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Abstract We prove that a locally compact ANR-space X is a Q-manifold if and only if it has the

Disjoint Disk Property (DDP), all points of X are homological Z∞-points and X has the countable-

dimensional approximation property (cd-AP), which means that each map f : K → X of a compact

polyhedron can be approximated by a map with the countable-dimensional image. As an application we

prove that a space X with DDP and cd-AP is a Q-manifold if some finite power of X is a Q-manifold.

If some finite power of a space X with cd-AP is a Q-manifold, then X2 and X × [0, 1] are Q-manifolds

as well. We construct a countable family X of spaces with DDP and cd-AP such that no space X ∈ X

is homeomorphic to the Hilbert cube Q whereas the product X × Y of any different spaces X, Y ∈ X

is homeomorphic to Q. We also show that no uncountable family X with such properties exists.

Keywords: Hilbert cube, Cantor cube, Tychonov cube, ANR, infinite-dimensional manifold, Dis-

joint Disk Property, cell-like map.
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1 Division and k-th root Theorems for Cantor and Tychonov cubes

It is obvious that the powers Xk, Mk of two homeomorphic topological spaces X, M are home-

omorphic as well. For a certain “nice” space M the converse implication is also true: a space X

is homeomorphic to M if for some finite number k the powers Xk and Mk are homeomorphic.

Results of this type will be referred to as k-th root theorems. A typical example of such a

theorem is the k-th root theorem for Cantor and Tychonov cubes.

Theorem 1 (k-th Root theorem for Cantor and Tychonov cubes). Let M be either a Cantor

cube {0, 1}τ with τ > 1 or a Tychonov cube [0, 1]κ with κ > ℵ1. A topological space X is

homeomorphic to M if and only if for some finite number k ∈ N the powers Xk and Mk are

homeomorphic.

By induction this theorem can be easily derived from the following

Theorem 2 (Division theorem for Cantor and Tychonov cubes). Let M be either a Cantor

cube {0, 1}τ with τ > ℵ0 or a Tychonov cube [0, 1]κ with κ > ℵ1. If the product X × Y of two

spaces X, Y is homeomorphic to M , then X or Y is homeomorphic to M .

This theorem can be easily derived from the famous topological characterizations of Cantor

and Tychonov cubes, due to Ščepin (see [1] and [2]).
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Theorem 3 (Ščepin). Let X be a compact Hausdorff space.

1) X is homeomorphic to a Cantor cube {0, 1}τ of weight τ > ℵ0 if and only if X is a

uniform-by-character zero-dimensional AE(0)-space of weight w(X) = τ ;

2) X is homeomorphic to a Tychonov cube [0, 1]τ of weight τ > ℵ1 if and only if X is a

uniform-by-character AE-space of weight w(X) = τ .

We recall that a topological space X is called an AE-space (resp. AE(0)-space) if any

continuous map f : B → X defined on a closed subset B of a (zero-dimensional) compact

Hausdorff space A can be extended to a continuous map f̄ : A→ X .

A topological space X is called the uniform-by-character if the character of X at each point

x ∈ X is equal to some fixed cardinal κ. We recall that the character of X at a point x ∈ X is

the smallest size |B| of a neighborhood base at x.

For τ = ℵ0 Ščepin’s characterization of the Cantor cubes turns into the classical Brouwer

characterization of the Cantor set: a space X is homeomorphic to the Cantor set {0, 1}ω if and

only if X is a zero-dimensional compact metrizable space without isolated points.

Now we are able to derive Theorem 2 from Ščepin’s characterization theorem. Assume that

M = {0, 1}τ is a Cantor cube with τ > ℵ0 and let X, Y be two spaces whose product X × Y is

homeomorphic to M .

Then X, Y are compact zero-dimensional AE(0)-spaces, being the retracts of the product

X × Y . Since all points of the product X × Y have character τ , either X or Y contains no

point of character < τ . We loose no generality assuming that X is such a space. Then X , being

a uniform-by-character compact zero-dimensional AE(0)-space of weight τ , is homeomorphic

to the Cantor cube {0, 1}τ = M , according to the Ščepin characterization of {0, 1}τ . This

completes the proof of the division theorem for the Cantor cubes.

By analogy, the division theorem for the Tychonov cubes can be derived from Ščepin’s char-

acterization of the Tychonov cubes.

2 Division and k-th root theorems for the Hilbert cube

From now on all topological spaces are separable and metrizable. Observe that Theorems 1

and 2 do not cover the case of the Hilbert cube Q = Iω, where I = [0, 1]. This is not incidental

because without any restrictions the k-th root and division theorems for the Hilbert cube are

not true. A suitable counterexample is due to Singh[3] who constructed a compact absolute

retract S such that S × S and S × [0, 1] are homeomorphic to Q, but S is not homeomorphic

to Q. Singh’s space S contains no topological copy of the 2-disk I2 and hence does not possess

the Disjoint Disks Property.

We recall that a space X has the Disjoint Disks Property (briefly, DDP) if any two maps

f, g : I2 → X from a 2-dimensional cube can be uniformly approximated by the maps with

disjoint images. This property was introduced by Cannon[4] and is crucial in the topological

characterization of finite-dimensional manifolds (see [5]).

In spite of Singh’s counterexample, some restricted forms of the k-th root and division the-

orems still hold for the Hilbert cube. The restrictions involve the Disjoint Disk Property and

the countable-dimensional approximation property, which is a special case of P-approximation

property.

We shall say that a topological space X has the P-approximation property (briefly, P-AP)
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where P is a family of subsets of a space X , if for each map f : K → X defined on a compact

polyhedron K and each open cover U of X there is a map f ′ : K → X such that f ′(K) ∈ P

and f ′ is U-near f in the sense that for each point x ∈ K the set {f(x), f ′(x)} lies in some set

U ∈ U .

If P is the family of finite-dimensional (resp. countable-dimensional, weakly infinite-

dimensional) subspaces of X , then we shall refer to the P-AP as fd-AP (resp. cd-AP, wid-

AP). We recall that a space X is countable-dimensional if X is the countable union of finite-

dimensional subspaces.

All these approximation properties follow from Borsuk’s property (∆) (see [6, sec. VII]). We

recall that a space X has the property (∆) if for any point x ∈ X and a neighborhood U ⊂ X

of x there is a neighborhood V ⊂ U of x such that any compact subset K ⊂ V is contractible

in a subset H ⊂ U having the dimension dim(H) 6 dim(K) + 1. It follows from (the proof of)

Theorem VII.2.1 of [6] that each metrizable space with the property (∆) has fd-AP. Therefore

these properties are related as follows:

(∆)⇒ (fd-AP)⇒ (cd-AP)⇒ (wid-AP).

It is clear that the Hilbert cube Q has the property (∆) and consequently all weaker approxi-

mation properties.

On the other hand, it is easy to construct a compact AR without wid-AP: just consider

the space I2 ∪ϕ Q obtained by gluing the 2-disk to the Hilbert cube Q along a surjective map

ϕ : J → Q of an arc J ⊂ I2 \ ∂I2. Replacing the Hilbert cube by the 4-dimensional cube

I4 we can construct a 4-dimensional absolute retract without property (∆). Replacing Q by

a countable-dimensional infinite-dimensional (resp. weakly infinite-dimensional uncountable-

dimensional) absolute retract we can construct a compact absolute retract having cd-AP but

not fd-AP (resp. wid-AP but not cd-AP).

It turns out that the k-th root theorem for the Hilbert cube holds for spaces possessing DDP

and cd-AP. The following four theorems are the main results of the paper and will be proved

in Sections 6 and 7.

Theorem 4 (k-th root theorem for the Hilbert cube). A topological space X with DDP and

cd-AP is homeomorphic to the Hilbert cube Q if some finite power Xk of X is homeomorphic

to Q.

This theorem will be applied to proving another

Theorem 5. Let X be a space having cd-AP. If some finite power Xk of X is homeomorphic

to Q, then both X2 and X × I are homeomorphic to Q.

The situation with the division theorem for the Hilbert cube is more delicate. On the one

hand, we have a negative result.

Theorem 6. There is a countable family X of spaces possessing DDP and fd-AP such that

1) the square X ×X of any space X ∈ X is not homeomorphic to Q;

2) the product X × Y of any two different spaces X, Y ∈ X is homeomorphic to Q.

On the other hand we have a positive result showing that the family X from the preceding

theorem cannot be uncountable.
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Theorem 7 (Collective division theorem for the Hilbert cube). Let X be a family of pairwise

non-homeomorphic topological spaces possessing DDP and cd-AP. The family X contains a

topological copy of the Hilbert cube Q provided the product X×Y of any different spaces X, Y ∈

X is homeomorphic to Q.

3 Homological characterizations of the Hilbert cube

The proofs of the collective division and k-th roots theorems for the Hilbert cube rely on

the homological characterizations of Q, due to Daverman and Walsh[7]. First we recall some

notations.

We use the singular homology H∗(X ; G) with coefficients in an abelian group G. By H̃∗(X ; G)

we shall denote the singular homology of X , reduced in dimension zero. If G = Z, then we omit

the symbol of the group and will write H∗(X) in place of H∗(X ; Z).

A closed subset A of a space X is called

1) a Z∞-set if every map f : Q→ X can be approximated by maps into X \A;

2) a homotopical Z∞-set if for every open set U ⊂ X the relative homotopy groups πk(U,

U \A) are trivial for all k;

3) a G-homological Z∞-set if for every open set U ⊂ X the relative homology groups H̃k(U,

U \A; G) are trivial for all k;

4) a homological Z∞-set if it is a Z-homological Z∞-set in X .

In [7] the homological Z∞-sets are referred to as the closed sets of infinite codimension.

A point x ∈ X is called a (homotopical, homological) Z∞-point if the singleton {x} is a

(homotopical, homological) Z∞-set in X . The excision axiom for singular homology[8, sec.2.20]

implies that a point x ∈ X is a G-homological Z∞-point if and only if Hk(X, X \ {x}; G) = 0

for all k. It is well-known that each point of the Hilbert cube is a Z∞-point and consequently,

a G-homological Z∞-point for any non-trivial abelian group G.

Theorem 2.3 of [9] implies that a closed subset A of an ANR-space is a Z∞-set if and only

if it is a homotopical Z∞-set. Also each homotopical Z∞-set is a homological Z∞-set. Many

examples of homological Z∞-sets in Q, which are not homotopical Z∞-sets, can be constructed

using the following fact proved in Corollary 2.4 of [7]:

Proposition 1 (Daverman-Walsh). Assume that X is a locally compact ANR whose any point

is a homological Z∞-point. Then each closed finite-dimensional subset of X is a homological

Z∞-set.

The proof of this proposition follows from a characterization of G-homological Z∞-sets proved

in Proposition 2.3 of [7].

Proposition 2 (Daverman-Walsh). A closed subset A of a locally compact ANR-space X is a

G-homological Z∞-set if each point a ∈ A is a G-homological Z∞-point in X and has arbitrarily

small neighborhoods Ua ⊂ A whose relative boundaries in A are G-homological Z∞-sets in X .

In fact, we shall derive a bit more from this proposition. Namely, each closed countable-

dimensional subset of Q is a homological Z∞-set. According to [10, 7.1.9] each completely-

metrizable countable-dimensional space X has a transfinite inductive dimension trind (X) 6=∞

defined as follows. We set trind (X) = −1 if and only if X = ∅. Given an ordinal α we set

trind (X) 6 α if X has a base of the topology consisting of open sets U ⊂ X whose boundaries
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∂U have the transfinite dimension trind (∂U) < α. The transfinite inductive dimension of

a space X equals the smallest ordinal α with trind (X) 6 α if such ordinal α exists and

trind (X) =∞ otherwise.

Proposition 3. Assume that X is a locally compact ANR whose points all are G-homological

Z∞-points for some non-trivial abelian group G. Then each closed countable-dimensional subset

A ⊂ X is a G-homological Z∞-set in X.

Proof. According to [10, 7.1.9], the space A, being completely-metrizable and countable-

dimensional, has the transfinite inductive dimension trind (A) 6= ∞. So, we shall prove the

proposition by transfinite induction on α = trind (A). For α = −1 the proposition is triv-

ial. Assume that for some ordinal α the assertion is true for all closed subsets A ⊂ X with

trind (A) < α. Assuming that A is a closed subset of X with trind (A) = α, we get that A

has a base of the topology consisting of open sets U ⊂ A whose relative boundaries ∂AU in

A have the transfinite dimension trind (∂AU) < α. By inductive hypothesis each set ∂AU is a

G-homological Z∞-set in X . Applying Proposition 2 we conclude that A is a G-homological

Z∞-set in X .

We shall say that a space X has Z-AP (resp. HZ-AP) if it has P-AP for the class P of

(homological) Z∞-sets in X . The latter means that each map f : K → X from a compact

polyhedron can be approximated by a map whose image is a (homological) Z∞-set in X .

By a Q-manifold we understand a metrizable separable space M such that each point x ∈M

has an open neighborhood U ⊂ M homeomorphic to an open subset of Q. It is clear that

each Q-manifold is a locally compact ANR. By Theorem 22.1 of [11], each compact contractible

Q-manifold is homeomorphic to Q.

The following Z-AP characterization of Q-manifolds is due to Toruńczyk [12].

Theorem 8 (Toruńczyk). A space X is a Q-manifold if and only if X is a locally compact

ANR possessing Z-AP.

A homological version of this characterization was proved by Daverman and Walsh in [7].

Theorem 9 (Daverman-Walsh). A space X is a Q-manifold if and only if X is a locally

compact ANR possessing DDP and HZ-AP.

Combining this characterization theorem with Proposition 3 we get a local characterization

of Q-manifolds whose fd-AP version can be found in Theorem 6.1 of [7].

Theorem 10. A locally compact ANR-space X is a Q-manifold if and only if

1) X has DDP; 2) X has cd-AP; and 3) each point of X is a homological Z∞-point.

4 On Cell-like maps between Q-manifolds

In this section we shall apply Theorem 10 to obtaining some new characterizations of Q-

manifolds, involving the cell-like maps. We recall that a map π : X → Y is called

1) proper if the preimage π−1(K) of every compact set is compact;

2) cell-like if π is proper and the preimage π−1(y) of every point y ∈ Y has trivial shape;

3) countable-dimensional if the preimage π−1(y) of every point y∈Y is countable-dimensional.

Theorem 11. A locally compact ANR-space X is a Q-manifold if and only if X has DDP,

cd-AP, and X is the image of a Q-manifold M under a countable-dimensional cell-like map
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π : M → X .

This theorem can be easily derived from Theorem 10 and

Proposition 4. Let π : M → X be a cell-like map between the locally compact ANRs and

Nπ = {x ∈ X : |π−1(x)| > 1} be the nondegeneracy set of π. Then

1) a point x ∈ X is a homological Z∞-point in X if its preimage π−1(x) is a homological

Z∞-set in M ;

2) a point x ∈ X is a homological Z∞-point in X if its preimage π−1(x) is countable-

dimensional and each point z ∈ π−1(x) is a homological Z∞-point in M ;

3) If the space Nπ is finite-dimensional (resp. countable-dimensional) and the space M has

fd-AP (resp. cd-AP), then X has fd-AP (resp. cd-AP).

Proof. 1) The first item is well-known and easily follows from the Approximate Lifting

Theorem 16.7 in [6] for cell-like maps.

2) Assume that for some point x ∈ X the preimage π−1(x) is countable-dimensional and each

point z ∈ π−1(x) is a homological Z∞-point. By Proposition 3, the set π−1(x) is a homological

Z∞-set in M and by the preceding item the point x is a homological Z∞-point in X .

3) Assume that Nπ is finite-dimensional and M has fd-AP. To show that X has the fd-AP, fix

a map f : K → X of a compact polyhedron and an open cover U of X . Let V be an open cover

of X whose star St(V) refines U . By Approximate Lifting Theorem 16.7 in [5] for cell-like maps,

there exists a map g : K →M such that π◦g is V-near f . Since M has fd-AP, the map g can be

approximated by a map g′ : K →M such that g′(K) is finite-dimensional and g′ is π−1(V)-near

g. Then the map f ′ = π◦g′ is St(V)-near f . It remains to show that f ′(K) is finite-dimensional.

Write f ′(K) as the union f ′(K) =
(
f ′(K)∩Nπ

)
∪

(
f ′(K)\Nπ

)
. The space f ′(K)∩Nπ is finite-

dimensional. On the other hand, the restriction of π|M \ π−1(Nπ) : M \ π−1(Nπ)→ X \Nπ of

π, being a proper injective map, is an embedding and thus dim(f ′(K) \Nπ) = dim
(
π(g′(K)) \

π−1(Nπ)
)

= dim(g′(K)\π−1(Nπ)) 6 dim(g′(K)) <∞. Then f ′(K) is finite-dimensional, being

the union of two finite-dimensional subspaces (see Theorem 1.5.8 in [10]).

The cd-case of (3) can be proved analogously.

Theorem 10 combined with 3) in Proposition 4 implies another cell-like characterization of

Q-manifolds.

Theorem 12. A space X with DDP is a Q-manifold if and only if X is the image of a

Q-manifold M under a countable-dimensional cell-like map π : M → X whose non-degeneracy

set Nπ = {x ∈ X : |π−1(x)| > 1} is countable-dimensional.

5 Disjoint Disk-Arc Property

Singh’s example of a fake Hilbert cube[3] shows that HZ-AP does not imply DDP and hence

DDP cannot be omitted from Theorems 9–12. Nevertheless, HZ-AP implies DDAP, a bit weaker

property than DDP.

Following [5] we say that a space X has the disjoint disk-arc property (briefly DDAP) if any

maps f : I2 → X , g : I → X can be approximated by maps f ′ : I2 → X and g′ : I → X

with f ′(I2) ∩ g′(I) = ∅. The following lemma linking DDP with DDAP can be proved by the

argument of Proposition 26.6 of [5].

Proposition 5. If an ANR-space X has DDAP, then for any ANR-space Y having no
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isolated point the product X × Y has DDP.

Proposition 6. Each space X with HZ-AP has DDAP.

Proof. Take any maps f : I2 → X and g : I → X . Since X has HZ-AP, the map f can

be approximated by a map f ′ : I2 → X whose image Z = f ′(I2) is a homological Z∞-set in

X . Next, we shall approximate the map g′. Given an open cover U of X we will construct

a map g′ : I → X \ Z which is U-near g in the sense that for any point t ∈ I the set

{g(t), g′(t)} lies in some U ∈ U . By the compactness of the interval [0, 1] there is a partition

0 = t0 < t1 < · · · < tn = 1 such that for every i 6 n the image g([ti−1, ti]) lies in some set

Ui ∈ U .

Since H0(Ui, Ui \ Z) = 0, the path-connected component of Ui containing the point g(ti)

meets the set Ui \ Z at some point xi. We claim that the points xi−1, xi lie in the same path-

connected component of Ui\Z. If the converse were true, then we would get a nontrivial 0-cycle

α = xi−1 − xi in Ui \Z. On the other hand, this cycle is the boundary of an obvious 1-chain β

in Ui and thus vanishes in the homology group H0(Ui). But this contradicts the exactness of

the following sequence 0 = H1(Ui, Ui \ Z)→ H0(Ui \ Z)→ H0(Ui) for the pair (Ui, Ui \ Z).

Therefore xi−1, xi lie in the same path-connected component of Ui \Z, ensuring the existence

of a continuous map gi : [ti−1, ti] → Ui \ Z with gi(ti−1) = xi−1 and gi(ti) = xi. The maps gi,

i 6 m, compose a single continuous map g′ : [0, 1]→ X \ Z = X \ f ′(I2) which is U-near to g,

confirming the DDAP of X .

Therefore for a locally compact ANR-space whose points are all homological Z∞-points we

have the following implications between different P-approximation properties:

(wid-AP)←− (cd-AP) −→ (HZ-AP) −→ (DDAP)

↑ ↑ ↑

(∆) ←− (Z-AP) −→ (DDP).

6 Division and k-th Root Theorems for Q-manifolds

In this section we shall prove k-th root and collective division theorems for Q-manifolds, whose

partial cases are Theorems 4 and 7. The proofs of these theorems essentially rely on the

characterization Theorem 10 and the Künneth formula expressing the homology of the product

X × Y of two spaces via the homology of the factors X, Y . We shall use the following relative

version of the Künneth formula that can be found in Theorem 10 of [13, sec. 5.3].

Relative Künneth formula. For open sets U ⊂ X, V ⊂ Y in topological spaces X, Y and

a non-negative integer n the following exact sequence holds:

0→ [H(X, U)⊗H(Y, V )]n → Hn(X × Y, X × V ∪ U × Y )→ [H(X, U) ∗H(Y, V )]n−1 → 0.

Here

[H(X, U)⊗H(Y, V )] n = ⊕i+j=nHi(X, U)⊗Hj(Y, V ),

[H(X, U) ∗H(Y, V )]n−1 = ⊕i+j=n−1Hi(X, U) ∗Hj(Y, V ),

where G ⊗ H and G ∗ H stand for the tensor and torsion products of abelian groups G, H ,

respectively (see [13]). We need three elementary properties of tensor and torsion products:
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1) G⊗ Z is isomorphic to G;

2) G⊗H 6= 0 if both G and H contain elements of infinite order; and

3) G ∗H contains an element of finite order n if and only if both G and H contain such an

element (see Exercise 6 in [8, p. 267]).

We shall apply the Künneth formula to prove:

Lemma 1. If x is a homological Z∞-point of a space X, then for any point y of a space Y

the pair (x, y) is a homological Z∞-point in X × Y .

Proof. We need to check that the groups Hk(X×Y, X×Y \{(x, y)}) are trivial for all k. This

trivially follows from the relative Künneth formula and the triviality of the homology groups

Hi(X, X \ {x}).

Our next corollary of the Künneth formula is less trivial.

Proposition 7. A closed subset A of a space X is a homological Z∞-set in X provided that

Ak is a homological Z∞-set in Xk for some finite number k.

Proof. First we show that the groups Hn(U, U \A) are the torsion groups for all n ∈ ω and all

open sets U ⊂ X . Otherwise, for some n we can find an element α ∈ Hn(U, U \ A) of infinite

order. Then α⊗α is a non-zero element of infinite order in Hn(U, U \A)⊗Hn(U, U \A). Now

the Künneth formula implies that the homology group H2n(U2, U2 \A2) has a non-zero element

of infinite order. Proceeding by induction we can show that for each i ∈ N the homology group

Hin(U i, U i \ Ai) contains a non-zero element of infinite order which is not possible as Ak is a

homological Z∞-set in Xk.

This proves that all the homology groups Hn(U, U \ A) are the torsion groups. Assuming

that A is not a homological Z∞-point, we can find n ∈ ω and an open set U ⊂ X such that

Hn(U, U \A) is not trivial and thus contains an element of a prime order p. Then the torsion

product Hn(U, U \A) ∗Hn(U, U \A) also contains an element of order p. The exact sequence

0→ [H(U, U \A)⊗H(U, U \A)]2n+1 → H2n+1(U
2, U2\A2)→ [H(U, U \A)∗H(U, U \A)]2n → 0

from the Künneth formula implies that the group H2n+1(U
2, U2 \ A2) contains an element of

order p (here we also use the fact that the tensor product [H(U, U \A)⊗H(U, U \A)]2n+1 is a

torsion group). Repeating this argument again, we can prove that the group H3n+2(U
3, U3\A3)

contains an element of order p. Proceeding by induction we can prove that for any i ∈ N the

group Hin+i−1(U
i, U i \Ai) contains a non-zero element of order p which is not possible as Ak

is a homological Z∞-set in Xk.

Combining Theorem 10 with Proposition 7 we obtain the k-th root theorem for Q-manifolds.

Theorem 13. A space X with DDP and cd-AP is a Q-manifold if and only if the power Xk

is a Q-manifold for some finite k.

Since each compact contractible Q-manifold is homeomorphic to Q, this theorem implies the

k-th root theorem 4 for the Hilbert cube. For the same reason Theorem 5 follows from

Theorem 14. If for some finite power a space X with cd-AP is a Q-manifold, then both X2

and X × I are Q-manifolds.

Proof. Assuming that Xk is a Q-manifold for some finite k, we conclude that X is a locally

compact ANR and each point of X is a homological Z∞-point, see Proposition 7. This property
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combined with cd-AP of X implies HZ-AP by Proposition 3. In its turn, HZ-AP of X implies

DDAP for X by Proposition 6 while DDAP of X implies DDP for X2 and X × I according to

Proposition 5. By Lemma 1, all points in the spaces X2 and X × I are homological Z∞-points.

Therefore X2 and X × I are locally compact ANR-spaces possessing DDP, cd-AP, and having

all points as the homological Z∞-points. By Theorem 10, these spaces are Q-manifolds.

Since each compact contractible Q-manifold is homeomorphic to Q, the collective division

theorem 7 for the Hilbert cube follows from

Proposition 8. An uncountable family X of topologically distinct spaces contains a Q-

manifold provided that

1) each space X has DDP and cd-AP;

2) the product X × Y of any different spaces X, Y ∈ X is a Q-manifold.

Proof. It follows from 2) that each space X ∈ X is a locally compact ANR. Suppose to the

contrary that none of the spaces X ∈ X is a Q-manifold and apply the characterization theorem

10 to find a point aX ∈ X which fails to be a homological Z∞-point in X . This means that

the homology group Hk(X, X \ {aX}) is not trivial for some k = k(X). Since the family X is

uncountable there are two different spaces X, Y ∈ X and two numbers k, n such that the groups

Hk(X, X\{aX}) and Hn(Y, Y \{aY }) contain the elements of the same order p, where either p =

∞ or p is a prime number. If p =∞, then the tensor product Hk(X, X\{aX})⊗Hn(Y, Y \{aY })

is not trivial and hence the group Hk+n(X×Y, X×Y \{(aX , aY )}) is not trivial by the Künneth

formula, which is impossible since (aX , aY ) is a (homological) Z∞-point in the Q-manifold

X × Y .

If p is a prime number, then the torsion product Hk(X, X \ {aX}) ∗Hn(Y, Y \ {aY }) is not

trivial and hence the group Hk+n+1(X × Y, X × Y \ {(aX , aY )}) is not trivial by the Künneth

formula, which is impossible since (aX , aY ) is a (homological) Z∞-point in the Q-manifold

X × Y .

The obtained contradiction shows that some space X ∈ X must be a Q-manifold.

7 Examples of fake Hilbert cubes

In this section we survey some known examples of the fake Hilbert cubes. The first example is

from [3].

Example 1 (Singh). There exists a compact space S possessing the following properties:

1) S is a compact AR;

2) S is the image of Q under a cell-like map π : Q → S such that the set Nπ = {x ∈ X :

|π−1(x)| > 1} is countable and the preimage π−1(y) of every point y ∈ Nπ is an arc;

3) Each compact ANR-subspace of dimension > 2 in S coincides with S;

4) Each point of S is a homological Z∞-point and each point x ∈ S \Nπ is a Z∞-point;

5) S has fd-AP and consequently has HZ-AP and DDAP;

6) S fails to have DDP and hence is not homeomorphic to Q; and

7) S2 and S × I are homeomorphic to Q.

The items 1)–4) and 6) were established by Singh in [3] while 5) and 7) follow from the

preceding items and Propositions 4–5.

Another example of a fake Hilbert cube was constructed by Daverman and Walsh in [7, 9.3].
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Example 2 (Daverman-Walsh). There exists a compact space X possessing the following

properties:

1) X is a compact AR;

2) X is the image of Q under a cell-like map π : Q → X whose non-degeneracy set Nπ is

countable;

3) Each point of X is a Z∞-point and thus a homological Z∞-point;

4) X has fd-AP and consequently has HZ-AP and DDAP;

5) X fails to have DDP and hence is not homeomorphic to Q;

6) X2 and X × I are homeomorphic to Q.

Our last example yields a bit more than that required in Theorem 6. We shall construct a

series of compact absolute retracts (Λp) with fd-AP and DDP, parameterized by prime numbers

p such that no finite power of Λp is homeomorphic to Q while all the products Λp × Λq for

distinct p 6= q are homeomorphic to the Hilbert cube.

Below Zp∞ = {z ∈ C : zpk

= 1 for some k ∈ ω} denotes the quasicyclic p-group.

Example 3. There is a family of pointed compact absolute retracts (Λp, ∗p) indexed by prime

numbers p such that

1) Λp \ ∗p is a Q-manifold with the unique non-trivial homology group H1(Λp \ ∗p) = Zp∞ ;

2) the point ∗p is not a homological Z∞-point in Λp;

3) no finite power Λk
p is a Q-manifold;

4) the space Λp has the property (∆) and consequently has cd-AP;

5) the space Λp has DDAP and hence the square Λ2
p has DDP;

6) Λp × Λq is homeomorphic to the Hilbert cube for any prime numbers p 6= q.

Proof. Let T = {z ∈ C : |z| = 1} stand for the unit circle in the complex plane. Given a prime

number p consider the space Xp = ω × [0, 1] × T and its quotient space Yp = Xp/∼ by the

equivalence relation ∼ defined as follows: (n, t, x) ∼ (m, τ, y) if and only if one of the following

conditions holds:

1) (n, t, x) = (m, τ, y); 2) m = n, t = τ = 1 and xp = yp; 3) m = n + 1, t = 1, τ = 0, and

xp = y; 4) n = m + 1, t = 0, τ = 1, and yp = x.

Thus the space Yp consists of an infinite sequence of cylinders of the map zp : T → T, glued

together. It is routine to check that the higher homology groups Hk(Yp), k > 1, of the space

Yp are trivial while H1(Yp) = Zp∞ . It is easy to see that the one-point compactification Ỹp =

Yp∪{∞} is a two-dimensional absolute retract. Then the quotient space Λp = Ỹp×Q/{∞}×Q

is an absolute retract, too. The point ∗p = {{∞} ×Q} is the singular point of Λp.

We now check that the pointed spaces (Λp, ∗p) satisfy the following conditions 1)–6):

1) By Edwards’ ANR-Theorem[11,44.1], the complement Λp \ {∗p} = Yp ×Q is a Q-manifold.

Being homotopy equivalent to Yp, it has a unique non-trivial homology group H1(Λp \ {∗p}) =

H1(Yp) = Zp∞ .

2) The exact sequence of the pair (Λp, Λp \ {∗p})

0 = H2(Λp)→ H2(Λp, Λp \ {∗p})→ H1(Λp \ {∗p})→ H1(Λp) = 0

implies that H2(Λp, Λp \ {∗p}) = Zp∞ 6= 0 and thus ∗p fails to be a homological Z∞-point in

Λp.

3) By Proposition 7, the singleton {∗p}k fails to be a homological Z∞-set in Λk
p for any finite
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k, and hence Λk
p cannot be a Q-manifold.

4) The first item implies that Λp has the property (∆) at each point x 6= ∗p. To check that

property at the point ∗p, take any neighborhood U ⊂ Λp of ∗p and find a neighborhood V ⊂ U

of ∗p that is contractible in U (such a neighborhood exists because Λp is an AR). Given any

compact set K ⊂ V let h : K × [0, 1] → U be a map contracting K to ∗p (in the sense that

h(x, 0) = x and h(x, 1) = ∗p for all x ∈ K). Consider the closed set F = h−1(∗p) ⊂ K × [0, 1]

and the restriction g = h|K × I \ F of h, mapping the locally compact space K × I \ F into

the Q-manifold U \ {∗p}. Applying Theorem 18.2 of [11], approximate g by an embedding

g′ : K × I \ F → U \ {∗p} so near the map g that the map h̃ : K × I → U defined by

h̃|K × I \F = g′ and h̃|F = h|F is continuous. Then h̃ : K × I → U is a contraction of K in U

such that dim(h̃(K × I)) 6 dim(K × I) 6 dim(K) + 1, which means that Λp has the property

(∆). By Theorem VII.2.1 of [6] this space has fd-AP and hence cd-AP.

5) To prove the DDAP of Λp, fix an open cover U of Λp and two maps f : I2 → Λp

and g : I → Λp. Repeating the argument of the preceding item, we can approximate f

by a map f ′ : I2 → Λp such that f ′(I2) \ {∗p} is a Z∞-set in the Q-manifold Λp \ {∗p}.

Because the point ∗p is not locally separating in Λp the map g can be approximated by a map

g′ : I → Λp \ {∗p}. Moreover, since f ′(I2) \ {∗p} is a Z∞-set in Λp \ {∗p}, we can additionally

assume that g′(I) ∩ f ′(I2) = ∅, which means that Λp has DDAP. By Proposition 5, the square

Λ2
p has DDP.

6) Finally, we shall prove that for the distinct prime numbers p 6= q the product Λp × Λq is

homeomorphic to the Hilbert cube Q. Being the product of two spaces with cd-AP, this space

has cd-AP. By Proposition 5 this product has DDP. According to Theorem 10 it remains to check

that each point (x, y) of Λp×Λq is a homological Z∞-point. This is trivial if (x, y) 6= (∗p, ∗q) (cf.

Lemma 1). In case (x, y) = (∗p, ∗q) we may use item 1), the equality Zp∞⊗Zq∞ = 0 = Zp∞∗Zq∞ ,

and the Künneth formula to show that (∗p, ∗q) is a homological Z∞-point in Λp × Λq.

8 Some open problems

Problem 1. Can cd-AP in the characterization theorem 10 be replaced by wid-AP?

Problem 1 is related to another

Problem 2. Is each closed weakly-infinite dimensional subset A of Q a homological Z∞-set

in Q?

Note that the k-th root and division theorems also hold for some non-locally compact spaces,

for example for the Baire space Nω.

Theorem 15 (Division Theorem for the Baire space). If the product X × Y of two spaces is

homeomorphic to Nω, then X or Y is homeomorphic to Nω.

This theorem easily follows from a topological characterization of the Baire space Nω due to

Aleksandrov and Urysohn (see [14, 7.7]): A topological space X is homeomorphic to Nω if and

only if X is a Polish zero-dimensional nowhere locally compact space.

In light of this result it is natural to ask if the k-th root and division theorems are true for

the countable product s = (0, 1)ω of open intervals. As expected, the answer is negative.

Example 4. Take an arc J ⊂ Q which is not a Z∞-set in Q and consider the quotient map

π : Q→ Q/J . Then X = π(s) is not homomorphic to s but its square X2 is homeomorphic to
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s. This can be proved by the argument of [15].

Nonetheless it may happen that the k-th root and division theorems for s hold in some

restricted form.

Problem 3. Find the conditions on a space X guaranteeing that X is homeomorphic to s if

some finite power Xk is homeomorphic to s.

Observe that the finite power is an example of a normal functor on the category of the compact

Hausdorff spaces, see [16]. Can the k-th root theorem for the Hilbert cube be extended to some

functor distinct from the functor of finite power?

Problem 4. Let F : Comp → Comp be a functor such that a compact space X with DDP

and cd-AP is homeomorphic to Q if F (X) is homeomorphic to Q. Is F isomorphic to a power

functor?

Even for the functor F = SP 2 of a symmetric square the answer is unknown. Let us recall

that the symmetric square of a compact space X is the quotient space X2/∼ by the equivalence

relation (x, y) ∼ (y, x).

Problem 5. Is a compact AR-space X with DDP and cd-AP homeomorphic to Q if its

symmetric square SP 2(X) is homeomorphic to Q?

In light of this problem let us mention that the quotient space X = Q× [−1, 1]/Q× {0} is

an AR-space with the property (∆) whose symmetric square SP 2(X) is homeomorphic to Q,

see [17]. However the space X contains a separating point and hence fails to have DDP and be

homeomorphic to Q.
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