (which means that  the Lebesgue dimension of every closed subset E of Xt lying in 
Xt-1 is at most t, dim E _< t). 

In a metric space X,  the above condition on dimension amounts to the inequality dim(Yt) < ( t +  1) 
for every s t ra tum Yt = Xt \ Xt-1 ,  - 1  <_ t < p, of the dim-filtration of X.  The question arises: In 
which case does the fulfillment of the conditions of Michael's (t + 1)-dimensional selection theorem 
[1,2] on every s t ra tum Yt imply the existence of a global (local) selection. 7 Our Theorem A answers 
this question. 

We further assume that  some (possibly empty) equi-locally-t-connected families 6 t ,  - 1  < t < ~ ,  
of closed subsets of Z are fixed in a metric space (Z,p).  Also, we assume that  UGt, the carrier or 
underlying set of each family 6 t  with 0 < t < cx), is closed in "the union U{U6t  I 0 < t < oo} of 
the carriers of all families. 

T h e o r e m  A. Assume given a (p + 1)-dimensional paracompact space X ,  a dim-filtration X = 
Xp D Xp-1 D --- D X0 D X-1 D X-2  = 6 of X,  and a lower semicontinuous multi-valued mapping 
(b : X ---, Z with complete (with respect to the metric p on Z) values (b(z), x E X,  for which 

(a) the image (I)(z) of every point z of the stratum Yt, - 1  < t < p, belongs to the family 6 t .  
Then, for every closed A C X and every continuous selection r : A --* L of  the mapping �9 I A, 

there are a neighborhood O(A) of A and a continuous extension v' : O(A) --, Z of v that is a selection 
of the mapping q~ I O(A). If  we additionally know that the families 6 t  consist of t-connected sets 
then we may assume that the neighborhood O(A) equa/s X (i.e., the local selection r extends to some 
global selection). 

REMARK 1. If X = X-1 then Theorem A coincides with the zero-dimensional selection theorem. 

REMARK 2. If X = Xt and Xt-1 = 6 then Theorem A coincides with the finite-dimensional 
selection theorem. 

REMARK 3. If the set {t < p { Yt # 6} consists of two elements then Theorem A is exactly 
Theorem 3 of [3]. 

REMARK 4. The following simple example shows that the requirement of closure of the carries 
U6 t  in the union U{U6t 10 < t < oo} is essential. 

Let a,, = l /n ,  let A,, = Jan+l, a,~ be the closed interval, and let S,~ be the boundary of An. 
Denote X = {0} U I.Jn A,~ C R1; Z = IR-; 61 consists of the cones Con(S,,), ~, > 1, in R 2 over S0 with 
vertex the point (0, 1); 60 = {z [ z E R2}, 6 - 1  = 6;  X1 = X,  X0 = {0} O I,.Jn Sn, and X-1 = 6 .  
Clearly, 61 E equi-LC r162 NC ~162 60 consists of convex subsets, dimX1 = 1, and d imX0 = 0. It is 
easy to verify that  the multi-valued mapping F : X --+ Z. given by the formula F(x)  = {z} if x = 0 
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or z E S~ and by the formula F(.r) = Con Sn if .r E An \ 5'~, is lower semicontinuous and satisfies 
all (but one) conditions of the theorem: the carrier U~l  of the system G1 is not closed in Z. From 
the existence of a single-valued selection .f �9 X ~ Z of F we can easily deduce the possibility of 
retracting the interval A ,  to its boundary Sn for n large enough, which is impossible. 

REMARK 5. In w 3 we demonstrate that it suffices to prove Theorem A, as well as the forthcoming 
Theorems B-D, under the following simplifying assumption: (Z, p) is a normed vector space (L, [[, [[) 
and the carriers U~t  with t _> - 1  coincide with L. 

DEFINITION 1.2. Each lower semicontinuous mapping ~ mentioned in Theorem A is referred to 
as a multi-valued mapping consistent with the dim-filtration X = Xp D Xp-1 D ..- D X0 D X-1 of 
the paracompact space X and the families of sets {~St}. 

We deduce Theorem A from the following theorem on approximation of 6-selections. 

T h e o r e m  B. To each covering e E coy L, there exists a covering ~ E cov L with the following 
property: Each 6-selection r : X ~ L of a multi-valued mapping ~ : X -+ L consistent with 
the dim-filtration of  the paracompact space X and the families of sets {~ht} can be e-approximated 
by a selection r I : X ~ L of ~. 

By a method familiar from the selection theory, Theorem B is in turn reduced to the following 
theorems. 

T h e o r e m  C. To each covering ~ E coy L, there exists a covering ~ E cov L such that the following 
property holds for every covering # E coy.L: Each 6-selection r : X ---* L of  a multi-valued mapping 

: X ---* L consistent with the dim-filtration of the paracompact space X and the families o f  sets 
{ 6 t  } can be e-approximated by a g-selection r I : X ---* L of  ~. 

T h e o r e m  D. Suppose that we additionally know that the families ~ t  consist of  t-connected 
sets. Then, for each covering la E coy L and each multi-value d mapping ~9 : X ---* L consistent with 
the dim-t~ltration of the paracompact space X and the families of sets { ~ t  }, there exists a #-selection 
r' : X --* L of ~.  

w 2. P r e l i m i n a r i e s  

We denote the set of all open coverings of X by cov X and denote by o; E coy X some open covering. 
We denote sup{diamV ] U E o;} by col(o;) or mesh(o;). The star (or the neighborhood) of a set A C X 
with respect to o; e cov X is the set U{U[U E o;, UMA ~ ~},  denoted by N(A,w) or St(A,w). The star 
of a covering o; with respect to another covering o;' is the covering S t ( w , J )  -- {St(U,o;') [ U E w}. 
For brevity, the iterated stars St(o;i, St(w2,.. .  ,o;n) . . .  ) are denoted by o;n o . . .  o o;2 o o;1 and, in case 
all o;i are equal, by (o;1) k. The carrier of a system w of open sets is the set U{U [ U E w} denoted 
by Uo;. The intersection of finitely many coverings o;i is the covering composed of the intersections of 
the elements of wi's; it is denoted by Aim=t wi. 

The record o; ~- o;1 means as usual that the covering o; refines o;1. If f ,  g : X ~ Y are mappings, 
A is a subset of Y, and o; E coy Y then the o;-proximity of f and g is designated as (f ,  g) -~ o;. 
The inclusion of a set A in an element of a covering o; is designated as A -~ w. 

The nerve of a covering o; -- {Us [ /3 E B} is the polytope 9~(w), with the weak Whitehead 
topology, whose vertices (Uo) are in a one-to-one, correspondence with the index set B and where 
w = (U.s0 . . . .  , U~s) is an s-dimensional simplex of ~(o;) with vertices (/:~8,) if and only if NUz, ~ O. 
The k-dimensional skeleton ~(o;) (k) is the subpolytope of 9~(w) consisting of at most k-dimensional 
simplices; 92(o;) (-1} = O. The open star St0((U~0) ) of the vertex (Ui~0) is the set {~ ' ]a~ .  (Uo) E 

re(w) # o}. 
If a covering cr refines a covering w, a ~ o;; then the simplicial mapping ~r(cr, o;) : 91(cr) --~ 9l(o;) 

is defined that  takes each vertex (H) E 91(a) into the vertex (U) E 91(w) such that H C U. We say 
that the mapping r, is generated by the refinement ~r of ~. 

A mapping 0 : X ---* 91(~.,) is called canonical if the inverse image 0-1(St0(U,o))) of the open star 
of each vertex (Uo,/ lies in U,~. It is well known [4] that a canonical mapping exists for every open 
covering w of a paracompact space X. We present the following fact without proof. 
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Finally, the inclusion g(.r) �9 N(r follows from Michael s Mcondition: g(x) = m(O(x)) �9 
re(A) C N((I)(x), A). 

The next proposition shows that an arbitrary ,3-selection k : X ~ L of �9 and an arbitrary covering 
A � 9  L generate a covering ~z � 9  X and a mapping 91(w) (~ ~ L of the  zero-dimensional skeleton 
of the nerve of w which satisfy the conditions of Proposition 4.2 for the coverings "7 = (,3 o A 2 o ,3) 
and A. We have thus accomplished all preliminaries for the base of the induction to be carried out in 
the sequel. 

P r o p o s i t i o n  4.3. Assume given a ,3-selection k : X --* L of r and a covering A � 9  L. 
Then there exist a covering w �9 coy X and a partial mapping 92(w} ~ r (~ --~ L of the zero- 
dimensional skeleton which, together with the ,3-selection k, satisfy the conditions of  Proposition 4.2 
for the coverings 7 = (~ o A 2 o ,3) and A (i.e., m is a 7-realization satisfying Michael's A-condition and 
the inclusion k(U) C N(m((U)) ,7)  holds for all U �9 w). 

REMARK. Proposition 4.2 implies that the composition m o 0 : X0 ~ L of m and every canon- 
ical mapping 0 72-approximates the mapping k [ X0 and A-approximates r I X0 , where )to = 

We precede the proof of Proposition 4.3 with some simple observation which is an easy corollary 
to the definition of lower semicontinuity. 

Lemma 4.4. I f  �9 is a lower semicontinuous multi-valued mapping then, for every covering A �9 
coy L and every compact .set K C L, the set {x �9 X [ K C N(tb(x), A)} is open (possibly empty).  

PROOF OF PROPOSITION 4.3. Associate some point mz in the nonempty intersection N(k(z),/3)N 
�9 (x) with each point x �9 X. Define the sought covering w �9 coy X by the formula 

w = {U(x) I k(U(z))  c N(k(x),A), rn~ �9 N((I)(z'), A) for all x' �9 U(x)} 

and define the partial realization m by the formula m(U(x))  = m::. 
If i ( x )  N U(y) ~ 0 then there exists a point z �9 k(U(x))  n k(U(y)) .  Since (m~:,k(x)) ~ fl, 

(k (x ) , z )  -g A, ( z ,k (y ) )  ~ A, and (k(y) ,my)  -.< fl, it follows that (m~:,my) -~ (fl o A 2 o fl) and so 
the mapping m is a partial "),-realization. 

By the definition of w, for every point y �9 U(x) we have m ( ( V ( z ) ) )  = mz E N((b(y),A) for all 
y �9 U(x). We have so verified Michael's A-condition for m. 

Finally, the required inclusion k(U(x))  C N(m(U(x) ) ,7 )  holds because k(U(x))  C N(k(x), A) and 
Z. 

w 5. Proof of Theorem C 

The proof of Theorem C is based on two Propositions ~ and ~. Proposition 92 shows that, in 
a certain situation, a mapping of a polytope can be approximated by a mapping whose range lies in 
a fiber ~(x). We note that Proposition ~ was proven by E. Michael in another form. 

Proposition 9.1. To each covering ~ E cov L, there exists a covering ( E cov L such that, for every 
continuous mapping r : P ~ N(S, (),  S E ~t ,  of a (t + 1)-dimensional polytope P, t < oc, there is 
a ~-homotopy ~b : (P • I) ---* N(S,~) in L such that ~0 = r and Im(~l)  C S. 

We designate dependence of ( on ~ as follows: ( = (9~)(~). 

PROOF. Inscribe an open convex covering (0 E coy L in ~. Also, choose coverings (1, (2, ( E coy L 
such that ((x) 3 :,- (0, (2 = equi-Lf6t((1) for all t < p, and (()3)._ (2. Without  loss of generality we 
assume that ~ -< (0 -~ (~I ~ (2 "~ (. 

Let K be a triangulation of P such that {.O(A) I A �9 K} ~-- ( and let 6o : p(0) ~ S be a mapping 

(-close to o I p(0). Then {60(A (~ I A �9 K} ~- (3 ~_ (2 and so the partial mapping P ~ p(0) ~ 5' 
is a 6-realization. Therefore, there exists a (l-realization (~ : P --+ 5', r I (p(0)) = r 

It is easy to veri~" that  (O, o) -~ (o(o(1 .  Since the last covering refines (o, we infer that  (r (~) -~ 6 .  
As a ~-homotopy ~. we can take the linear homotopy between r and r 
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The key point in the proof of Theorem C. and Theorem A therewith, is the  following 

P r o p o s i t i o n  ~ .  To each covering ~ E coy L. there exists a covering p E coy L that is a singleton 
if so is a and that possesses the following property: Given an arbitrary covering ~ E cov L, there is 
a covering A E coy L such that 

(1) for every multi-valued mapping consistent with the dim-filtration o f  X and the families of  
sets {Gt}; 

(2) /'or every closed embedding of X in a paracompact space X and every extension of  (b to a lower 
semicontinuous mapping ~ : X ---) L, ~ I X = r 

(3) for every locally finite system w = {Uo,}, Uw D X of open subsets of  Y, ; 

(4) for every partial p-realization ~R(w) ~ ~(w)(k) ~ L, k >_ O, satisfying Michael's A-condition 
there exist a locally finite system cr = {Ha}, Uo'DX of open sets in .~ which refines o., and a partial 

a-realization 92(o') ~ ":R(cr) (k+U q-+ L satisfying Michael's ~r and coinciding on the k- 
dimensional skeleton 9~(a) (k) with the composition m o q I 92(a) (k) = m o (~r I ~ ( a )  (k)) of  m and 
the simplicial mapping ~r = 7r(a,w): ~ ( a )  ---* ~(w). 

We designate dependence of p on a, as well as A on a, p, and to, as follows: p = (fl3)(a), 
A = 

Before proving Proposition ~ ,  we demonstrate how Theorems C and D are deduced from it and 
Propositions 4.2 and 4.3. 

PROOF OF THEOREMS C AND D. (~iven a covering ~, we first construct a sought covering (5. 
To this end, we consider a sequence of coverings (~i E covL, i = p + 2,p + I , . . . ,  1, such that  

(*) (~i = (~)((~i+1) for i = p + 1, p, .. ., 1 and (5~+ 2 >-- ~. 
As g we take a covering for which ~8 >.. ,51. It is clear that, foi a one-element covering e, the cov- 

erings (~i = e satisfy condition (,),  and so we can take (5 to be a singleton. 
Now, given a covering #, we construct one more covering A. To this end, we consider a sequence 

of coverings Ai E cov L, i = p + 2,p + 1 , . . . ,  1, such that (**) Ap+2 = g, Ai = (fl~)((~i+l,(hi; Ai+l) for 
i = p + l , p , . . . , 1 .  

We put A=A1 .  
Without loss of generality we may assume that (5i >-- (5 i and Ai )-- A i for i < j and Ap+l >-- (5. 
Let k : X ~ L be a (5-approximation of q). Applying Proposition 4.3 to the coverings A and 

fl = (5 e covL, we obtain a covering w e covX and a partial 7-realization r (---' 91(w) (~ --~ L 
which satisfies Michael's A-condition, where 3' = (fl o A 2 o ~). Moreover, k(U)  C N(m(U),  7) for all 
U q w. Since 3 '2 ~/38 = <58 ~ ~1 ~" ~+2, the mapping m is a/~l-realization. 

Since Ai = (~)((5i+~, (5i; Ai+l ); therefore, taking the paracompact spaces X and X in Proposition ~) 
coincident, we can successively construct coverings wi ~ coy X and wi+~ ~ wi and partial (5i-realizations 
mi : 9I(wi) (i) ---+ L for i = 1 ,2 , . . .  ,p which satisfy Michael's Ai-condition and meet the  equalities 
m o 7r(wi,w) = mi on the 0-dimensional skeleton fft(wil(~ Finally, we consider the partial ~p+a- 
realization rap+2 : 9I(%,+2/(~+2) --+ L. Since d i m X  <: (p + 1), by Proposition 2.1 there exists 
a canonical mapping 0 : X ~ 9l, Im(0) C 9~(w~+2) (~+2). In view of Proposition 4.2, the composition 
mp+2 00 is (6~+2)2-close to k (and so e-close to k) and Ap+2-approximates q) (and so bt-approximates q)). 

w 6. P r o o f  of  P r o p o s i t i o n  
II ! 

We obtain the covering p = (~3)(a) E covL on constructing a sequence pl = a, P l ,P l ,P  of 
coverings of L such that 

( , ,  , )  tp,)3t 1 ~ a, Pl' =equi-aft6t(P~) for all t < p, (p)3 ~" P~. 
Without loss of generality we may assume th,~t each successor in the sequence of coverings refines 

its predecessor. 
Also, we construct the covering A = (~ ) ( a ,p ;~ ) .  It is convenient to represent the process of 

arranging the corresponding sequence A1 = ~, A~I,. A of convex coverings of L as follows: 

AI = >- A ,A - ^ 
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We proceed further by inducting on d = d(X) = max{t]}i = Xt \ At-1 :/: 0}.  If d = - 1  then 
X = X-1 and dim(X) _< 0. In this case we easily validate Proposition ~ ,  establishing the induction 
base .  

Suppose that  Proposition ~ is valid for all X with d(X) < p and examine the case of d(X) = p. 
Consider the given partial p-realization ~(w) ~ 92(w) (k) m L, k <_ p, satisfying Michael's A- 

condition. Given a point x E X, consider all elements U~ E w containing x (there are only finitely 
many of them!) and denote the corresponding simplex by A~ = (Uo,.. . ,Um). Now, the partial 
mapping A TM ~-~ A~ ~ L is a p-realization and satisfies Michael's A-condition. 

First of all, observe that  the number k can be assumed not exceeding p. Indeed, if k > p then we 
should take as o" an arbitrary locally finite open system in )~ refining w and having multiplicity at most 
(p + 2). In this case 91(~r) (k+U = 9l((7) (k) and the partial realization q = m o r(o' ,w) [ (~(a)(k+l))  is 
also a partial p-realization and satisfies Michael's A-condition. The possibility of constructing a desired 
covering o" is provided by the following lemma. 

L e m m a  6.1. I[ a closed subset Zo of a paracompact space Z has dimension at most t then, for 
every locally t~nite open covering ~ = {F~} in Zo of multiplicity at most (t + 1), there exists a locally 
t~nite open system {E~} in Z such that E~ A Zo = F~ for all index elements ~ and the multiplicity of 
the system is at most ( t + 1). 

PROOF. The claim can be proven by a slight modification of the arguments in [4, p. 70]. 
We now demonstrate: that ,  in the case of k <_ p, with each point x E (X \ Xp-1) we can associate 

^(k+~) 
a neighborhood V(x) in )~ and a mapping m~ : ,--.x ~ L so that  

(b) mx is an a-realization; 
(c) Im(m,)  C N(~(x ' ) ,x )  for all points x' E V(x); 

(d) k)) = , ,  I 
Indeed, m(A(x k)) is in N(r  A), and A = (92)(p A A~) implies existence of a (p A A~)-homotopy 

F : A (k) x I ~ N ( ~ ( x ) , p A A ~ )  for which F0 = m and FI (A (k)) C r  It is easy to see that 

the mapping A (k+l) ~ A ft`) ~ @(z) is a (p o p o p)-realization and, in consequence, a p'-realization. 
' A (k+ l )  " (A (/~)) F,. In view of Pl = equi'Lf~p(PT), there exists a pT-realization rn~:: x ~ (I)(z), rn~: I = 

' and the (pA A])-homotopy F agree on the common domain of definition A(~ t~) x {1}; The mapping m x 
therefore, the mapping F U  ( m ' ) :  (A (k) x [0, 1])U (A(~ k+l) x {1}) --* L is well defined. 

L e m m a  6.2. There exists a mapping v :  A (k+l) ~ (A (k) x [0, 1]) tO (A (k+') x {1}) (the so-called 
"stamping" mapping) possessing the following properties: 

(i) = for E 

(ii) v(6) C 6 x [0, 11 /'or every simplex 6 in A (k+l). 

PROOF. The claim is proven by induction on the skeletons of the polyhedra A(~ +1). 

Denote the composition {F O rn~} o v  : A(z k+U --~ (A(z k) x [0,1]) U (A(x t~+x) x {1}) Fu~" L by 

A(k+l) m ~ :  x. ~ L. Since (A] A p) ~ x, we have I m F  C N(#(x) ,x) .  Therefore, Im(mx) C N((I)(x),x). 
By Lemma 4.4 and compactness of Im(m,) ,  we can choose a neighborhood V(x) of x in X such that  

m , ( A  (k+x)) C N((I)(x'), x) for every point x' E V(x). 

Since F0 = m. we have m,  I ('--k(k)) = m. It is also clear that  m ,  is an a-realization since 
' ,  11~3 (A] A p) o p' o (.\] A p) ~- (Pl) > a. Without loss of generality we may assume that {V(z) [ z E 

(X \ Xp_t)} ~- ~.,. We obtain the system {V(x) i x  E X} of open sets in .~ by redefining V(x) = .~ 
for x E X~-~. 

Considering the intersection {V(x)lx E X} A w of the systems, we choose a locally finite refine- 
ment that consists of open subsets 0 = I I,~. U0 ~ X (X is closed in .~!), of .~. Without loss of 
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generality we may a,ssunae that the system {cl H"o } also refines the same intersection. This guarantees 
the membership of the point x in the set 

: v<x) \ (u{d %Ix r wo}) 

which is open in .~. Observe without proof the following obvious property: 
(e) i f y E C x  a n d y E c l W e  t h e n x E c l W 0 .  

Since x E Cx, the set C = U{C~ [ x e X \ Xp-1 } is open in )~ and includes X \ Xp-1,  whereas 
the set E = X \ C is closed in )(  and is included in Xp-I .  Hence, dim E < p. 

Consider the filtration Et = Xt N E,  t < (p - 1), of the p-dimensional paracompact space E. 
In view of the inequalities dim&(Et_l )  < d imx t (X t_ l )  < t, this filtration is a dim-filtration. Since 
Ep \ Ep-1 = (Xp \ Xp-1) N E = ~,  it is obvious that  d(E) < d(X).  By virtue of the inclusions 
Et \ Et-x  C Xp \ Xp-1 C {x [ ~(x) E ~ t} ,  the restriction of the multi-valued mapping r to E gives 
us a mapping consistent with the above dim-filtration of E and the families {~t} .  

If we consider the locally finite system 01 = {W [ W N E # ~} >- 0 of open sets in )~ and 

the partial  realization 9I(01) ~ 91(01) (k) m0~(~ '~') L, where r(O,w) = ~r(O,w) o 7r(O,O), 0 = {cl(W0)}, 
then, for obvious reasons, m o ~'(8,w) is a p-realization and satisfies Michael's A-condition. By the 
induction hypothesis (d(E) < d(X)!), there exist a locally finite system a2, Ua2 D E,  of open sets in 

which refines 81 and a partial a-realizatioh 91(a2) ~ 91(a2) (to+t) ~ L satisfying Michael's x-condition 
and agreeing with m o ~r(o.2, 81) on 91(o.2)(k). On applying Lemma 6.1 to o.2, we may assume without 
loss of generality that  the multiplicity of o.2 is at most (p + 1) (d imE _ p). 

To obtain a sought system o., we must add the system o.1 = {Cz rl Wo [ x E X \ Xp_ l}  : o. = 
{ Ha } = o1 u o-2 to a2. 

We turn to constructing the partial a-realization q. Consider the mapping q2 : 920 .---+ L, 
q [ 91(o.)(k) = m o 7r(a,w), q2 I 91(o.2) (tc+D = qx on the subpolytope 910 -" 91(o.)(k) U 91(a2)(k+D C 
91(o.)(k+1) (we assume r(o.,O) equal to r(0,w) o r (0 ,0)  o r(o.,0)). Since q2 and m o 7r(o.,w) sat- 
isfy Michael's x-condition and are a-realizations, so is q2. We now construct an extension of q2 to 
91(a)(k+x), preserving these properties. 

Let A = (Ha0 , . . . ,  Hak+~) be an arbitrary simplex not lying in 910. Among its vertices, there is 
at least one (say, Hao) not belonging to 91(o.2). We represent Hao as Cz N We, x e X \ Xp-1. 

Denote the images of the vertices (Ha,) under the simplicial mapping ~r(o.,w) by (U~,) e 91(w) 
and demonstrate that  

(f) x E U% i for all i = 0 , 1 , . . . , k  + 1. 

Since o. >- {Wo} >- 0 >- w, where 0 = {cl Wo}, and r(o.,w) = r(O,w) o r (0 ,0)  o ~-(o., 0); therefore, 
we can insert the chain Hai C W0i C cl Woi C U,, i between Ha~ and Uw i. On the other hand, 

~ Hao 0 H~, C C~ N Wo, C V(x) N Wo,, and by (e) x e cl Wo~ while cl Wo, C U,,~. 

It follows from ( f ) t h a t  r(o. ,w)(A) e A (k+l). Since x e X \ Xp-1 and k < p, the mapping 
A(k+l) mx : ~ ---* L is thus defined which satisfies (b)-(d). 

Extending the mapping q2 to A by means of the formula m~or(o., ,~) [" A, we construct the mapping 
q : 91(o.)(k+1) ..~ L. Let us check that 

(g) q is an ~-realization, 
(h) q satisfies Michael's x-condition. 
It is obvious that  every point z E N(Ha~) also lies in Cx N We C V(x) .  By (c) we thus have 

rnx('-~ +1)) C N(r 
Since mx is a partial a-realization and r(o.:a.,) is a simplicial mapping, q [" A is an ~-realization. 
We have constructed an a-realization q : 91(o.)(k+1) ._. L that satisfies Michael's x-condition and 

meets the equality q [ 91(o.)(k) = q [ 91(o.)(k) = m o rc(o.,w), which was required for the proof of 
Proposition ~ .  
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