
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 363, Number 2, February 2011, Pages 1007–1022
S 0002-9947(2010)05175-X
Article electronically published on September 17, 2010

DISTINGUISHING BING-WHITEHEAD CANTOR SETS

DENNIS GARITY, DUŠAN REPOVŠ, DAVID WRIGHT, AND MATJAŽ ŽELJKO

Abstract. Bing-Whitehead Cantor sets were introduced by DeGryse and Os-
borne in dimension three and greater to produce examples of Cantor sets that
were nonstandard (wild), but still had a simply connected complement. In
contrast to an earlier example of Kirkor, the construction techniques could
be generalized to dimensions greater than three. These Cantor sets in S3 are
constructed by using Bing or Whitehead links as stages in defining sequences.
Ancel and Starbird, and separately Wright, characterized the number of Bing
links needed in such constructions so as to produce Cantor sets. However it
was unknown whether varying the number of Bing and Whitehead links in the
construction would produce nonequivalent Cantor sets. Using a generalization
of the geometric index, and a careful analysis of three dimensional intersection
patterns, we prove that Bing-Whitehead Cantor sets are equivalently embed-
ded in S3 if and only if their defining sequences differ by some finite number
of Whitehead constructions. As a consequence, there are uncountably many
nonequivalent such Cantor sets in S3 constructed with genus one tori and with
a simply connected complement.

1. Background

Two Cantor sets X and Y in S3 are equivalent if there is a self homeomorphism
of S3 taking X to Y . If there is no such homeomorphism, the Cantor sets are said
to be inequivalent, or inequivalently embedded.

There has been an extensive study in the literature of nonstandard Cantor sets in
S3 (those that are not equivalent to the standard middle thirds Cantor set). Recent
interest is partly due to the fact that such Cantor sets are often the invariant sets
of certain dynamical systems. See [BC87, GRŽ05].

Antoine [Ant20] constructed the first example of a nonstandardly embedded
Cantor set. Sher [She68] showed that there were uncountably many inequivalent
Cantor sets in S3 by varying the number of components in the Antoine construc-
tion. These Cantor sets all had a nonsimply-connected complement and so were
nonstandard.

Kirkor [Kir58] constructed the first nonstandard Cantor set in R3 with a simply
connected complement. Any Cantor set in R3 with a simply connected complement
has the property that any 2 points in the Cantor set can be separated by a 2-sphere
missing the Cantor set (see [Sko86]). This allows the components of the stages of
a defining sequence to be separated and makes the nonequivalence to the standard
Cantor set much more difficult to detect. DeGryse and Osborne [DO74] used a
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generalization of the Bing-Whitehead construction to produce nonstandard Cantor
sets with a simply connected complement in all dimensions greater than or equal
to three.

Ancel and Starbird [AS89] and Wright [Wri89] analyzed exactly which Bing-
Whitehead constructions yielded Cantor sets. It was unknown whether changing
the number of Bing and Whitehead links in the construction would yield inequiv-
alent Cantor sets. In his dissertation Željko [Žel00] conjectured that if two Bing-
Whitehead constructions yielded equivalent Cantor sets, then the constructions
differed in a finite number of Whitehead constructions. This is essentially Question
7 in [GR07]. In this paper, we prove that this conjecture is true.

See [Shi74]), [Bla51], [Žel05], [Žel01], [GRŽ05], and the bibliography in [GR07]
for additional examples of nonstandard Cantor sets. Robert Myers [Mye88] has a
very interesting paper on contractible 3-manifolds that uses techniques very similar
to the ones used in this paper, even though there are no Cantor sets mentioned.

In the next section we list the terminology and notation that we use and list
the properties of Bing and Whitehead links from Wright’s paper [Wri89] that are
needed in our analysis. We also list the main result that we obtain. In Section
3 we list the results on geometric linking and geometric index that we need. The
results in this section follow from a generalization of Schubert’s [Sch53] results to
links with more that one component. In Section 4 we prove that the boundaries
of the stages in the construction for a Bing-Whitehead compactum can be made
disjoint from boundaries of another defining sequence for the same compactum. In
Section 5 we prove the main result. We end with some additional questions.

2. Properties of Bing and Whitehead links

2.1. Bing and Whitehead links. We work in the piecewise linear category. A
link is the finite union of disjoint simple closed curves. A torus is a 2-manifold
homeomorphic to the product of two simple closed curves. A solid torus is a 3-
manifold homeomorphic to a disk cross a simple closed curve. We denote the
interior and boundary of a manifold M by IntM and ∂M , respectively. Let T be a
solid torus. Throughout this paper, we assume that the tori we are working with are
unknotted in S3. (The results and constructions also work in R3.) A Bing link in T
is a union of 2 linked tori F1∪F2 embedded in T as shown in Figure 1. A Whitehead
link in T is a torusW embedded in T as shown in the figure. For background details
and terminology, see Wright’s paper [Wri89]. The link terminolgy arises from the
link consisting of the cores of the interior tori together with a meridional curve on
the outer torus.

2.2. Construction of Bing-Whitehead compacta. For completeness and con-
sistency of notation, we outline the steps in the construction of Bing-Whitehead
compacta. Let M0 be an unknotted torus in S3, and let M1 be obtained from
M0 by placing a Bing construction in M0. Inductively obtain Mk from Mk−1 by
placing a Bing construction in each component of Mk−1 or by placing a Whitehead
construction in each component of Mk−1. Let n1 be the number of consecutive
Bing stages in the construction before the first Whitehead stage, and let nk be the
number of consecutive Bing stages placed between the (k−1)st and kth Whitehead
stages of M .
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Figure 1. Bing and Whitehead constructions

Definition 2.1. The Bing-Whitehead compactum associated with this construc-
tion is defined to be

X =

∞⋂

i=1

Mi and is denoted X = BW (n1, n2, . . .).

We also define Mi, i < 0, so that Mi is a Whitehead construction in Mi−1 and
let X∞ be

⋂
i

(
S3 \Mi

)
. X∞ is called the compactum at infinity associated with

X . We assume that infinitely many of the Mi, i > 0, arise from Bing constructions
and that infinitely many of them arise from Whitehead constructions.

It is known [AS89, Wri89] that this construction can be done so as to yield
a Cantor set if and only if the series

∑
i ni2

−i diverges. Specifically, if G is the
decomposition of S3 consisting of the components of X = BW (n1, n2, . . .) and
the remaining points of S3, then S3/G is homeomorphic to S3 if and only if this
condition holds. The image of X under the quotient map is then a Cantor set in S3

called a Bing-Whitehead Cantor set. Standard results from decomposition theory
[Dav86] then imply that in this case, the construction of X can be done so that the
components of X are points and thus X itself is a Cantor set.

We introduce one additional definition that will be needed in the proof of the
main theorem in Section 5.

Definition 2.2. Suppose X is a BW compactum with defining sequence (Mi), i ≥
0. The BW pattern for X with respect to (Mi) is the sequence (α1, α2, α3, . . .),
where αi = 1 if Mi is obtained from Mi−1 by placing a Whitehead construction in
each component, and where αi = 2 if Mi is obtained from Mi−1 by placing a Bing
construction in each component.

2.3. Geometric properties. We list the key results from Wright’s paper that will
be needed in what follows.

Lemma 2.3. Let M be a Bing or Whitehead link in a solid torus T .

• [Wri89, Lemma 4.1] T − IntM is boundary incompressible; i.e., there is no
2-disk D ⊂ T − IntM such that D ∩ (∂T ∪ ∂M) = ∂D with ∂D essential in
∂T ∪ ∂M .

• [Wri89, Lemma 4.2] There is no annulus inside T connecting essential loops
on two different components of ∂M ∪ ∂T .
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Lemma 2.4. Let X be a Bing-Whitehead compactum and X∞ the associated con-
tinuum at infinity.

• [Wri89, Theorem 4.6] No sphere in the complement of X ∪ X∞ separates
X ∪X∞.

• [Wri89, Theorem 4.3] A loop on the boundary of Mi is essential in the
boundary of Mi if and only if it is essential in the complement of X ∪X∞.

• [Wri89, Theorem 4.4] If loops �1 and �2 in ∂Mi and ∂Mj, respectively, i �=
j, are homotopic in the complement of X ∪X∞, then they are inessential
in X ∪X∞.

2.4. Main result. Our ultimate goal is to determine when two Bing-Whitehead
constructions (Mi) and (Nj) yield Cantor sets X1 and X2 that are equivalently
embedded.

Theorem 2.5 (Main Theorem). Let X1 be a Bing-Whitehead Cantor set asso-
ciated with a defining sequence (Mi) and let X2 be a Bing-Whitehead Cantor set
associated with a defining sequence (Nj). If X1 and X2 are equivalently embedded,
then the defining sequences differ in a finite number of Whitehead constructions.
Specifically, if X1 = BW (m1,m2, . . .) with respect to Mi and X2 = BW (n1, n2, . . .)
with respect to Nj, then there are integers p and q such that

∑p
i=1 mi =

∑q
j=1 nj

and mp+k = nq+k for all k ≥ 1.

Remark 2.6. Note that the converse of Theorem 2.5 is also true. This was also
observed in Željko’s dissertation [Žel00]. Assume there are integers p and q such
that

∑p
i=1 mi =

∑q
j=1 nj and mp+k = nq+k for all k ≥ 1. Then there are home-

omorphisms of h1 and h2 of S3 taking Mp and Nq onto a collection of 2
∑p

i=1 mi

pairwise disjoint, unknotted and unlinked tori. Using the fact that mp+k = nq+k

for all k, one can construct inductively homeomorphisms that take the components
of (Nq+k) onto the components of h1(Mp+k). Because X1 and X2 are Cantor sets,
these homeomorphisms can be chosen so that the limit is a homeomorphism of S3

to itself taking X2 to h1(X1)

Corollary 2.7. There are uncountably many inequivalent Bing-Whitehead Cantor
sets in S3.

Proof. To get uncountably many distinct examples, start with the example

BW (1, 2, 4, . . . , 2i, 2i+1, . . .).

Let α = (j0, j1, j2, . . .) be an increasing sequence of positive integers. The examples
we seek are of the form

BW (1 + 3j0 , 2 + 3j1 , 4 + 3j2 , . . . , 2i + 3ji , 2i+1 + 3ji+1 , . . .).

By Theorem 2.5, for distinct sequences of increasing integers, no two of these are
equivalent. �

3. Algebraic and geometric index

3.1. Algebraic index. If S is a solid torus in another solid torus T , the algebraic
index of S in T is |α|, where α is the integer in H1(T ) represented by the center
line of S. The algebraic index is multiplicative, so that if S ⊂ T ⊂ U are solid tori,
the algebraic index of S in U is the product of the algebraic index of S in T with
the algebraic index of T in U . Note that the algebraic index of a Whitehead link in
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the torus containing it is 0, as is the algebraic index of each component of a Bing
link.

3.2. Geometric index. If K is a link in the interior of a solid torus T , then we
denote the geometric index of K in T by N(K,T ). The geometric index is the
minimum of |K ∩ D| over all meridional disks D of T . A core of a solid torus T
in 3-space is a simple closed curve J so that T is a regular neighborhood of J .
Likewise, a core for a finite union of disjoint solid tori is a link consisting of one
core from each of the solid tori. If T is a solid torus and M is a finite union of
disjoint solid tori so that M ⊂ Int T , then the geometric index N(M,T ) of M in T
is N(K,T ) where K is a core of M . The geometric index of a Bing link F1 ∪ F2 in
a torus T is 2. The geometric index of a Whitehead link W in a torus T is also 2.

Theorem 3.1. Let T0 and T1 be unknotted solid tori in S3 with T0 ⊂ IntT1 and
N(T0, T1) = 1. Then ∂T0 and ∂T1 are parallel; i.e., the manifold T1 − IntT0 is
homeomorphic to ∂T0 × I, where I is the closed unit interval [0, 1].

Proof. The proof follows from work of Schubert [Sch53] and regular neighborhood
theory. Let J be a core of T0. Since T0 is unknotted, J is an unknotted simple
closed curve. The geometric index of J in T1 is one. By Schubert, J is either a
core of T1 or a sum of knots with a core. Since J is unknotted, J must be a core of
T1. Since J is a core of both T0 and T1, regular neighborhood theory [RS72] shows
that T1 − IntT0 is homeomorphic to ∂T0 × I. �
Theorem 3.2. Let T0 be a finite union of disjoint solid tori. Let T1 and T2 be solid
tori so that T0 ⊂ IntT1 and T1 ⊂ IntT2. Then N(T0, T2) = N(T0, T1) ·N(T1, T2).

Proof. Schubert proves the case where T0 is a single solid torus, but his proof works
for the above case with no changes. �

There is one additional result we will need in Section 4.

Theorem 3.3. Let T be a solid torus in S3 and let T1, T2 be unknotted solid tori

in T , each of geometric index 0 in T . Then the geometric index of
⋃2

i=1 Ti in T is
even.

Proof. If the geometric index were odd, then there is a meridional disk D of T that
intersects the cores of T1 ∪T2 transversally an odd number of times. So this means
that D must intersect the core of either T1 or T2 an odd number of times. But if a
meridional disk of T intersects a simple closed curve J transversally an odd number
of times, the algebraic index of J in T is odd and so J is essential in T . However,
the cores of the Ti are both inessential because they lie in a ball in T . �
3.3. Boundary parallel tori. The next three results make use of the material
on geometric index to determine when the boundaries of certain tori are parallel.
These results are used in the proof of the main theorem in Section 5 to inductively
match up stages in different Bing-Whitehead defining sequences.

Theorem 3.4. Let W be a Whitehead link in the solid torus T in S3. If T ′ ⊂ T is
a solid unknotted torus whose boundary separates ∂W from ∂T , then ∂T ′ is parallel
to either ∂W or ∂T .

Proof. Since ∂T ′ separates ∂W from ∂T , we have W ⊂ IntT ′ and T ′ ⊂ IntT . Since
N(W,T ′) · N(T ′, T ) = N(W,T ) = 2, either N(W,T ′) = 1 or N(T ′, T ) = 1. The
conclusion now follows from Theorem 3.2. �
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Theorem 3.5. Let F1 ∪ F2 be a Bing link in a solid torus T in S3. If T ′ ⊂ T is
a solid unknotted torus whose boundary separates ∂(F1 ∪ F2) from ∂T , then ∂T ′ is
parallel to ∂T .

Proof. Since ∂T ′ separates ∂(F1 ∪F2) from ∂T , we have F1 ∪F2 ⊂ IntT ′ and T ′ ⊂
IntT . Since N(F1 ∪ F2, T

′) · N(T ′, T ) = N(F1 ∪ F2, T ) = 2, either
N(F1 ∪ F2, T

′) = 1 or N(T ′, T ) = 1. We show that N(F1 ∪ F2, T
′) = 1 is im-

possible. Suppose N(F1 ∪ F2, T
′) = 1; then N(Fi, T

′) = 1 for either i = 1 or i = 2.
Now 0 = N(Fi, T ) = N(Fi, T

′) · N(T ′, T ) = N(T ′, T ) �= 0, a contradiction. So we
conclude that N(T ′, T ) = 1, and the conclusion now follows from Theorem 3.2. �

Theorem 3.6. Let F1 ∪ F2 be a Bing link in the solid torus T in S3. If S is the
boundary of a solid unknotted torus that separates ∂F1∪∂F2∪∂T , then S is parallel
to one of ∂F1, ∂F2, ∂T .

Proof. If S separates ∂T from ∂F1∪∂F2, then we can invoke the previous theorem.
The other cases follow from the fact that there are homeomorphisms of S3 to itself
that take T − Int(F1 ∪ F2) to itself and take ∂Fi to ∂T . These homeomorphisms
follow from the (well-known) fact that F1∪F2∪(S3−IntT ) are Borromean rings. �

4. Boundary intersections of defining sequences

4.1. Setup. For the rest of this section, we assume that there is a Bing-Whitehead
compactum X with two defining sequences (Mk) and (Nk). Let X∞

M be the con-
tinuum at infinity associated with the first defining sequence and let X∞

N be the
continuum at infinity associated with the second defining sequence.

Theorem 4.1. Let X, (Mk), (Nk), X
∞
N , and X∞

M be as above. Suppose that i and
j are chosen so that

• Mi−1 is in N1 and so is in the complement of X∞
N ,

• Nj−1 is in M1 and so is in the complement of X∞
M .

Let n be a fixed integer. Then there is a homeomorphism h of S3 to itself, fixed on
X ∪ (S3−M1)∪ (S3−N1), so that h(∂(Mi+m))∩∂(Nj+�) = ∅ for each nonnegative
m and � less than n.

The remainder of this section is devoted to the proof of this theorem. We will
need to apply the following lemmas. Note that Lemma 4.2 is the case n = 0 of
Theorem 4.1.

Lemma 4.2. Let X, (Mk), (Nk), X
∞
N , and X∞

M be as above. Suppose that i and j
are chosen so that

• Mi−1 is in N1 and so is in the complement of X∞
N ,

• Nj−1 is in M1 and so is in the complement of X∞
M .

Then there is a homeomorphism h of S3 to itself, fixed on X∪(S3−M1)∪(S3−N1),
so that h(∂Mi) ∩ ∂Nj = ∅.
Lemma 4.3. Let X, (Mk), (Nk), X

∞
N , and X∞

M be as above. Suppose:

• T ′ is a component of Nj and Nj is in the complement of X∞
M ,

• Mi ∩ T ′ ⊂ Int(T ′) and consists of components T1, . . . , Tr of Mi.

Then there is a self homeomorphism h of S3, fixed on X ∪ (S3 − T ′), so that
h(∂(

⋃r
k=1 Tk)) ∩ ∂(Nj+1) = ∅.
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Lemma 4.4. Let X, (Mk), (Nk), X
∞
N , and X∞

M be as above. Suppose:

• T is a component of Mi and Mi is in the complement of X∞
N ,

• Nj ∩ T ⊂ Int(T ) and consists of components T ′
1, . . . , T

′
r of Nj.

Then there is a self homeomorphism h of S3, fixed on X ∪ (S3 − T ), so that
h(∂(Mi+1)) ∩ ∂(

⋃r
k=1 T

′
k) = ∅.

4.2. Proof of Lemma 4.2. Adjust the components of ∂Mi, ∂Nj−1, ∂Nj, and
∂Nj+1 so that they are in general position. This implies that the boundaries of
these components intersect in a finite collection of pairwise disjoint simple closed
curves. We will successively remove these curves of intersection by homeomorphisms
of S3.

4.2.1. Removing trivial curves of intersection. Focus on one component T of Mi.
Consider ∂T ∩ ∂Nj. This intersection, if nonempty, consists of a finite number of
simple closed curves. By Lemma 2.4, and by the hypotheses of Lemma 4.2, one of
these curves is inessential on ∂T if and only if it is inessential on some component of
∂Nj. If there are any inessential curves, choose a component T ′ of Nj that contains
one in ∂T ′. Choose an innermost inessential simple closed curve α on ∂T ′. Since
α is innermost, it bounds a disk D′ with interior missing ∂T . The curve α also
bounds a disk D in ∂T .

The 2-sphere D∪D′ bounds a three-cell in M1∩N1 that by Lemma 2.4 contains
no points of X . Use this three-cell to push D onto D′ and then a little past D′ into
an exterior collar on the cell by a homeomorphism h of S3. This homeomorphism
can be chosen to fix X , S3−M1, and S3−N1. This has the result that h(∂T )∩∂T ′

has fewer curves of intersection than ∂T ∩ ∂T ′, and so that no new curves of inter-
section with ∂(Nj) are introduced. Continuing this process eventually removes all
inessential curves of intersection on ∂T . Repeating this process for each component
of Mi removes all inessential curves of intersection of the boundaries of Mi and Nj.
Repeating the process with Nj−1 and Nj+1 completes the first step of the proof.

Therefore there is a homeomorphism h1 of S3 to itself, fixed on X ∪X∞
M ∪X∞

N

such that h1(∂Mi)∩(∂Nj−1 ∪ ∂Nj ∪ ∂Nj+1) has no nontrivial curves of intersection.
To simplify notation in what remains, we will refer to h1(Mi) as (the new) Mi.

Remark 4.5. At this point, let S be a component of Mi. Then there is at most
one component S′ of Nj for which ∂S ∩ ∂S′ �= ∅, and if this is the case, then
∂S ∩ ∂Nj−1 = ∅ and ∂S ∩ ∂Nj+1 = ∅. This follows directly from Lemma 2.3. In
fact, the curves of intersection on ∂S must be parallel (p, q) torus curves, and the
corresponding curves on ∂S′ must be parallel (s, t) curves. If both p and q are
greater than 1, so that the torus curve is a nontrivial knot, then (s, t) = (p, q) or
(s, t) = (q, p) by results from Rolfsen [Rol76], but we do not use this observation.

We now work towards removing these remaining curves of intersection of the
boundaries, so that the components of (Mi) under consideration either are con-
tained in or contain the components of (Nj) under consideration. Consider an
annulus A on the boundary of S bounded by two adjacent curves of the intersec-
tion of ∂S and ∂S′. Choose this annulus so that its interior lies in the interior of
S′. We consider the separate possibilities for how the boundary curves of A lie on
S′.

4.2.2. Curves of intersection on S′ that are (p, q) curves for p ≥ 2. Consider a
meridional disc D for S′ in general position with respect to A so that D ∩ A
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consists of p arcs intersecting the boundary of D in endpoints and of simple closed
curves. Figure 2 illustrates the situation when p = 5 and q = 3. The shaded regions
indicate the intersection of the next stage Nj+1 with D.

Figure 2. Meridional disc D of S′ and annulus A

Label the boundary curves of the annulus A as curves B and C. Label the inter-
section points of B with the meridional disc D sequentially around the boundary
of D as B0, B1, . . . , Bp−1 and similarly label the intersection points of C with D
as C0, C1, . . . , Cp−1. Because B and C are parallel (p, q) curves on the boundary
of S′, the intersection points Bi and Ci must alternate. We have not yet indicated
how the arcs leaving the points Ci and Bi are connected.

The corresponding points on the annulus A are labeled sequentially along the
curve B as B0, Bq, B2q, . . . , B(p−1)q, where subscripts are taken mod p. The points
on the annulus A along the C curve are similarly labeled sequentially C0, Cq, C2q,
. . . , C(p−1)q. Again, Figure 2 illustrates the case p = 5 and q = 3.

We will argue that the intersection of A with D can be adjusted using cut and
paste techniques so that the end result is intersections as in one of the two cases in
Figure 3.

Each of the regions labeled Mi will be shown to be a meridional disc of a solid
torus that is contained in S′. This solid torus will then be used to push across and
remove the intersections of A with D.

Refer back to Figure 2. As a first step, in adjusting the intersection of D and
A we show how to remove simple closed curves of intersection. Each simple closed
curve is trivial in A; otherwise a (p, q) curve for p ≥ 2 on the boundary of S′ would
be null homotopic in S′. None of the simple closed curves can enclose either or
both of the shaded regions indicated because they are contractible in A and thus
contractible in S′ missing X . Choosing an innermost such simple closed curve
in D, the intersection can be removed by an argument similar to that used in
removing trivial curves of intersection in the previous section. Specifically, there
is a homeomorphism h from S3 to itself, fixed on X and the complement of S′

such that h(A)∩D has fewer simple closed curves of intersection than A∩D does.
Inductively, all such simple closed curves of intersection can be removed by a self
homeomorphism of S3 fixed on X and on S3 − S′.
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Figure 3. Meridional disc D of S′ after adjustment

After such simple closed curves of intersection are removed, we are left with
the situation pictured in Figure 4. Again, we have not yet indicated how the arcs
emanating form the boundary points are connected.

Figure 4. Disc D of S′ after simple closed curves removed

First note that if any Bi were joined to a Bj , the arc joining them would separate
the disc D and leave an odd number of boundary points on both sides. Since the
boundary points are joined in pairs, this is not possible. So each Bi is joined to
some Cj by an arc of intersection of A with D.

Next, consider these arcs in the annulus A as in Figure 5.
If point B0 is joined by an arc of intersection to point Ckq , then each point Biq

must be joined to the point C(k+i)q . Otherwise it would not be possible to have
disjoint arcs joining the points on B to the points on C.

Now consider these arcs of intersection again in D as in Figure 4. Since point B
with subscript iq (mod p) is joined to point C with subscript (i+ k)q (mod p), the
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Figure 5. Annulus A with arcs of intersection

difference in indices of any two of the joined points is (i + k)q − iq (mod p) = kq
(mod p). Unless this difference is 0 or p− 1, it is not possible to place the p arcs in
D in a pairwise disjoint fashion. Thus either each Bi in D is joined by an arc to
Ci or each is joined by an arc to Ci−1(mod p). Thus, the arcs of intersection are as
pictured in Figure 3.

The intersection of the annulus A with ∂(S′) separates ∂(S′) into two annuli.
Let A1 be the annulus whose intersection with D consists of p arcs joining the
same points of the boundary of D as the arcs of intersection of A and D. Then
A ∪ A1 = T1 is a torus. See Figure 6 for an illustration of this in one of the cases
from Figure 3.

Figure 6. D with regions M

Without loss of generality, B0 is joined to C0 by an arc α0 of the intersection
of A with D. Let β0 be the arc in A1 in the boundary of D joining the endpoints
of α0. The loop α0 ∪ β0 is a nontrivial loop in T1 and T1 separates S3 into two
components. Let D1 be the component that contains the disc M0 in D bounded
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by α0 ∪ β0. Since α0 ∪ β0 bounds a disc in D1, D1 is a solid torus by a standard
argument. (See [Rol76].)

We now show that the next stage of the construction in S′ cannot intersect D1.
Notice that the geometric and algebraic index of D1 in S′ is p ≥ 2. The geometric
index of the next stage of N in S′ is 2. If the next stage is a Whitehead construction
W in S′ that lies in D1, and the geometric index of W in D1 is 0 or > 1, there is
a contradiction by Theorem 3.2. If the geometric index of W in D1 is 1, then the
algebraic index of W in S′ is the same as the algebraic index of D1 in S′, which is
p �= 0, again a contradiction.

If the next stage of S′ in D is a Bing construction B = F1 ∪ F2 in S′, and one
component, say F1, lies in D1, then the geometric index of F1 in T1 must be zero
because the geometric index of F1 in S′ is zero. If F2 does not also lie in D1, then
F1 lies in a ball that lies in D1 and, hence, misses F2, a contradiction. If both
components of B lie in D1, then by Theorem 3.3 the geometric index of B in D1 is
even and is thus 0 or > 1. This implies by Theorem 3.2 that the geometric index
of B in S′ is 0 or ≥ 4, a contradiction.

The intersection of S with S′ corresponding to A can now be removed by a home-
omorphism of S3 fixed on X and on the complement of a small neighborhood of S′

that takes A through D1 to an annulus parallel to A1 and just outside of S′. Induc-
tively, all curves of intersection of S with S′ can be removed by a homeomorphism
of S3 fixed on X and the complement of a small neighborhood of S′.

4.2.3. Curves of intersection on S′ that are (p, q) curves for p = 1. An argument
similar to that in the preceding section can be used. After removing trivial curves
of intersection, we are left with an intersection of A with S′ as pictured in Figure
7. A divides S′ into two tori, labeled U and V in the figure.

Figure 7. The case p = 1

The next stage of the construction is either in the solid torus labeled U or in the
solid torus labeled V . This is clear if the next stage is a Whitehead construction.

If the next stage of S′ in D is a Bing construction B = F1 ∪ F2 in S′, and only
one component, say F1, lies in V , then the geometric index of F1 in V must be zero
because the geometric index of F1 in S′ is zero. But then F1 lies in a ball that lies
in V and, hence, misses F2, a contradiction. So both components of the next stage
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lie entirely in U or entirely in V . The intersection of A with D can be removed by
pushing across the other torus.

4.2.4. Curves of intersection on S′ that are (p, q) curves for p = 0. In this case the
curve is a (0, q) curve for the torus S′, but it is a (q, 0) curve for the complementary
torus with q �= 0. In this case there is an annulus A on the boundary of S that has
its interior in the exterior of S′, so that the intersection of A with the boundary
of S′ consists of curves in the intersection of the boundaries of S and S′. We have
essentially turned the problem inside out, and we can use the previous methods to
push A to the interior of S′ fixed on a slightly shrunken S′, all the other components
of Mi, and the complement of Mi−1.

The discussion above completes the proof of Lemma 4.2. �
4.3. Proof of Lemmas 4.3 and 4.4. The proofs of these two lemmas are virtually
identical, withM andN interchanged in the second lemma. For the proof of Lemma
4.3, under the assumption that Mi ∩ T ′ ⊂ Int(T ′) and consists of components
T1, . . . , Tr of Mi, one mimics the proof of Lemma 4.2, to make each boundary of Ti

disjoint from the boundaries of the one or two components of Nj+1 in T ′. The only
additional step is taking care that each homeomorphism from the proof of Lemma
4.2 can be achieved by fixing S3 − T ′. This is clear because the 3-cells or tori used
as guides for these homeomorphisms are all in the interior of T ′ and all miss X .

Remark 4.6. Note that the hypotheses of Lemma 4.3 give that the components
of Mi intersecting T ′ in Nj are all interior to T ′, and so their boundaries miss
the boundary of T ′ and thus the boundary of Nj . After the homeomorphism of
the lemma, the boundaries of the components of Mi under consideration miss the
boundaries of both Nj and Nj+1. The fact that the components are interior to T ′

implies that the boundaries of these components also miss all previous stages of
(Nk).

4.4. Proof of Theorem 4.1. By assumption, i and j are chosen so that Mi−1

is in N1 and Nj−1 is in M1. Let n be a fixed integer. By Lemma 4.2, there is a
homeomorphism h1 of S3 to itself, fixed on X ∪ (S3 − M1) ∪ (S3 − N1), so that
h1(∂(Mi)) ∩ ∂(Nj) = ∅. This implies that each component S of h1(Mi) is either
contained in the interior of a component of S′ of Nj, or contains components of Nj.

Assume that S is contained in a component S′ of Nj . By Lemma 4.3, there is a
homeomorphism h2 of S3, fixed on X and the complement of S′ so that ∂(h2(S))
does not intersect ∂(Nj) ∪ ∂(Nj+1). Either h2(S) is contained in a component S′′

of Nj+1 or it contains components of Nj+1.
Continue inductively applying Lemma 4.3 until a stage is reached so that the

image of S under the composition of the homeomorphisms at each stage, h(S),
contains components T ′

1, . . . , T
′
r of someNj+�, and so that ∂(h(S)) does not intersect

∂(Nj)∪ ∂(Nj+1)∪ . . .∪ ∂(Nj+�). Such a stage must be reached because every time
a Bing construction occurs in the defining sequence (Nk), components of (Nk) at
that stage contain fewer components of the image of Mi than at the previous stage.

At this point, apply Lemma 4.4 to get a homeomorphism h′ of S3, fixed on X
and on the complement of h(S), so that h′ ◦ h(∂Mi+1) ∩ ∂(

⋃r
k=1 T

′
k) = ∅. We then

have that the boundaries of h′ ◦h(S) and the boundaries of h′ ◦h of all components
of Mi+1 contained in X are disjoint from ∂(Nj) ∪ ∂(Nj+1) ∪ . . . ∪ ∂(Nj+�).

Do the above procedure for each component of h1(Mi) that is contained in
a component of Nj . Do a similar procedure, starting with Lemma 4.4 for each
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component of h1(Mi) containing components ofNj . The result is a homeomorphism
h3 of S3, fixed on X and on the complement of h1(Mi) ∪Nj , so that

h3 ◦ h(∂Mi ∪ ∂Mi+1) ∩ (∂Nj ∪ ∂Nj+1) = ∅.
Next, repeat the entire above argument, starting with the fact that the bound-

aries of the image of Mi+1 are disjoint from the boundaries of Nj+1. Continue in-
ductively until a homeomorphism h of S3 to itself, fixed onX∪(S3−M1)∪(S3−N1),
is obtained, so that h(∂(Mi+m)) ∩ ∂(Nj+�) = ∅ for each nonnegative m and � less
than n. �

5. Proof of the main result

As a special case, we first consider two Bing-Whitehead defining sequences for
the same Bing-Whitehead compactum with the same initial stage.

Lemma 5.1. Assume that X is a Bing-Whitehead compactum with two defining
Bing-Whitehead sequences (Mi) and (Nj) and with M0 = N0. Then there is a home-
omorphism of M0 = N0 that is fixed on ∂M0 = ∂N0 and on X that takes Mi onto
Ni for any specified finite number of stages. In particular, if X = BW (n1, n2, . . .)
with respect to (Mi) and if X = BW (m1,m2, . . .) with respect to (Nj), then mi = ni

for all i.

Proof. Suppose that such a homeomorphism hn exists that matches the components
up through n stages. Let T be a component of Nn. Let M equal hn(Mn+1) ∩ T
and N equal Nn+1 ∩ T . By Lemma 4.2 we may assume that the boundaries of M
and N are disjoint.

It must be the case that M and N both have the same number of components.
To see this, supposeM has one component and N has two. IfM lies in a component
of N , then the geometric index of M in T would be 0 instead of 2. If M does not
lie in a component of N , N must lie in the interior of M and by Theorem 3.5, M
would be parallel to ∂T and its geometric index in T would be 1 instead of 2.

In case M and N both have one component, suppose that M lies in N . Then
∂N is parallel to ∂T or ∂M . But the geometric index of N in T is 2, so ∂M and
∂N are parallel and the boundaries can be matched up with a homeomorphism of
T taking ∂M to ∂N fixed on X and ∂T . The same argument works if N lies in M .

Suppose now that M and N both have two components. Then one component
of M contains or is contained in one component of N , and the other component of
M contains or is contained in the other component of N . Theorem 3.5 can be used
to show that ∂M and ∂N are parallel and as before we can get a homeomorphism
fixed on X and ∂T taking M to N .

Repeating this argument in each component of Nn gives the homeomorphism
hn+1. �

Note that the above proof also establishes the following lemma.

Lemma 5.2. Assume that X is a Bing-Whitehead compactum with two defining
sequences (Mi) and (Nj). If some component M of Mi is the same as some com-
ponent N of Nj, then for all k > 0, αi+k = βj+k, where (α�) is the BW pattern for
(Mi) and (β�) is the BW pattern for (Nj).

We next show that even without the same starting point, there is a component
of some stage of one of the defining sequences that matches up with a component
of the other defining sequence.
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Lemma 5.3. Assume that X is a Bing-Whitehead compactum with two defining
Bing-Whitehead sequences (Mi) and (Nj). Let stages Mm and Nn be chosen so
that they miss the compactum at infinity of the other stage. Suppose that T is
a component of Nn in the interior of some component of Mm. Then there is a
homeomorphism of S3, fixed on X, taking T homeomorphically onto a component
of some stage of Mm+� for some � ≥ 0.

Proof. We choose a k so that Mm+k ⊂ IntNn. By Theorem 4.1 we may assume that
∂T misses ∂Mi, m ≤ i ≤ m+ k. Since T ⊂ Mm and T does not lie in a component
of Mm+k, we can find the largest subscript r so that T does lie in a component of
Mr. Let S0 be the component of Mr that contains T and let S1 be Mr+1 ∩ S0. So
S1 is either a Bing link or a Whitehead link in S0. If S1 is a Whitehead link, then
S1 ⊂ IntT and, by Theorem 3.4, ∂T is boundary parallel to either ∂S0 or ∂S1. In
this case we may now assume by a homeomorphism fixing X that T equals S0 or
S1. In case S1 is a Bing link, then at least one and possibly both components of
S1 lie in IntT . If both lie in IntT , then ∂T and ∂S0 are parallel by Theorem 3.5.
If one component S′

1 ⊂ IntT and the other component misses T , then ∂T and ∂S′
1

are parallel by Theorem 3.6. In either case, we may assume by a homeomorphism
fixing X that T is either S0 or S′

1. �
The previous lemmas can now be used to provide a proof of the main theorem.

Proof of Theorem 2.5. Let X1 be a Bing-Whitehead Cantor set associated with a
defining sequence (Mi) and let X2 be a Bing-Whitehead Cantor set associated with
a defining sequence (Nj). Assume thatX1 andX2 are equivalently embedded. Then
there is a homeomorphism of S3 taking X1 to X2, so without loss of generality, we
may assume X = X1 = X2 and that X has two Bing-Whitehead defining sequences
(Mi) and (Nj). Let (α1, α2, α3, . . .) be the BW pattern of X with respect to (Mi)
and let (β1, β2, β3, . . .) be the BW pattern of X with respect to (Nj). Choose stages
Mm of (Mi) and Nn of (Nj) so that

• Mm is contained in N1 and Nn is contained in M1.
• Both Mm and Nn have 2r components, and both Mm+1 and Nn+1 are
obtained by placing Bing constructions in each component of the previous
stage.

Apply Lemma 4.2 to adjust Mm and Nn so that their boundaries do not inter-
sect. If all the components of Mm are contained in components of Nn, then the
components must match up in a 1-1 fashion, and the proof of Lemma 5.3, together
with the fact that the next stage is a Bing construction, shows that there is a home-
omorphism matching up these components. Then by Lemma 5.2, βn+k = αm+k for
all k ≥ 0, establishing the needed result. A similar argument gives this conclusion
if all the components of Nn are contained in components of Mm.

If some component of Mm contains more than one component of Nn, then some
component of Nn also contains more than one component of Mm. Let T1 be a
component of Nn contained in some component of Mm. By Lemma 5.3, T1 can be
matched homeomorphically with a component of some Mm+p and so by Lemma
5.2, βn+k = αm+p+k for all k ≥ 0. Let T2 be a component of Mm contained in
some component of Nn. By Lemma 5.3, T2 can be matched homeomorphically with
a component of some Nn+q and so by Lemma 5.2, αm+k = βn+q+k for all k ≥ 0.
Thus

αm+k = βn+q+k = αm+p+q+k = α(m+k)+(p+q).
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If p > 0 or q > 0, this implies that the BW pattern for X with respect to (Mi) is
repeating, contradicting the fact that

∑
i ni2

−i diverges whereX = BW (n1, n2, . . .)
with respect to (Mi). Thus p = q = 0 and βn+k = αm+k for all k ≥ 0, establishing
the needed result. �

6. Questions

(1) Is it possible to generalize the main theorem (Theorem 2.5) to apply to the
construction of DeGryse and Osborne in dimensions greater than three?

(2) Is it possible to distinguish Bing-Whitehead compacta that vary the place-
ment of Bing and Whitehead constructions at each stage, rather than using
all Bing or all Whitehead constructions at each stage?

(3) Is it possible to use the techniques of the main theorem to construct rigid
Cantor sets of genus one in S3 with simply connected complements? See
[GRŽ06] for a discussion of rigid Cantor Sets.
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[Mye99b] , Contractible open 3-manifolds with free covering translation groups, Topology
Appl. 96 (1999), no. 2, 97–108. MR1702304 (2001a:57031)

[Mye00a] , Compactifying sufficiently regular covering spaces of compact 3-manifolds,
Proc. Amer. Math. Soc. 128 (2000), no. 5, 1507–1513. MR1637416 (2000j:57050)

[Mye00b] , On covering translations and homeotopy groups of contractible open n-
manifolds, Proc. Amer. Math. Soc. 128 (2000), no. 5, 1563–1566. MR1641077
(2001a:57005)

[Mye00c] , Uncountably many arcs in S3 whose complements have non-isomorphic, inde-
composable fundamental groups, J. Knot Theory Ramifications 9 (2000), no. 4, 505–521.
MR1758869 (2001m:57014)

[Rol76] D. Rolfsen, Knots and links, Mathematics Lecture Series, No. 7., Publish or Perish,
Inc., Berkeley, Calif., 1976. MR0515288 (58:24236)

[RS72] C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Springer-
Verlag, New York, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69.
MR0350744 (50:3236)

[Sch53] H. Schubert, Knoten und vollringe, Acta. Math. 90 (1953), 131–186. MR0072482
(17,291d)

[She68] R. B. Sher, Concerning wild Cantor sets in E3, Proc. Amer. Math. Soc. 19 (1968),
1195–1200. MR38:2755

[Shi74] A. C. Shilepsky, A rigid Cantor set in E3, Bull. Acad. Polon. Sci. Sér. Sci. Math. 22
(1974), 223–224. MR0345110 (49:9849)

[Sko86] Richard Skora, Cantor sets in S3 with simply connected complements, Topology Appl.
24 (1986), no. 1-3, 181–188, Special volume in honor of R. H. Bing (1914–1986).
MR872489 (87m:57009)

[Wri89] David G. Wright, Bing-Whitehead Cantor sets, Fund. Math. 132 (1989), no. 2, 105–116.
MR1002625 (90d:57020)

[Wri92] , Contractible open manifolds which are not covering spaces, Topology 31 (1992),
no. 2, 281–291. MR93f:57004
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[Žel05] , Genus of a Cantor set, Rocky Mountain J. Math. 35 (2005), no. 1, 349–366.
MR2117612 (2006e:57022)

Department of Mathematics, Oregon State University, Corvallis, Oregon 97331
E-mail address: garity@math.oregonstate.edu

Faculty of Mathematics and Physics, and Faculty of Education, University of Ljubl-

jana, P.O. Box 2964, Ljubljana, Slovenia 1001
E-mail address: dusan.repovs@guest.arnes.si

Department of Mathematics, Brigham Young University, Provo, Utah 84602
E-mail address: wright@math.byu.edu

Institute of Mathematics, Physics and Mechanics, Faculty of Mathematics and
Physics, University of Ljubljana, P.O.Box 2964, Ljubljana, Slovenia

E-mail address: matjaz.zeljko@fmf.uni-lj.si

http://www.ams.org/mathscinet-getitem?mr=1702304
http://www.ams.org/mathscinet-getitem?mr=1702304
http://www.ams.org/mathscinet-getitem?mr=1637416
http://www.ams.org/mathscinet-getitem?mr=1637416
http://www.ams.org/mathscinet-getitem?mr=1641077
http://www.ams.org/mathscinet-getitem?mr=1641077
http://www.ams.org/mathscinet-getitem?mr=1758869
http://www.ams.org/mathscinet-getitem?mr=1758869
http://www.ams.org/mathscinet-getitem?mr=0515288
http://www.ams.org/mathscinet-getitem?mr=0515288
http://www.ams.org/mathscinet-getitem?mr=0350744
http://www.ams.org/mathscinet-getitem?mr=0350744
http://www.ams.org/mathscinet-getitem?mr=0072482
http://www.ams.org/mathscinet-getitem?mr=0072482
http://www.ams.org/mathscinet-getitem?mr=38:2755
http://www.ams.org/mathscinet-getitem?mr=0345110
http://www.ams.org/mathscinet-getitem?mr=0345110
http://www.ams.org/mathscinet-getitem?mr=872489
http://www.ams.org/mathscinet-getitem?mr=872489
http://www.ams.org/mathscinet-getitem?mr=1002625
http://www.ams.org/mathscinet-getitem?mr=1002625
http://www.ams.org/mathscinet-getitem?mr=93f:57004
http://www.ams.org/mathscinet-getitem?mr=1821859
http://www.ams.org/mathscinet-getitem?mr=1821859
http://www.ams.org/mathscinet-getitem?mr=2117612
http://www.ams.org/mathscinet-getitem?mr=2117612

	1. Background
	2. Properties of Bing and Whitehead links
	2.1. Bing and Whitehead links
	2.2. Construction of Bing-Whitehead compacta
	2.3. Geometric properties
	2.4. Main result

	3. Algebraic and geometric index
	3.1. Algebraic index
	3.2. Geometric index
	3.3. Boundary parallel tori

	4. Boundary intersections of defining sequences
	4.1. Setup
	4.2. Proof of Lemma 4.2
	4.3. Proof of Lemmas 4.3 and 4.4
	4.4. Proof of Theorem 4.1

	5. Proof of the main result
	6. Questions
	Acknowledgments
	References

