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Abstract

In this paper we answer the question of T. Banakh and M. Zarichnyi constructing a copy of the Fréchet–Urysohn fan Sω in a
topological group G admitting a functorial embedding [0, 1] ⊂ G. The latter means that each autohomeomorphism of [0, 1] extends
to a continuous homomorphism of G. This implies that many natural free topological group constructions (e.g. the constructions
of the Markov free topological group, free abelian topological group, free totally bounded group, free compact group) applied to a
Tychonov space X containing a topological copy of the space Q of rationals give topological groups containing Sω.
c© 2008 Elsevier B.V. All rights reserved.

MSC: 18B30; 22A05; 54C20; 54E35; 54F15

1. Introduction

Shakhmatov noticed in [16] that the classical Lefschetz–Nöbeling–Pontryagin Theorem on embeddings of
n-dimensional compacta into R2n+1 has no categorical counterpart: one cannot embed every finite-dimensional
compact space X into a finite-dimensional topological group F X so that each continuous map f : X → Y extends
to a continuous group homomorphism F f : F X → FY . The proof of this fact exploited Kulesza’s example of
a pathological one-dimensional (non-metrizable) compact space that cannot be embedded into a finite-dimensional
topological group [11]. However, it was discovered in [4] that the problem lies already at the level of the unit interval
[0, 1], since it admits no functorial embedding into any metrizable or finite-dimensional group. So, each topological
group containing a functorially embedded interval is non-metrizable and thus has uncountable character.

In light of this let us remark that the Markov free topological group FM I over the interval I = [0, 1] has character
χ(FM I ) = d (see [14,15]), where d is the well-known uncountable small cardinal equal to the cofinality of the poset
(ωω,≤). This cardinal is equal to the cardinality of continuum c under Martin’s Axiom, but can also be strictly smaller
than c in some models of ZFC (see [6,18]).
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In this paper we show that the inequality χ(F I ) ≥ d holds for many other free topological group constructions.
First we give precise definitions.

Let T be a subcategory of the category T op of topological spaces and their continuous maps. By a functor of
a free topological group on T we understand a pair (F, i) consisting of a covariant functor F : T → G from
T into the category G of topological groups and their continuous homomorphisms, and a natural transformation
i = {iX } : Id → F of the identity functor Id : T → T into the functor F whose components iX : X → F X are
topological embeddings for all spaces X ∈ T . The naturality of i means that for any morphism f : X → Y in T we
have the following commutative diagram:

X
iX

−→ F X
f ↓ ↓ F f

Y −→ FY
iY

Therefore a functor of a free topological group (F, i) to any topological space X ∈ Ob(T ) assigns a topological group
F X containing a topological copy iX (X) ⊂ F X of X so that each morphism f : X → Y to another object of T
extends in a canonical way to a group homomorphism F f : F X → FY . A functor (F, i) is said to be minimal, if for
every space X ∈ Ob(T ) the group F X is algebraically generated by iX (X). The functor of a free compact topological
group is a natural example of a non-minimal functor of a free topological group, see [7,8]. In the case when T has only
one object X and Mor(X, X) coincides with the set of all autohomeomorphisms of X , the embedding iX : X → F X
is simply called [4] a functorial embedding of X into the group G = F X . It was proven in [4] that if there exists
a functorial embedding of the interval I = [0, 1] into a topological group G, then G is non-metrizable and infinite-
dimensional. In this paper we shall make this result more precise by showing that such a group G contains a topological
copy of the quotient space I Sω = [0, 1] × ω/{0} × ω, called the sequential hedgehog by analogy with the sequential
(or alternatively Fréchet–Urysohn) fan Sω = S0 × ω/{0} × ω, where S0 = {0} ∪ {1/n : n > 0} is the convergent
sequence. This answers a question stated in [4], and implies that χ(G) ≥ d.

Theorem 1. If there exists a functorial embedding of the closed interval [0, 1] into a topological group G, then G
contains a copy of the sequential hedgehog I Sω.

In particular, topological groups fulfilling the requirements of Theorem 1 do not have the property α4 introduced
in [1]. A subcategory T of the category T op of topological spaces is said to be full if any continuous map between
objects of T is a morphism in T .

Theorem 2. Let (F, i) be a functor of a free topological group on a full subcategory T of T op, containing the interval
I = [0, 1] as an object. For every space X ∈ Ob(T ) containing a copy of Q (resp. I ), the topological group F X
contains a copy of the Fréchet–Urysohn fan Sω (resp. sequential hedgehog I Sω) and hence has character χ(F X) ≥ d.

It is interesting to remark that Theorem 2 is not true for the category T = C(0) of zero-dimensional compacta
and their continuous maps. For example, the functor F which assigns to each zero-dimensional compact space X
the compact group ZMor(X,Z2)

2 containing a diagonally embedded copy of X , is a functor of a free topological group

(see [16]). For any compact metrizable space X the group ZMor(X,Z2)
2 is metrizable and hence contains no copy of the

Fréchet–Urysohn fan. This shows that the inclusion I ∈ Ob(T ) in Theorem 2 is essential.

Problem 3. Let (F, i) be a functor of a free topological group on a full subcategory I of T op. Assume that I ∈ Ob(T )
and X is an object of T . Does F X contain a copy of Sω if X contains a non-trivial convergent sequence? (This is true
for the functor of the Markov free topological group).

We recall that a topological space X is said to be scattered, if every non-empty subspace Y of X has an isolated point.
Combining Theorem 2 with the main result of [3], we shall derive the following

Corollary 1. Let (F, i) be a minimal functor of a free topological group on a full category T of topological spaces
such that I ∈ Ob(T ). Suppose that X ∈ Ob(T ) is a metrizable separable space that has a compactification
X̄ ∈ Ob(T ). If F X is a k-space, then X is locally compact or scattered.
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This corollary can be compared with a result of Arkhangel’skiı̆, Okunev and Pestov [2] who proved that for a
metrizable space X the Markov free topological group FM X is a k-space if and only if X is either discrete or locally
compact and separable.

2. Proof of Theorem 1

First we shall describe a copy of the sequential hedgehog I Sω in a topological group G admitting a functorial
embedding of [0, 1]. Here the crucial role belongs to special trees consisting of closed intervals and ordered by the
inverse inclusion relation, which will be called usual Cantor schemas throughout the paper.

We shall use the following notations: {0, 1}
<n

=
⋃

k<n{0, 1}
k , {0, 1}

≤n
= {0, 1}

<n+1, {0, 1}
<ω

=
⋃

n∈ω{0, 1}
n .

In what follows we identify the unique element of {0, 1}
0 with the empty sequence ∅. For finite sequences

s = (s0, . . . , sn) and t = (t0, . . . , tm) we denote by sˆt the concatenation of s and t , i.e., the finite sequence
(s0, . . . , sn, t0, . . . , tm). The sequence (0, . . . , 0) of n zeros will be denoted by 0n . In the same way we define the
sequence 1n . The length l(s) of a sequence s ∈ {0, 1}

<ω is, by definition, the number n ∈ ω such that s ∈ {0, 1}
n .

Definition 4. A family J = {Js : s ∈ {0, 1}
<ω

} of subsets of R is called a usual Cantor scheme, if it satisfies the
following conditions:

(i) Js is a closed subinterval of R for all s ∈ {0, 1}
<ω;

(ii) min Js = min Jsˆ0 < max Jsˆ0 < min Jsˆ1 < max Jsˆ1 = max Js for all s ∈ {0, 1}
<ω; and

(iii) the sequence (diam(J(s0,...,sn)))n∈ω converges to 0 for any (si )i∈ω ∈ {0, 1}
ω.

For a usual Cantor scheme J = {Js : s ∈ {0, 1}
<ω

} we make the following notations: Jn = {Js : s ∈ {0, 1}
n
},

J md
s = [max Jsˆ0,min Jsˆ1] (here md comes from the word “middle”). A usual Cantor scheme J is called symmetric,

if the middle points of Js and J md
s coincide for all s ∈ {0, 1}

<ω. In what follows all usual Cantor schemas are assumed
to be symmetric.

For example, there is a canonical usual Cantor scheme I = {Is : s ∈ {0, 1}
<ω

} appearing in the process of
construction of the standard Cantor set K ⊂ [0, 1] consisting of those numbers that have only 0’s and 2’s in their
ternary expansion. Recall, that in order to obtain K we exclude from [0, 1] open intervals step by step: ( 1

3 ,
2
3 ) at the

first step, ( 1
9 ,

2
9 ) and ( 7

9 ,
8
9 ) at the second step, and so on. Thus I(0) = [0, 1

3 ], I(1) = [
2
3 , 1], I(0,0) = [0, 1

9 ], . . . .

Let I ⊂ G be an embedding. For every X = {x1, . . . , xn} ⊂ I , x1 < · · · < xn , we set π−(X) =

x−1
1 x2 · · · x (−1)n

n , π+(X) = x1x−1
2 · · · x (−1)n+1

n , and π−(∅) = π+(∅) = e, where e is the neutral element of G.1

For a family A of intervals we shall denote by ∂A the set ∪I∈A ∂ I , where ∂ I is the set of end-points of I . We shall
also write diam([a, b]) for |a − b|.

Given a usual Cantor scheme J , we define for every s ∈ {0, 1}
<ω two maps lefts,J , rights,J : [0, 1] → Js such

that lefts,J (0) = min Js , rights,J (0) = max Js ,

lefts,J (1/3
n) = max Jsˆ0n+1 and rights,J (1/3

n) = min Jsˆ1n+1

for all n ∈ ω, and lefts,J , rights,J are linear on every interval [1/3n+1, 1/3n
]. It is clear that lefts,J , rights,J are

continuous maps with the property

lim
ξ→0

lefts,J (ξ) = min Js and lim
ξ→0

rights,J (ξ) = max Js . (1)

Whenever J is clear from the context, we shall simply write lefts and rights in place of lefts,J and rights,J . For every
n ∈ ω and ξ ∈ (0, 1] define the family Jn,ξ consisting of 2n+1 closed intervals as follows:

Jn,ξ =
{
lefts([0, ξ ]), rights([0, ξ ]) : s ∈ {0, 1}

n}
and define the map zn,J : [0, 1] → G letting zn,J (0) = e and zn,J (ξ) = π−(∂Jn,ξ ) for all ξ ∈ (0, 1]. The continuity
of maps lefts, rights implies the continuity of zn,J : [0, 1] → G for every n ∈ ω. Moreover, it easily follows from

1 In the rest of the paper the neutral element of a topological group G will be denoted by eG or simply by e when G is clear from the context.
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Eq. (1) that limξ→0 zn,J (ξ) = e, where e is the neutral element of G. Again, we shall write zn(ξ) instead of zn,J (ξ)
in case when J is clear from the context.

Theorem 1 is a direct consequence of the following technical statement, which gives a description of a copy of the
sequential hedgehog in a topological group admitting a functorial embedding of [0, 1].

Proposition 5. If J is a usual Cantor scheme and J∅ ⊂ G is a functorial embedding of the closed interval J∅ into
a topological group G, then for every n ∈ ω the map zn : [0, 1] → G is an embedding, and there exists a sequence
(dn)n∈ω ∈ (0, 1]

ω such that
⋃

n∈ω zn([0, dn]) ⊂ G is a topological copy of the sequential hedgehog I Sω.

The proof of Proposition 5 will be split into a sequence of lemmas. The following is the most technically difficult
among them.

Lemma 6. If J is a usual Cantor scheme and J∅ ⊂ G is a functorial embedding, then e 6∈
⋃

n∈ω zn,J ([dn, 1]) for
every sequence (dn)n∈ω ∈ (0, 1]

ω.

The proof of Lemma 6 will be also split into a sequence of simpler lemmas. The first of them is straightforward,
and its proof is left to the reader. (We recall that I = {Is : s ∈ {0, 1}

<ω
} is the canonical Cantor scheme.)

Lemma 7. Let J be a usual Cantor scheme. Then there exists an increasing homeomorphism h : J∅ → [0, 1] such
that h(Js) = Is for all s ∈ {0, 1}

<ω.

The following lemma easily follows from the compactness of [0, 1].

Lemma 8. Let [0, 1] ⊂ G be an embedding and U be an open neighborhood of the neutral element e ∈ G. Then
there exists ε(U ) > 0 and an open neighborhood V of e such that for every x1, x2 ∈ [0, 1] with |x1 − x2| < ε(U ) the
following inclusion holds:

{x−1
1 V x2, x1V x−1

2 , x−1
2 V x1, x2V x−1

1 } ⊂ U.

For every n > 0 and f : X → X we shall denote by f n the composition f ◦ · · · ◦ f︸ ︷︷ ︸
n

. It will be also convenient for

us to denote by f 0 the identity map on X . Given any strictly increasing function ϕ ∈ ωω such that ϕ(0) > 0 and a
usual Cantor scheme J , define a usual Cantor scheme J̃ = { J̃s : s ∈ {0, 1}

<ω
} letting J̃∅ = J∅ and

J̃(s0,...,sn) = J
(sϕ

2(0)
0 ˆsϕ

4(0)−ϕ2(0)
1 ˆ···ˆsϕ

2n+2(0)−ϕ2n (0)
n )

.

Thus J̃m ⊂ Jϕ2m (0) for all m ∈ ω.

Claim 9. Let p ∈ ω and ϕ2p(0) ≤ n < ϕ2p+1(0). Then ∂Jn,ξ ⊂ {0, 1} ∪
⋃

s∈{0,1}≤p J̃ md
s for all ξ > 3n−ϕ(n).

Proof. Let us fix arbitrary a ∈ ∂Jn,ξ and ξ > 3n−ϕ(n). Assume, contrary to our claim, that a lies in the interior of J̃s
for some s ∈ {0, 1}

p+1. Concerning a, two cases are possible:

Case 1. a ∈ {leftt (0), rightt (0)} for some t ∈ {0, 1}
n . Then a ∈ ∂ Jt . Since n < ϕ2p+2(0) and J̃s ∈ Jϕ2p+2(0), the

inclusion a ∈ Int( J̃s) is impossible.

Case 2. There exists t ∈ {0, 1}
n such that a ∈ {leftt (ξ), rightt (ξ)}. Without loss of generality, a = leftt (ξ). Set

b = min Jt = leftt (0). As it was already proven in Case 1, b ∈ {0, 1} ∪
⋃

s∈{0,1}≤p J̃ md
s . Again, two subcases are

possible:
(i) b is an end-point of J̃ md

s0
for some s0 ∈ {0, 1}

≤p, or b = 0. Then there exist s1 ∈ {0, 1}
p and i ∈ {0, 1} such that

b ∈ ∂ J̃s1ˆi . Since b = min Jt , we conclude that i = 0 and b = min J̃s1ˆ0. Let r ∈ {0, 1}
ϕ2p(0) be such that J̃s1 = Jr .

The inequality n ≥ ϕ2p(0) combined with Jt ∈ Jn , Jr ∈ Jϕ2p(0), and min Jr = min Jt = b, implies that

a = leftt (ξ) ≤ leftr (ξ) ≤ leftr (1) = max Jrˆ0 < min Jrˆ1 ≤ min J̃s1ˆ1.

In addition,

a = leftt (ξ) > leftt (3
n−ϕ(n)) = max Jtˆ0ϕ(n)−n+1 ≥ max J

tˆ0ϕ2p+2(0)−n = max J̃s1ˆ0.
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(The last equality immediately follows from b = min J
tˆ0ϕ2p+2(0)−n = min J̃s1ˆ0 and J

tˆ0ϕ2p+2(0)−n , J̃s1ˆ0 ∈ Jϕ2p+2(0).)

Therefore a ∈ (max J̃s1ˆ0,min J̃s1ˆ1) = Int( J̃ md
s1
), a contradiction.

(ii) b ∈ Int J̃ md
s2

for some s2 ∈ {0, 1}
≤p. Again, let r ∈ {0, 1}

ϕ2p(0) be such that min Jr = min Jt = b. Since

min Jr ∈ Int( J̃ md
s2
), we conclude that Jr ⊂ Int( J̃ md

s2
). The inequality n ≥ ϕ2p(0) combined with min Jr = min Jt = b

implies that Jt ⊂ Jr ⊂ Int( J̃ md
s2
). Therefore a ∈ Int( J̃ md

s2
) is an element of Jt , which contradicts the equation

a = leftt (ξ). �

In the sequel the notation Auth+([a, b]) stands for the family of all increasing autohomeomorphisms of the interval
[a, b].

Lemma 10. Let ϕ and J̃ be as above. Then for every indexed family {Us : s ∈ {0, 1}
<ω

} of open neighborhoods of
the identity e of G there exists a sequence (hn)n∈ω ⊂ Auth+([0, 1]) such that

(1) hn(J̃ ) is a symmetric usual Cantor scheme;
(2) hn+1|

⋃
s∈{0,1}≤n J̃ md

s = hn|
⋃

s∈{0,1}≤n J̃ md
s for all n ∈ ω; and

(3) {π−[hn(∂Jm,ξ ∩ J̃ md
s )], π+[hn(∂Jm,ξ ∩ J̃ md

s )]} ⊂ Us for all s ∈ {0, 1}
≤n , m ≥ ϕ2n(0), and ξ > 0.

Proof. The following claim is the main building block of our proof. In order to shorten its proof, some explanations
similar to those made in the proof of Claim 9 are omitted.

Claim 11. Let J , G, e be as in Lemma 10. Let also s ∈ {0, 1}
n0 , m > 0, c = max Jsˆ0m , d = min Jsˆ1m , and let U be

an open neighborhood of e in G. Then there exists h ∈ Auth+(Js) such that

(i) h|Jsˆ0m and h|Jsˆ1m are linear;
(ii) diam(h(Jsˆ0m )) = diam(h(Jsˆ1m )); and

(iii) {π−(h(∂Jn,ξ ∩ [c, d])), π+(h(∂Jn,ξ ∩ [c, d]))} ⊂ U for all n ≥ n0 and ξ ∈ (0, 1].

Proof. Let us find some a, b ∈ Js such that a < b, the middle points of [a, b] and Js coincide, and |a − b| < ε(U ).
The latter means that there exists an open neighborhood V of e such that u−1V v ∪ uV v−1

⊂ U for all u, v ∈ [a, b].
The continuity of the group operation on G gives us a sequence (Vn)n∈ω of open neighborhoods of e such that
V 2n

n ⊂ V . Let h ∈ Auth+(Js) be such that the following conditions are satisfied: h|[min Js, c] and h|[d,max Js] are
linear bijections onto [min Js, a] and [b,max Js] respectively, and diam(h(Jt )) < ε(Vl(t)) provided Jt ⊂ (c, d). The
existence of h follows from Lemma 7. Given arbitrary n ≥ n0 and ξ ∈ [0, 1], write the family {J ∈ Jn,ξ : J ⊂ [c, d]}

in the form {J1, . . . , Jq} such that Ji is situated to the left of J j provided i < j . Let us note that each J ∈ Jn,ξ
is contained in some element of Jn+1, and hence q ≤ 2n+1. It can be easily derived from the definitions of a usual
Cantor scheme and maps left−, right− that {c, d} ⊂ ∂Jn,ξ for all n, ξ such that ξ = 3−(n0+m−n−1) or n ≥ n0 + m,
and {c, d} ∩ ∂Jn,p = ∅ otherwise. In the first case we have

π−[h(∂Jn,ξ ∩ [c, d])] = a−1π+(h(∂ J1))π+(h(∂ J2)) · · ·π+(h(∂ Jq))b ⊂ a−1V q
n+1b ⊂ a−1V b ⊂ U.

In the second case n < n0 +m and ξ 6= 3−(n0+m−n−1). If ξ < 3−(n0+m−n−1), then (c, d) contains all elements of Jn,ξ
whose intersection with [c, d] is non-empty, and hence

π−[h(∂Jn,ξ ∩ [c, d])] = π−(h(∂ J1))π−(h(∂ J2)) · · ·π−(h(∂ Jq)) ⊂ V q
n+1 ⊂ U.

It suffices to consider the case ξ > 3−(n0+m−n−1). Let u = lefts(ξ) and v = rights(ξ). Then c < u < v < d and
Ji ⊂ (u, v) for all i ≤ q. Therefore

π−[h(∂Jn,ξ ∩ [c, d])] = u−1π+(h(∂ J1))π+(h(∂ J2)) · · ·π+(h(∂ Jq))v ⊂ u−1V q
n+1v ⊂ u−1V v ⊂ U.

Verification that π+(h(∂Jn,ξ ∩ [c, d])) ⊂ U is similar, and thus condition (iii) is satisfied. �

Applying Claim 11 for the usual Cantor scheme J , s = ∅, m = ϕ2(0), and U = U∅, we get h0 ∈ Auth+( J̃∅)

satisfying the conditions (i)–(iii) of Claim 11. Conditions (i) and (ii) obviously imply (1), condition (iii) implies (3),
while (2) is trivial.

Assuming that we have already constructed hk satisfying (1)–(3) for all k < n, set hn|
⋃

s∈{0,1}≤n−1 J̃ md
s =

hn−1|
⋃

s∈{0,1}≤n−1 J̃ md
s . Thus condition (2) is satisfied. In addition, (3) holds for all s ∈ {0, 1}

≤n−1. It suffices to define
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hn on [0, 1]\
⋃

s∈{0,1}≤n−1 J̃ md
s =

⋃
s∈{0,1}n ( J̃s \∂ J̃s). Let us note, that for every particular s ∈ {0, 1}

n the construction

of hn| J̃s is similar to that of h0. Given any s = (s0, . . . , sn−1) ∈ {0, 1}
n , set t = sϕ

2(0)
0 ˆsϕ

4(0)−ϕ2(0)
1 ˆ · · · ˆsϕ

2n(0)−ϕ2n−2(0)
n−1

and m = ϕ2n+2(0) − ϕ2n(0). Thus Jt = J̃s . Applying Claim 11 for J , t ∈ {0, 1}
ϕ2n(0), m, and Us , we get

hs ∈ Auth+(Jt ) satisfying conditions (i)–(iii) of Claim 11. Set hn| J̃s = hs ◦ hn−1| J̃s . Again, (i) and (ii) imply
(1), and (iii) implies (3). �

The following simple statement is due to Tkachenko (see [17, Lemma 1.3]).

Lemma 12. Let G be a topological group and U be the family of all open neighborhood of the neutral element of G.
Then for every U ∈ U there exists a decreasing sequence (Un)n∈ω ⊂ U such that Uσ(0)Uσ(1) · · · Uσ(n) ⊂ U for every
bijection σ : {0, . . . , n} → {0, . . . , n}.

The proof of the following simple technical lemma is left to the reader.

Lemma 13. For every function ϕ : ω → ω \ {0} there exist strictly increasing functions ψ, θ : ω → ω such that

(i) ϕ(k) < ψ(k) < θ(k) for all k ∈ ω; and
(ii) ψn+1(0) = θn(0) for all n ∈ ω.

Proof of Lemma 6. Throughout the proof we denote by ĥ : G → G some continuous homomorphism extending
h ∈ Auth+(J∅). Let U be the family of all open neighborhoods of the neutral element e of G. The continuity of the
group operation of G yields the existence of an element U ∈ U such that U ∩ 0−1U1 = ∅. By Lemma 12 there
exists a sequence (Un)n∈ω ⊂ U such that Ui1Ui2 · · · Ui2n+1−1

⊂ U for any n ∈ ω and (i1, . . . , i2n+1−1) such that

|{ j < 2n+1
: i j = k}| = 2k for all k ∈ {0, . . . , n}.

Let ϕ : ω → ω be a strictly increasing map with the property 3n−ϕ(n) < dn for every n ∈ ω. Let us fix a
sequence (hn)n∈ω ⊂ Auth+([0, 1]) satisfying conditions (1)–(3) of Lemma 10 with Us equal to Ul(s) defined above,
where s ∈ {0, 1}

<ω. Conditions (1), (2) imply that |hn(t) − hn+1(t)| ≤ 2−n−1, and hence the sequence (hn)n∈ω is
uniformly convergent to a monotone continuous surjective function h : [0, 1] → [0, 1]. For every s ∈ {0, 1}

≤n we
have h| J̃ md

s = hn| J̃ md
s by (2), consequently h| J̃ md

s is not constant for every s ∈ {0, 1}
<ω. Since

⋃
s∈{0,1}<ω

J̃ md
s is

dense in [0, 1], we conclude that h ∈ Auth+([0, 1]) is a monotone continuous surjection which fails to be constant on
arbitrary open subset of [0, 1]. We claim that

ĥ

⋃
p∈ω

⋃
ϕ2p(0)≤n<ϕ2p+1(0)

{zn,J (ξ) : ξ > 3n−ϕ(n)
}

 ⊂ 0−1 U 1.

Indeed, let us fix arbitrary p ∈ ω, ϕ2p(0) ≤ n < ϕ2p+1(0), and ξ ∈ (3n−ϕ(n), 1]. Then by Claim 9 we have
∂Jn,ξ ⊂ {0, 1} ∪

⋃
s∈{0,1}≤p J̃ md

s . Therefore

zn,J (ξ) = π−(∂Jn,ξ ) = π−

{0} ∪

⋃
s∈{0,1}≤p

(∂Jn,ξ ∩ J̃ md
s ) ∪ {1}

 .

Combining the equation above with (2) and (3) of Lemma 10, we conclude that

ĥ(zn,J (ξ)) = ĥ

π−

{0} ∪

⋃
s∈{0,1}≤p

(∂Jn,ξ ∩ J̃ md
s ) ∪ {1}


= π−

h

{0} ∪

⋃
s∈{0,1}≤p

(∂Jn,ξ ∩ J̃ md
s ) ∪ {1}


= π−({0} ∪ h p(∂Jn,ξ ∩ J̃ md

s1
) ∪ h p(∂Jn,ξ ∩ J̃ md

s2
) ∪ · · · ∪ h p(∂Jn,ξ ∩ J̃ md

s2p+1−1
) ∪ {1})

= 0−1πδ1(h p(∂Jn,ξ ∩ J̃ md
s1
))πδ2(h p(∂Jn,ξ ∩ J̃ md

s2
)) · · ·πδ2p+1−1

(h p(∂Jn,ξ ∩ J̃ md
s2p+1−1

))1

⊂ 0−1Ul(s1)Ul(s2) · · · Ul(s2p+1−1)
1 ⊂ 0−1U1,
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where {s1, . . . , s2p+1−1} is the enumeration of {0, 1}
≤p such that Ĩ md

si
is situated to the left of Ĩ md

s j
provided

1 ≤ i < j < 2p+1, and δi ∈ {+,−}. Then
⋃

p∈ω

⋃
ϕ2p(0)≤n<ϕ2p+1(0){zn,J (ξ) : 1 ≥ ξ > 3n−ϕ(n)

} ∩ ĥ−1(U ) = ∅ by
our choice of U .

Let ψ, θ : ω → ω be increasing number sequences such as in Lemma 13, i.e. ϕ(n) ≤ ψ(n) ≤ θ(n) for all
n ∈ ω and θn(0) = ψn+1(0) for all n ≥ 1. It follows from the above that there are continuous homomorphisms
hψ , hθ : G → G such that⋃

p∈ω

⋃
ψ2p(0)≤n<ψ2p+1(0)

{zn,J (ξ) : 1 ≥ ξ > 3n−ψ(n)
} ∩ h−1

ψ (U ) = ∅ and

⋃
p∈ω

⋃
θ2p(0)≤n<θ2p+1(0)

{zn,J (ξ) : 1 ≥ ξ > 3n−θ(n)
} ∩ h−1

θ (U ) = ∅,

which implies
⋃

n∈ω{zn,J (ξ) : 1 ≥ ξ > 3n−ϕ(n)
} ∩ (h−1

ψ (U ) ∩ h−1
θ (U )) = ∅, and hence the fact that

e 6∈
⋃

n∈ω{zn,J (ξ) : 1 ≥ ξ > dn} is proven. �

For a subset X of a topological group G we shall denote by 〈X〉 the smallest subgroup of G containing X .

Lemma 14. Let [0, 1] ⊂ G be a functorial embedding, {xi : 0 ≤ i ≤ n} ∪ {y j : 0 ≤ j ≤ m} ⊂ [0, 1], and
y j0 6∈ {y j : j 6= j0} ∪ {xi : 0 ≤ i ≤ n} for some j0. Then

xk0
0 · xk1

1 · · · · · xkn
n 6= yl0

0 · yl1
1 · · · · · ylm

m

for arbitrary integers ki , li such that l j0 ∈ {−1, 1}.
In particular, for every n ∈ ω and usual Cantor scheme J the map zn,J : [0, 1] → G is an embedding, and

zn,J ((0, 1]) ∩ zm,J ((0, 1]) = ∅ for all m 6= n.

Proof. The second statement easily follows from the first one. To prove the first statement, set x = xk0
0 · xk1

1 · · · · · xkn
n ,

y = yl0
0 · yl1

1 · · · · · ylm
m , and assume to the contrary that x = y. Let h ∈ Auth+([0, 1]) be such that h(u) = u for all

u ∈ {y j : j 6= j0} ∪ {xi : 0 ≤ i ≤ n} and h(y j0) 6= y j0 . Since the embedding [0, 1] ⊂ G is functorial, there exists a
continuous homomorphism ĥ : G → G extending h. It follows from the above that ĥ(x) = x = y and ĥ(y) 6= y, a
contradiction. �

Proof of Proposition 5. In light of Lemmas 6 and 14 we are left with the task of constructing a sequence (dn)n∈ω

of positive reals with the property zn((0, dn]) ∩
⋃

k>n zk([0, dk]) = ∅ for all n ∈ ω. Let A = {ξ ∈ (0, 1] :

z0(ξ) ∈
⋃

k>0 zk([0, 1])}. Since limξ→0 zk(ξ) = e for all k ∈ ω, we conclude that A consists of ξ ∈ [0, 1] such
that ξ ∈

⋃
k>0 zk([ck, 0]) for some sequence (ck)k>0 of positive reals.

We claim that 0 6∈ A. Indeed, assuming the converse we could find a sequence (ξn)n∈ω of elements of A converging
to 0. It follows from the above that for every n ∈ ω there exists a sequence (cn,k)k>0 of positive reals such that
z0(ξn) ∈

⋃
k>0 zk([cn,k, 1]). Set ck = min{cn,k : n ≤ k}. Then e ∈

⋃
k>0 zk([ck, 1]), which contradicts Lemma 6.

It follows from the above that A ⊂ (d0, 1] for some d0 > 0, and consequently z0((0, d0]) ∩
⋃

k>0 zk([0, 1]) = ∅.
In the same way for every n > 0 we can find dn such that zn((0, dn]) ∩

⋃
k>n zk([0, 1]) = ∅, which completes our

proof. �

Remark. Let J be a usual Cantor scheme such that J∅ ⊂ G is a functorial embedding. Let also Cn = zn,J ([0, dn])

for a sequence (dn)n∈ω fulfilling the requirements of Proposition 5. Then it can be easily derived from Lemma 14 that
the map∏

i≤n

[0, dn] 3 (ξ0, . . . , ξn) 7→

∏
i≤n

zn,J (ξi )

is a homeomorphism, and we denote its image by Dn . Thus we have an increasing sequence

D0 ⊂ D1 ⊂ · · · ⊂ Dn ⊂ · · · ,
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where each Dn is a homeomorphic copy of the (n + 1)-dimensional cube.2 Let ν be the topology of G and let τ be
the strongest topology on D =

⋃
n∈ω Dn such that τ |Dn = ν|Dn for all n ∈ ω. It is easy to see that (D, τ ) contains

a homeomorphic copy of R∞
= lim→ Rn , which is homeomorphic to the Markov free topological group over [0, 1]

(see [19]). But we do not know whether ν|D = τ |D. This leads us to the following question.

Question 15. Let [0, 1] ⊂ G be a functorial embedding. Does G contain a topological copy of the Markov free
topological group over [0, 1]? More precisely, does the construction described above yield a copy of R∞ in G?

Similarly to the proof of Proposition 16, the positive solution of the above question would imply that for every
functor F of a free topological group and every Tychonov space X containing a topological copy of [0, 1], the group
F X contains a topological copy of the Markov free topological group over [0, 1]. �

3. Proof of Theorem 2

We shall derive Theorem 2 from the following slightly more general statement, where we specify the properties of
the category T used in the proof of Theorem 2.

Proposition 16. Let (F, i) be a functor of a free topological group on a category T of topological spaces such that
I ∈ Ob(T ) and Mor(I, I ) ⊃ Auth+([0, 1]). The group F X over an object X of T contains:

(1) a copy of the Fréchet–Urysohn fan Sω provided there is a morphism f : X → I in T whose restriction f |Q
onto some subspace Q ⊂ X without isolated points is an embedding of Q into I , and Mor(I, I ) contains all
continuous maps φ : I → I ; and

(2) a copy of the sequential hedgehog I Sω provided there is a copy Y ⊂ X of I , a surjective map f ∈ Mor(X, Y ),
and a homeomorphism h ∈ Mor(Y, I ).

Proposition 16 is a consequence of Theorem 1 and the following

Lemma 17. Let X be a Tychonov space containing a topological copy Q of the space of rational numbers and J be
a usual Cantor scheme with J∅ = [0, 1]. Then there exists a homeomorphic copy Q′

⊂ Q of Q, and a continuous
map ψ : X → J∅ such that ψ |Q′ is a homeomorphism between the spaces Q′ and ∂J =

⋃
s∈{0,1}<ω

∂ Js .

Proof. Let I = [0, 1]. It is well-known that the diagonal map δ : X → I Mor(X,I ) is an embedding, where Mor(X, I )
stands for the set of all continuous maps from X to I . Assume that X contains a subset Q ⊂ X homeomorphic to the
space of rational numbers. Using the fact that δ(Q) ⊂ I Mor(X,I ) has a countable base, one can construct a countable
subset C ⊂ Mor(X, I ) such that the restriction pr |δ(Q) of the projection pr : I Mor(X,I )

→ I C is a homeomorphic
embedding. By the standard argument (see [10, Theorem 21.18]), we can find a topological copy Q1 ⊂ pr ◦δ(Q) of
Q whose closure Q1 in the (metrizable) cube I C is zero-dimensional, and hence is homeomorphic to the Cantor space
{0, 1}

ω. Let

e : Q1 →

⋃
(sn)n∈ω∈{0,1}ω

⋂
n∈ω

J(s0,...,sn)

be the homeomorphism with the property e(Q1) = ∂J (its existence follows from [5, Part 4, Th. 1] or the main
result of [9]), and ē : I C

→ I be an extension of e to a continuous map. Then the set Q′
= Q ∩ (pr ◦δ)−1(Q1) is

a topological copy of Q and the map f = ē ◦ pr ◦δ : X → I restricted to Q′ is a homeomorphism between Q′ and
∂J . �

Observe that for an arbitrary family {(xn
k )k∈ω : n ∈ ω} of sequences of elements of (0, 1], the subspace

{xn
k × {n} : n, k ∈ ω} ∪ {{0} × ω} of I Sω is homeomorphic to Sω provided limk→∞ xn

k = 0 for all n ∈ ω.

2 This gives an alternative (but much longer) proof of the fact [4] that each topological group is infinite-dimensional provided it admits a functorial
embedding of the closed interval.
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Proof of Proposition 16. Throughout the proof we shall identify X with iX (X). We present here only the proof of
the first part. The proof of the second one is analogous.

Let f ∈ Mor(X, I ) be such that f |Q is an embedding for some homeomorphic copy Q ⊂ X of Q. Lemma 17
implies that there exists a usual Cantor scheme J , a continuous map g : I → I , and a copy Q1 ⊂ f (Q) of Q such
that g(Q1) = ∂J and g|Q1 is an embedding. Then h = g ◦ f belongs to Mor(X, I ) and h( f −1(Q1)) = ∂J .
Set rn,k = zn,J (3−k). Applying Proposition 5, we can find a sequence (kn)n∈ω of natural numbers such that
R = {e} ∪ {rn,k : n ∈ ω, k ≥ kn} is a homeomorphic copy of Sω. By our construction of the maps zn,J , for
every n, k ∈ ω we can find elements

0 = un,k,0 < un,k,1 < · · · < un,k,2n+2−1 = 1

of ∂J such that rn,k = u−1
n,k,0un,k,1u−1

n,k,2 · · · un,k,2n+2−1. In addition, un,k,p does not depend on k provided 4 divides
p or p + 1, and

lim
k→∞

un,k,4q+1 = un,k,4q , lim
k→∞

un,k,4q+2 = un,k,4q+3 (2)

for all q < 2n
− 1. Set C = ( f |Q)−1(Q1), vn,k,p = (h|C)−1(un,k,p),

yn,k = v−1
n,k,0vn,k,1v

−1
n,k,2 · · · vn,k,2n+2−1,

and Y = {eF X } ∪ {yn,k : n ∈ ω, k ≥ kn}. Since h|C : C → ∂J is a homeomorphism, the sequence (yn,k)k∈ω

converges to eF X for all n ∈ ω by (2). In addition, the continuous homomorphism Fh : F X → F I maps yn,k to rn,k
by our choice of vn,k,p, and hence Fh(Y ) = R. By the definition, Sω is the union of a countable family of disjoint
convergent sequences whose limit points coincide endowed with the strongest topology in which these sequences are
still convergent. Thus the continuity of Fh|Y implies that Y is homeomorphic to R. �

Proof of Theorem 2. Follows immediately from Proposition 16, Lemma 17, and the fact that [0, 1] is an absolute
retract in the category of Tychonov spaces. �

Lemma 18. Under the assumptions of Corollary 1 the image iX (X) is closed in F X.

Proof. Throughout the proof we shall identify Z ∈ Ob(T ) with iZ (Z). Let j : X → X̄ be the inclusion. It
suffices to show that X = (F j)−1(X̄). Assuming the converse, by the minimality of F we could find a finite subset
{xi : i ≤ n} ⊂ X and integers mi , i ≤ n, such that x∗

:= (F j)(xm0
0 · · · · · xmn

n ) ∈ X̄ \ X . Therefore the elements x∗

and xm0
0 · · · · · xmn

n of F X̄ coincide. Let f : X̄ → [0, 1] be a continuous map such that f (x∗) 6= f (xi ) for all i ≤ n.
From the above it follows that

f (x∗) = F f (x∗) = F f (xm0
0 · · · xmn

n ) = f (x0)
m0 · · · · · f (xn)

mn ,

which contradicts Lemma 14. �

Proof of Corollary 1. Let us denote by L the subspace {(0, 0)} ∪ {( 1
n ,

1
mn ) : n,m > 0} of R2. According to [6,

Lemma 8.3], a first countable space contains a closed topological copy of L if and only if it fails to be locally compact.
Assume, contrary to our claim, that X is not scattered and fails to be locally compact. Then X contains a topological

copy of the space Q as well as a closed topological copy of L. Since F X is generated by its second-countable subspace
X , it has countable pseudocharacter. In addition, it is normal being Lindelöf and Tychonov. Applying Theorem 2, we
conclude that F X contains a topological copy of Sω. It is well-known [13] that a topological group G contains a
(closed) topological copy of Sω if and only if it contains a (closed) topological copy of the Arens’ space S2, see
[13] for its definition. It was shown by Lin [12, Corollary 2.6] that a regular space Z with countable pseudocharacter
contains a topological copy of Sω if and only if it contains a closed topological copy of Sω. It follows from the above
that F X contains a closed topological copy of Sω. In addition, F X contains a closed copy of L by Lemma 18, which
contradicts [3, Theorem 1] asserting that a normal k-space containing closed topological copies of L and Sω is not
homeomorphic to any topological group. �
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